Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-15

AUTHORS

Yaou Liu, Di Dong, Liwen Zhang, Yali Zang, Yunyun Duan, Xiaolu Qiu, Jing Huang, Huiqing Dong, Frederik Barkhof, Chaoen Hu, Mengjie Fang, Jie Tian, Kuncheng Li

ABSTRACT

ObjectiveTo develop and validate an individual radiomics nomogram for differential diagnosis between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD).MethodsWe retrospectively collected 67 MS and 68 NMOSD with spinal cord lesions as a primary cohort and prospectively recruited 28 MS and 26 NMOSD patients as a validation cohort. Radiomic features were extracted from the spinal cord lesions. A prediction model for differentiating MS and NMOSD was built by combining the radiomic features with several clinical and routine MRI measurements. The performance of the model was assessed with respect to its calibration plot and clinical discrimination in the primary and validation cohorts.ResultsNine radiomics features extracted from an initial set of 485, predominantly reflecting lesion heterogeneity, combined with lesion length, patient sex, and EDSS, were selected to build the model for differentiating MS and NMOSD. The areas under the ROC curves (AUC) for differentiating the two diseases were 0.8808 and 0.7115, for the primary and validation cohort, respectively. This model demonstrated good calibration (C-index was 0.906 and 0.802 in primary and validation cohort).ConclusionsA validated nomogram that incorporates the radiomic signature of spinal cord lesions, as well as cord lesion length, sex, and EDSS score, can usefully differentiate MS and NMOSD.Key Points• Radiomic features of spinal cord lesions in MS and NMOSD were different.• Radiomic signatures can capture pathological alterations and help differentiate MS and NMOSD. More... »

PAGES

4670-4677

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-019-06026-w

DOI

http://dx.doi.org/10.1007/s00330-019-06026-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112158356

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30770971


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multiple Sclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuromyelitis Optica", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spinal Cord", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, People\u2019s Republic of China", 
            "Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, 100050, Beijing, People\u2019s Republic of China", 
            "Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands", 
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yaou", 
        "id": "sg:person.011415272704.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415272704.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Di", 
        "id": "sg:person.01020125013.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020125013.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Liwen", 
        "id": "sg:person.015667204060.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667204060.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zang", 
        "givenName": "Yali", 
        "id": "sg:person.013742113113.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013742113113.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, 100050, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411617.4", 
          "name": [
            "Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, People\u2019s Republic of China", 
            "Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, 100050, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duan", 
        "givenName": "Yunyun", 
        "id": "sg:person.01245052727.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245052727.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Xiaolu", 
        "id": "sg:person.016224016203.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224016203.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Jing", 
        "id": "sg:person.0704010427.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704010427.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Huiqing", 
        "id": "sg:person.01163570326.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163570326.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institutes of Neurology and Healthcare Engineering, UCL, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands", 
            "Institutes of Neurology and Healthcare Engineering, UCL, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barkhof", 
        "givenName": "Frederik", 
        "id": "sg:person.07542735637.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07542735637.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Chaoen", 
        "id": "sg:person.015412033345.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412033345.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Mengjie", 
        "id": "sg:person.015023131767.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015023131767.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China", 
            "University of Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Jie", 
        "id": "sg:person.01124562550.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124562550.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, People\u2019s Republic of China", 
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms5006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009469125", 
          "https://doi.org/10.1038/ncomms5006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-2094-9-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047091067", 
          "https://doi.org/10.1186/1742-2094-9-14"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-15", 
    "datePublishedReg": "2019-02-15", 
    "description": "ObjectiveTo develop and validate an individual radiomics nomogram for differential diagnosis between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD).MethodsWe retrospectively collected 67 MS and 68 NMOSD with spinal cord lesions as a primary cohort and prospectively recruited 28 MS and 26 NMOSD patients as a validation cohort. Radiomic features were extracted from the spinal cord lesions. A prediction model for differentiating MS and NMOSD was built by combining the radiomic features with several clinical and routine MRI measurements. The performance of the model was assessed with respect to its calibration plot and clinical discrimination in the primary and validation cohorts.ResultsNine radiomics features extracted from an initial set of 485, predominantly reflecting lesion heterogeneity, combined with lesion length, patient sex, and EDSS, were selected to build the model for differentiating MS and NMOSD. The areas under the ROC curves (AUC) for differentiating the two diseases were 0.8808 and 0.7115, for the primary and validation cohort, respectively. This model demonstrated good calibration (C-index was 0.906 and 0.802 in primary and validation cohort).ConclusionsA validated nomogram that incorporates the radiomic signature of spinal cord lesions, as well as cord lesion length, sex, and EDSS score, can usefully differentiate MS and NMOSD.Key Points\u2022 Radiomic features of spinal cord lesions in MS and NMOSD were different.\u2022 Radiomic signatures can capture pathological alterations and help differentiate MS and NMOSD.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-019-06026-w", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8292222", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8341182", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8330032", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8336722", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8369834", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7001705", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8345540", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "neuromyelitis optica spectrum disorder", 
      "spinal cord lesions", 
      "optica spectrum disorder", 
      "multiple sclerosis", 
      "cord lesions", 
      "validation cohort", 
      "radiomic features", 
      "radiomics signature", 
      "lesion length", 
      "EDSS score", 
      "NMOSD patients", 
      "radiomics nomogram", 
      "primary cohort", 
      "patient sex", 
      "differential diagnosis", 
      "spectrum disorder", 
      "pathological alterations", 
      "clinical discrimination", 
      "lesions", 
      "cohort", 
      "lesion heterogeneity", 
      "MRI measurements", 
      "ROC curve", 
      "good calibration", 
      "sclerosis", 
      "nomogram", 
      "disorders", 
      "sex", 
      "radiomics", 
      "EDSS", 
      "patients", 
      "ObjectiveTo", 
      "MethodsWe", 
      "disease", 
      "diagnosis", 
      "scores", 
      "ConclusionsA", 
      "calibration plots", 
      "alterations", 
      "features", 
      "heterogeneity", 
      "length", 
      "prediction model", 
      "discrimination", 
      "model", 
      "curves", 
      "signatures", 
      "area", 
      "measurements", 
      "initial set", 
      "respect", 
      "plots", 
      "performance", 
      "set", 
      "calibration"
    ], 
    "name": "Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder", 
    "pagination": "4670-4677", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112158356"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-019-06026-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30770971"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-019-06026-w", 
      "https://app.dimensions.ai/details/publication/pub.1112158356"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_826.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-019-06026-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06026-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06026-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06026-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06026-w'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      21 PREDICATES      96 URIs      86 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-019-06026-w schema:about N27a004d304c64c15a4ff51b37e59b89b
2 N4672616bb99f4439bb97a1382e6afe7d
3 N4931602ec1fa4099922716046c59e721
4 N56d1f05959d948fb83ec3f41d740cd39
5 N5e6ece51966846df97f028dc0447fc92
6 N5ee29fa0c07a4bd6883caf958c265bce
7 N7081c93468b64887a81b198c5a7d7cd1
8 N7cb62a0a7261457cb5e4a8ccdfa15140
9 N84148c5d07d64dc188bb63440a061854
10 N9ac141ee740b464ebfbd2cb02a043175
11 Nba2be0bb2ecd4bb8bceb603b9bfce91d
12 Nbbceba694f32434a85f6d5ba293b4d19
13 Nc1db0d7b32d24b98ba023f8c5f674658
14 Ncdb137c2c77f42be8517476fb3a1a315
15 anzsrc-for:11
16 anzsrc-for:1109
17 schema:author Nbf66e8d73dfb4164b4be03ba75c5ed9d
18 schema:citation sg:pub.10.1038/ncomms5006
19 sg:pub.10.1186/1742-2094-9-14
20 schema:datePublished 2019-02-15
21 schema:datePublishedReg 2019-02-15
22 schema:description ObjectiveTo develop and validate an individual radiomics nomogram for differential diagnosis between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD).MethodsWe retrospectively collected 67 MS and 68 NMOSD with spinal cord lesions as a primary cohort and prospectively recruited 28 MS and 26 NMOSD patients as a validation cohort. Radiomic features were extracted from the spinal cord lesions. A prediction model for differentiating MS and NMOSD was built by combining the radiomic features with several clinical and routine MRI measurements. The performance of the model was assessed with respect to its calibration plot and clinical discrimination in the primary and validation cohorts.ResultsNine radiomics features extracted from an initial set of 485, predominantly reflecting lesion heterogeneity, combined with lesion length, patient sex, and EDSS, were selected to build the model for differentiating MS and NMOSD. The areas under the ROC curves (AUC) for differentiating the two diseases were 0.8808 and 0.7115, for the primary and validation cohort, respectively. This model demonstrated good calibration (C-index was 0.906 and 0.802 in primary and validation cohort).ConclusionsA validated nomogram that incorporates the radiomic signature of spinal cord lesions, as well as cord lesion length, sex, and EDSS score, can usefully differentiate MS and NMOSD.Key Points• Radiomic features of spinal cord lesions in MS and NMOSD were different.• Radiomic signatures can capture pathological alterations and help differentiate MS and NMOSD.
23 schema:genre article
24 schema:isAccessibleForFree true
25 schema:isPartOf N5838a75c20894a199d826195a4a3e1cc
26 Nc0c17d5bf534459e912a862486129d7a
27 sg:journal.1289120
28 schema:keywords ConclusionsA
29 EDSS
30 EDSS score
31 MRI measurements
32 MethodsWe
33 NMOSD patients
34 ObjectiveTo
35 ROC curve
36 alterations
37 area
38 calibration
39 calibration plots
40 clinical discrimination
41 cohort
42 cord lesions
43 curves
44 diagnosis
45 differential diagnosis
46 discrimination
47 disease
48 disorders
49 features
50 good calibration
51 heterogeneity
52 initial set
53 length
54 lesion heterogeneity
55 lesion length
56 lesions
57 measurements
58 model
59 multiple sclerosis
60 neuromyelitis optica spectrum disorder
61 nomogram
62 optica spectrum disorder
63 pathological alterations
64 patient sex
65 patients
66 performance
67 plots
68 prediction model
69 primary cohort
70 radiomic features
71 radiomics
72 radiomics nomogram
73 radiomics signature
74 respect
75 sclerosis
76 scores
77 set
78 sex
79 signatures
80 spectrum disorder
81 spinal cord lesions
82 validation cohort
83 schema:name Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder
84 schema:pagination 4670-4677
85 schema:productId N246c2de04fe746ed933f5ad05ff044f5
86 N347b8bebbc4a4a29a8c05ba1361228e5
87 Nd7e8e469077f4d789f16bbb1b7de6756
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112158356
89 https://doi.org/10.1007/s00330-019-06026-w
90 schema:sdDatePublished 2022-10-01T06:46
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Nf1283ec8247346bfa271452f265ac726
93 schema:url https://doi.org/10.1007/s00330-019-06026-w
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N11187339b35c4c45982db4729d5c5fca rdf:first sg:person.07542735637.03
98 rdf:rest N532128fa16ee4187bac5f84e8125dc2a
99 N2400b2cbd6ac4ff6b0f4e283a82922e3 rdf:first sg:person.0704010427.58
100 rdf:rest Na4e7fcdcd15444dda2baaa2cbb2c5c1d
101 N246c2de04fe746ed933f5ad05ff044f5 schema:name pubmed_id
102 schema:value 30770971
103 rdf:type schema:PropertyValue
104 N27a004d304c64c15a4ff51b37e59b89b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Diagnosis, Differential
106 rdf:type schema:DefinedTerm
107 N347b8bebbc4a4a29a8c05ba1361228e5 schema:name doi
108 schema:value 10.1007/s00330-019-06026-w
109 rdf:type schema:PropertyValue
110 N4672616bb99f4439bb97a1382e6afe7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Cohort Studies
112 rdf:type schema:DefinedTerm
113 N4931602ec1fa4099922716046c59e721 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Male
115 rdf:type schema:DefinedTerm
116 N532128fa16ee4187bac5f84e8125dc2a rdf:first sg:person.015412033345.26
117 rdf:rest N86b70e5273b14c19ab46935fd821e42e
118 N56d1f05959d948fb83ec3f41d740cd39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Adult
120 rdf:type schema:DefinedTerm
121 N5838a75c20894a199d826195a4a3e1cc schema:volumeNumber 29
122 rdf:type schema:PublicationVolume
123 N5e6ece51966846df97f028dc0447fc92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Female
125 rdf:type schema:DefinedTerm
126 N5ee29fa0c07a4bd6883caf958c265bce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Magnetic Resonance Imaging
128 rdf:type schema:DefinedTerm
129 N7081c93468b64887a81b198c5a7d7cd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Prospective Studies
131 rdf:type schema:DefinedTerm
132 N7cb62a0a7261457cb5e4a8ccdfa15140 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Reproducibility of Results
134 rdf:type schema:DefinedTerm
135 N84148c5d07d64dc188bb63440a061854 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Retrospective Studies
137 rdf:type schema:DefinedTerm
138 N86b70e5273b14c19ab46935fd821e42e rdf:first sg:person.015023131767.19
139 rdf:rest Nf511afc52c5749c49ba22e06bacdca95
140 N8bff286bfc0042c98635ccd5b6548be9 rdf:first sg:person.01245052727.42
141 rdf:rest N9848f4e4d8934ab89af71b6738ad931d
142 N9848f4e4d8934ab89af71b6738ad931d rdf:first sg:person.016224016203.11
143 rdf:rest N2400b2cbd6ac4ff6b0f4e283a82922e3
144 N9ac141ee740b464ebfbd2cb02a043175 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Spinal Cord
146 rdf:type schema:DefinedTerm
147 N9e6079ba73f9484ea70b56c9df52783b rdf:first sg:person.01326527402.59
148 rdf:rest rdf:nil
149 Na4e7fcdcd15444dda2baaa2cbb2c5c1d rdf:first sg:person.01163570326.85
150 rdf:rest N11187339b35c4c45982db4729d5c5fca
151 Nba2be0bb2ecd4bb8bceb603b9bfce91d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Humans
153 rdf:type schema:DefinedTerm
154 Nbbceba694f32434a85f6d5ba293b4d19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Multiple Sclerosis
156 rdf:type schema:DefinedTerm
157 Nbd565de634844b73bf96c07e80b79ce4 rdf:first sg:person.013742113113.51
158 rdf:rest N8bff286bfc0042c98635ccd5b6548be9
159 Nbf66e8d73dfb4164b4be03ba75c5ed9d rdf:first sg:person.011415272704.77
160 rdf:rest Nbfbe37eb72cf402cb619be466e48fd4e
161 Nbfbe37eb72cf402cb619be466e48fd4e rdf:first sg:person.01020125013.03
162 rdf:rest Nf5a4aaccbe1e44f2957daceb9ce60ad8
163 Nc0c17d5bf534459e912a862486129d7a schema:issueNumber 9
164 rdf:type schema:PublicationIssue
165 Nc1db0d7b32d24b98ba023f8c5f674658 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Area Under Curve
167 rdf:type schema:DefinedTerm
168 Ncdb137c2c77f42be8517476fb3a1a315 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Neuromyelitis Optica
170 rdf:type schema:DefinedTerm
171 Nd7e8e469077f4d789f16bbb1b7de6756 schema:name dimensions_id
172 schema:value pub.1112158356
173 rdf:type schema:PropertyValue
174 Nf1283ec8247346bfa271452f265ac726 schema:name Springer Nature - SN SciGraph project
175 rdf:type schema:Organization
176 Nf511afc52c5749c49ba22e06bacdca95 rdf:first sg:person.01124562550.66
177 rdf:rest N9e6079ba73f9484ea70b56c9df52783b
178 Nf5a4aaccbe1e44f2957daceb9ce60ad8 rdf:first sg:person.015667204060.04
179 rdf:rest Nbd565de634844b73bf96c07e80b79ce4
180 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
181 schema:name Medical and Health Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
184 schema:name Neurosciences
185 rdf:type schema:DefinedTerm
186 sg:grant.7001705 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-019-06026-w
187 rdf:type schema:MonetaryGrant
188 sg:grant.8292222 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-019-06026-w
189 rdf:type schema:MonetaryGrant
190 sg:grant.8330032 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-019-06026-w
191 rdf:type schema:MonetaryGrant
192 sg:grant.8336722 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-019-06026-w
193 rdf:type schema:MonetaryGrant
194 sg:grant.8341182 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-019-06026-w
195 rdf:type schema:MonetaryGrant
196 sg:grant.8345540 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-019-06026-w
197 rdf:type schema:MonetaryGrant
198 sg:grant.8369834 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-019-06026-w
199 rdf:type schema:MonetaryGrant
200 sg:journal.1289120 schema:issn 0938-7994
201 1432-1084
202 schema:name European Radiology
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01020125013.03 schema:affiliation grid-institutes:grid.410726.6
206 schema:familyName Dong
207 schema:givenName Di
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020125013.03
209 rdf:type schema:Person
210 sg:person.01124562550.66 schema:affiliation grid-institutes:grid.410726.6
211 schema:familyName Tian
212 schema:givenName Jie
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124562550.66
214 rdf:type schema:Person
215 sg:person.011415272704.77 schema:affiliation grid-institutes:grid.413259.8
216 schema:familyName Liu
217 schema:givenName Yaou
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415272704.77
219 rdf:type schema:Person
220 sg:person.01163570326.85 schema:affiliation grid-institutes:grid.413259.8
221 schema:familyName Dong
222 schema:givenName Huiqing
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163570326.85
224 rdf:type schema:Person
225 sg:person.01245052727.42 schema:affiliation grid-institutes:grid.411617.4
226 schema:familyName Duan
227 schema:givenName Yunyun
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245052727.42
229 rdf:type schema:Person
230 sg:person.01326527402.59 schema:affiliation grid-institutes:grid.413259.8
231 schema:familyName Li
232 schema:givenName Kuncheng
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
234 rdf:type schema:Person
235 sg:person.013742113113.51 schema:affiliation grid-institutes:grid.410726.6
236 schema:familyName Zang
237 schema:givenName Yali
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013742113113.51
239 rdf:type schema:Person
240 sg:person.015023131767.19 schema:affiliation grid-institutes:grid.410726.6
241 schema:familyName Fang
242 schema:givenName Mengjie
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015023131767.19
244 rdf:type schema:Person
245 sg:person.015412033345.26 schema:affiliation grid-institutes:grid.410726.6
246 schema:familyName Hu
247 schema:givenName Chaoen
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015412033345.26
249 rdf:type schema:Person
250 sg:person.015667204060.04 schema:affiliation grid-institutes:grid.410726.6
251 schema:familyName Zhang
252 schema:givenName Liwen
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667204060.04
254 rdf:type schema:Person
255 sg:person.016224016203.11 schema:affiliation grid-institutes:grid.413259.8
256 schema:familyName Qiu
257 schema:givenName Xiaolu
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224016203.11
259 rdf:type schema:Person
260 sg:person.0704010427.58 schema:affiliation grid-institutes:grid.413259.8
261 schema:familyName Huang
262 schema:givenName Jing
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704010427.58
264 rdf:type schema:Person
265 sg:person.07542735637.03 schema:affiliation grid-institutes:grid.83440.3b
266 schema:familyName Barkhof
267 schema:givenName Frederik
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07542735637.03
269 rdf:type schema:Person
270 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
271 https://doi.org/10.1038/ncomms5006
272 rdf:type schema:CreativeWork
273 sg:pub.10.1186/1742-2094-9-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047091067
274 https://doi.org/10.1186/1742-2094-9-14
275 rdf:type schema:CreativeWork
276 grid-institutes:grid.410726.6 schema:alternateName University of Chinese Academy of Sciences, Beijing, China
277 schema:name CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
278 University of Chinese Academy of Sciences, Beijing, China
279 rdf:type schema:Organization
280 grid-institutes:grid.411617.4 schema:alternateName Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, 100050, Beijing, People’s Republic of China
281 schema:name Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, People’s Republic of China
282 Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, 100050, Beijing, People’s Republic of China
283 rdf:type schema:Organization
284 grid-institutes:grid.413259.8 schema:alternateName Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
285 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
286 schema:name Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
287 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
288 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, People’s Republic of China
289 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
290 Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, 100050, Beijing, People’s Republic of China
291 rdf:type schema:Organization
292 grid-institutes:grid.83440.3b schema:alternateName Institutes of Neurology and Healthcare Engineering, UCL, London, UK
293 schema:name Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands
294 Institutes of Neurology and Healthcare Engineering, UCL, London, UK
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...