Quantification of myocardial deformation by deformable registration–based analysis of cine MRI: validation with tagged CMR View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-15

AUTHORS

Mariana M. Lamacie, Christian P. Houbois, Andreas Greiser, Marie-Pierre Jolly, Paaladinesh Thavendiranathan, Bernd J. Wintersperger

ABSTRACT

OBJECTIVES: To validate deformable registration algorithms (DRAs) for cine balanced steady-state free precession (bSSFP) assessment of global longitudinal strain (GLS) and global circumferential strain (GCS) using harmonic phase (HARP) cardiovascular magnetic resonance as standard of reference (SoR). METHODS: Seventeen patients and 17 volunteers underwent short axis stack and 2-/4-chamber cine bSSFP imaging with matching slice long-axis and mid-ventricular spatial modulation of magnetization (SPAMM) myocardial tagging. Inverse DRA was applied on bSSFP data for assessment of GLS and GCS while myocardial tagging was processed using HARP. Intra- and inter-observer variability assessment was based on repeated analysis by a single observer and analysis by a second observer, respectively. Standard semi-automated short axis stack segmentation was performed for analysis of left ventricular (LV) volumes and ejection fraction (EF). RESULTS: DRA demonstrated strong relationships to HARP for myocardial GLS (R2 = 0.75; p < 0.0001) and endocardial GLS (R2 = 0.61; p < 0.0001). GCS result comparison also demonstrated significant relationships between DRA and HARP for myocardial strain (R2 = 0.61; p < 0.0001) and endocardial strain (R2 = 0.51; p < 0.0001). Both methods demonstrated small systematic errors for intra- and inter-observer variability but DRA demonstrated consistently lower CV. Global LVEF was significantly lower (p = 0.0099) in patients (53.7%; IQR 43.9/64.0%) than in healthy volunteers (62.6%; IQR 61.1/66.2%). DRA and HARP strain data demonstrated significant relationships to LVEF. CONCLUSIONS: Non-rigid deformation method-based DRA provides a reliable measure of peak systolic GCS and GLS based on cine bSSFP with superior intra- and inter-observer reproducibility compared to HARP. KEY POINT: • Myocardial strain can be reliably analyzed using inverse deformable registration algorithms (DRAs) on cine CMR. • Inverse DRA-derived strain shows higher reproducibility than tagged CMR. • DRA and tagged CMR-based myocardial strain demonstrate strong relationships to global left ventricular function. More... »

PAGES

1-11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-019-06019-9

DOI

http://dx.doi.org/10.1007/s00330-019-06019-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112158355

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30770973


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Health Network", 
          "id": "https://www.grid.ac/institutes/grid.231844.8", 
          "name": [
            "Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lamacie", 
        "givenName": "Mariana M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada", 
            "Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Houbois", 
        "givenName": "Christian P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens Healthcare GmbH, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greiser", 
        "givenName": "Andreas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthcare AG, Medical Imaging Technologies, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jolly", 
        "givenName": "Marie-Pierre", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada", 
            "Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thavendiranathan", 
        "givenName": "Paaladinesh", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada", 
            "Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wintersperger", 
        "givenName": "Bernd J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1532-429x-15-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002947681", 
          "https://doi.org/10.1186/1532-429x-15-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11357-013-9535-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003464232", 
          "https://doi.org/10.1007/s11357-013-9535-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4514-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005570283", 
          "https://doi.org/10.1007/s00330-016-4514-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4514-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005570283", 
          "https://doi.org/10.1007/s00330-016-4514-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005983284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008419005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.1998.1676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012493788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31828c351a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017796928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31828c351a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017796928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2011.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019871842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025458709", 
          "https://doi.org/10.1186/1532-429x-15-95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2015.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026167848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(94)90636-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030323684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heartjnl-2014-305538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031195841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2014.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032850891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcl.2014.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037746088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2015.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042311042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-13-58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042665816", 
          "https://doi.org/10.1186/1532-429x-13-58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043111155", 
          "https://doi.org/10.1186/1532-429x-14-32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-11-55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043451951", 
          "https://doi.org/10.1186/1532-429x-11-55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044714665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-014-2992-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044728681", 
          "https://doi.org/10.1007/s00247-014-2992-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2009.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046323379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2005.074187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048929217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050230561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2008.12.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050457576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2009.07.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051291082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/2356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051547915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2014.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052215794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.561423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053395986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10976640500295417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058381098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.845177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.171.3.2717762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079270177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.169.1.3420283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079735381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.188.1.8511281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082838479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-017-1090-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084025448", 
          "https://doi.org/10.1007/s10554-017-1090-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-017-1090-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084025448", 
          "https://doi.org/10.1007/s10554-017-1090-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-017-0373-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090955407", 
          "https://doi.org/10.1186/s12968-017-0373-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-017-0373-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090955407", 
          "https://doi.org/10.1186/s12968-017-0373-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcha.2018.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101340562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5538-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104406557", 
          "https://doi.org/10.1007/s00330-018-5538-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5538-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104406557", 
          "https://doi.org/10.1007/s00330-018-5538-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-15", 
    "datePublishedReg": "2019-02-15", 
    "description": "OBJECTIVES: To validate deformable registration algorithms (DRAs) for cine balanced steady-state free precession (bSSFP) assessment of global longitudinal strain (GLS) and global circumferential strain (GCS) using harmonic phase (HARP) cardiovascular magnetic resonance as standard of reference (SoR).\nMETHODS: Seventeen patients and 17 volunteers underwent short axis stack and 2-/4-chamber cine bSSFP imaging with matching slice long-axis and mid-ventricular spatial modulation of magnetization (SPAMM) myocardial tagging. Inverse DRA was applied on bSSFP data for assessment of GLS and GCS while myocardial tagging was processed using HARP. Intra- and inter-observer variability assessment was based on repeated analysis by a single observer and analysis by a second observer, respectively. Standard semi-automated short axis stack segmentation was performed for analysis of left ventricular (LV) volumes and ejection fraction (EF).\nRESULTS: DRA demonstrated strong relationships to HARP for myocardial GLS (R2\u2009=\u20090.75; p\u2009<\u20090.0001) and endocardial GLS (R2\u2009=\u20090.61; p\u2009<\u20090.0001). GCS result comparison also demonstrated significant relationships between DRA and HARP for myocardial strain (R2\u2009=\u20090.61; p\u2009<\u20090.0001) and endocardial strain (R2\u2009=\u20090.51; p\u2009<\u20090.0001). Both methods demonstrated small systematic errors for intra- and inter-observer variability but DRA demonstrated consistently lower CV. Global LVEF was significantly lower (p\u2009=\u20090.0099) in patients (53.7%; IQR 43.9/64.0%) than in healthy volunteers (62.6%; IQR 61.1/66.2%). DRA and HARP strain data demonstrated significant relationships to LVEF.\nCONCLUSIONS: Non-rigid deformation method-based DRA provides a reliable measure of peak systolic GCS and GLS based on cine bSSFP with superior intra- and inter-observer reproducibility compared to HARP.\nKEY POINT: \u2022 Myocardial strain can be reliably analyzed using inverse deformable registration algorithms (DRAs) on cine CMR. \u2022 Inverse DRA-derived strain shows higher reproducibility than tagged CMR. \u2022 DRA and tagged CMR-based myocardial strain demonstrate strong relationships to global left ventricular function.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-019-06019-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Quantification of myocardial deformation by deformable registration\u2013based analysis of cine MRI: validation with tagged CMR", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e14aa7464f0d12055032e544064aad609d1aceade07097acc3faa349da6fadfa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30770973"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-019-06019-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112158355"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-019-06019-9", 
      "https://app.dimensions.ai/details/publication/pub.1112158355"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37588_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-019-06019-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06019-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06019-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06019-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06019-9'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      63 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-019-06019-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N749e5e38d16749e1832778b0115f4424
4 schema:citation sg:pub.10.1007/s00247-014-2992-2
5 sg:pub.10.1007/s00330-016-4514-0
6 sg:pub.10.1007/s00330-018-5538-4
7 sg:pub.10.1007/s10554-017-1090-6
8 sg:pub.10.1007/s11357-013-9535-x
9 sg:pub.10.1186/1532-429x-11-55
10 sg:pub.10.1186/1532-429x-13-58
11 sg:pub.10.1186/1532-429x-14-32
12 sg:pub.10.1186/1532-429x-15-8
13 sg:pub.10.1186/1532-429x-15-95
14 sg:pub.10.1186/s12968-017-0373-3
15 https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m
16 https://doi.org/10.1002/jmri.23756
17 https://doi.org/10.1002/jmri.24749
18 https://doi.org/10.1002/mrm.1195
19 https://doi.org/10.1006/jmre.1998.1676
20 https://doi.org/10.1016/0002-8703(94)90636-x
21 https://doi.org/10.1016/j.crad.2015.05.006
22 https://doi.org/10.1016/j.echo.2009.07.027
23 https://doi.org/10.1016/j.echo.2011.08.003
24 https://doi.org/10.1016/j.echo.2014.11.018
25 https://doi.org/10.1016/j.ejrad.2014.10.011
26 https://doi.org/10.1016/j.ijcha.2018.02.007
27 https://doi.org/10.1016/j.jacc.2008.12.032
28 https://doi.org/10.1016/j.jcmg.2009.11.006
29 https://doi.org/10.1016/j.jcmg.2015.02.005
30 https://doi.org/10.1016/j.rcl.2014.11.001
31 https://doi.org/10.1080/10976640500295417
32 https://doi.org/10.1097/rli.0b013e31828c351a
33 https://doi.org/10.1109/42.845177
34 https://doi.org/10.1136/heartjnl-2014-305538
35 https://doi.org/10.1136/hrt.2005.074187
36 https://doi.org/10.1148/radiology.169.1.3420283
37 https://doi.org/10.1148/radiology.171.3.2717762
38 https://doi.org/10.1148/radiology.188.1.8511281
39 https://doi.org/10.1161/circulationaha.105.561423
40 https://doi.org/10.3791/2356
41 schema:datePublished 2019-02-15
42 schema:datePublishedReg 2019-02-15
43 schema:description OBJECTIVES: To validate deformable registration algorithms (DRAs) for cine balanced steady-state free precession (bSSFP) assessment of global longitudinal strain (GLS) and global circumferential strain (GCS) using harmonic phase (HARP) cardiovascular magnetic resonance as standard of reference (SoR). METHODS: Seventeen patients and 17 volunteers underwent short axis stack and 2-/4-chamber cine bSSFP imaging with matching slice long-axis and mid-ventricular spatial modulation of magnetization (SPAMM) myocardial tagging. Inverse DRA was applied on bSSFP data for assessment of GLS and GCS while myocardial tagging was processed using HARP. Intra- and inter-observer variability assessment was based on repeated analysis by a single observer and analysis by a second observer, respectively. Standard semi-automated short axis stack segmentation was performed for analysis of left ventricular (LV) volumes and ejection fraction (EF). RESULTS: DRA demonstrated strong relationships to HARP for myocardial GLS (R2 = 0.75; p < 0.0001) and endocardial GLS (R2 = 0.61; p < 0.0001). GCS result comparison also demonstrated significant relationships between DRA and HARP for myocardial strain (R2 = 0.61; p < 0.0001) and endocardial strain (R2 = 0.51; p < 0.0001). Both methods demonstrated small systematic errors for intra- and inter-observer variability but DRA demonstrated consistently lower CV. Global LVEF was significantly lower (p = 0.0099) in patients (53.7%; IQR 43.9/64.0%) than in healthy volunteers (62.6%; IQR 61.1/66.2%). DRA and HARP strain data demonstrated significant relationships to LVEF. CONCLUSIONS: Non-rigid deformation method-based DRA provides a reliable measure of peak systolic GCS and GLS based on cine bSSFP with superior intra- and inter-observer reproducibility compared to HARP. KEY POINT: • Myocardial strain can be reliably analyzed using inverse deformable registration algorithms (DRAs) on cine CMR. • Inverse DRA-derived strain shows higher reproducibility than tagged CMR. • DRA and tagged CMR-based myocardial strain demonstrate strong relationships to global left ventricular function.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf sg:journal.1289120
48 schema:name Quantification of myocardial deformation by deformable registration–based analysis of cine MRI: validation with tagged CMR
49 schema:pagination 1-11
50 schema:productId N03424e7ea40d40ac8ef5deb9bc26b6b0
51 N5e21f4753595471fbc914a01d58fc33b
52 Ndb3744174a4c48ecab64133ee8eebee2
53 Ne9189ddbe56c43bbafc6f063191b83a0
54 Nef19caa05c384c42832bcc6e6564fb42
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112158355
56 https://doi.org/10.1007/s00330-019-06019-9
57 schema:sdDatePublished 2019-04-11T09:07
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nde7b417e64234f82995a109fb70202ba
60 schema:url https://link.springer.com/10.1007%2Fs00330-019-06019-9
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N03424e7ea40d40ac8ef5deb9bc26b6b0 schema:name pubmed_id
65 schema:value 30770973
66 rdf:type schema:PropertyValue
67 N0a1ec0739c8a4e12a9584c0861895d74 rdf:first N1a0ef962bc8f47c8ae6c8cb81a73e1d5
68 rdf:rest rdf:nil
69 N0edc3e70b18e41f8b243555a3771531f schema:affiliation https://www.grid.ac/institutes/grid.17063.33
70 schema:familyName Houbois
71 schema:givenName Christian P.
72 rdf:type schema:Person
73 N1a0ef962bc8f47c8ae6c8cb81a73e1d5 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
74 schema:familyName Wintersperger
75 schema:givenName Bernd J.
76 rdf:type schema:Person
77 N5727e82eeb5c4e828f2d2a6147fb0b65 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
78 schema:familyName Greiser
79 schema:givenName Andreas
80 rdf:type schema:Person
81 N5e21f4753595471fbc914a01d58fc33b schema:name nlm_unique_id
82 schema:value 9114774
83 rdf:type schema:PropertyValue
84 N5fb781c0f670464ba7483f2ff0cc2f31 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
85 schema:familyName Jolly
86 schema:givenName Marie-Pierre
87 rdf:type schema:Person
88 N69a704315f87492587513beb47c4f0f5 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
89 schema:familyName Thavendiranathan
90 schema:givenName Paaladinesh
91 rdf:type schema:Person
92 N748d2024a90e43aeb7f5ee974d832dfd rdf:first N69a704315f87492587513beb47c4f0f5
93 rdf:rest N0a1ec0739c8a4e12a9584c0861895d74
94 N749e5e38d16749e1832778b0115f4424 rdf:first Ne30119520001477390ea459af03739e0
95 rdf:rest Nc678747fe03c4ca4b958a4ddc1217beb
96 Nb33c441e163d445782b47297491fa8e1 rdf:first N5fb781c0f670464ba7483f2ff0cc2f31
97 rdf:rest N748d2024a90e43aeb7f5ee974d832dfd
98 Nc2e585f5218f429ba9c2c1eaebf6f9a1 rdf:first N5727e82eeb5c4e828f2d2a6147fb0b65
99 rdf:rest Nb33c441e163d445782b47297491fa8e1
100 Nc678747fe03c4ca4b958a4ddc1217beb rdf:first N0edc3e70b18e41f8b243555a3771531f
101 rdf:rest Nc2e585f5218f429ba9c2c1eaebf6f9a1
102 Ndb3744174a4c48ecab64133ee8eebee2 schema:name doi
103 schema:value 10.1007/s00330-019-06019-9
104 rdf:type schema:PropertyValue
105 Nde7b417e64234f82995a109fb70202ba schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Ne30119520001477390ea459af03739e0 schema:affiliation https://www.grid.ac/institutes/grid.231844.8
108 schema:familyName Lamacie
109 schema:givenName Mariana M.
110 rdf:type schema:Person
111 Ne9189ddbe56c43bbafc6f063191b83a0 schema:name readcube_id
112 schema:value e14aa7464f0d12055032e544064aad609d1aceade07097acc3faa349da6fadfa
113 rdf:type schema:PropertyValue
114 Nef19caa05c384c42832bcc6e6564fb42 schema:name dimensions_id
115 schema:value pub.1112158355
116 rdf:type schema:PropertyValue
117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information and Computing Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
121 schema:name Artificial Intelligence and Image Processing
122 rdf:type schema:DefinedTerm
123 sg:journal.1289120 schema:issn 0938-7994
124 1432-1084
125 schema:name European Radiology
126 rdf:type schema:Periodical
127 sg:pub.10.1007/s00247-014-2992-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044728681
128 https://doi.org/10.1007/s00247-014-2992-2
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s00330-016-4514-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005570283
131 https://doi.org/10.1007/s00330-016-4514-0
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s00330-018-5538-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104406557
134 https://doi.org/10.1007/s00330-018-5538-4
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10554-017-1090-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084025448
137 https://doi.org/10.1007/s10554-017-1090-6
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s11357-013-9535-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003464232
140 https://doi.org/10.1007/s11357-013-9535-x
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1532-429x-11-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043451951
143 https://doi.org/10.1186/1532-429x-11-55
144 rdf:type schema:CreativeWork
145 sg:pub.10.1186/1532-429x-13-58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042665816
146 https://doi.org/10.1186/1532-429x-13-58
147 rdf:type schema:CreativeWork
148 sg:pub.10.1186/1532-429x-14-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043111155
149 https://doi.org/10.1186/1532-429x-14-32
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/1532-429x-15-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002947681
152 https://doi.org/10.1186/1532-429x-15-8
153 rdf:type schema:CreativeWork
154 sg:pub.10.1186/1532-429x-15-95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025458709
155 https://doi.org/10.1186/1532-429x-15-95
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/s12968-017-0373-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090955407
158 https://doi.org/10.1186/s12968-017-0373-3
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1008419005
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/jmri.23756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005983284
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/jmri.24749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044714665
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/mrm.1195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050230561
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1006/jmre.1998.1676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012493788
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0002-8703(94)90636-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030323684
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.crad.2015.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042311042
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.echo.2009.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051291082
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.echo.2011.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019871842
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.echo.2014.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032850891
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ejrad.2014.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052215794
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ijcha.2018.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101340562
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jacc.2008.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050457576
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.jcmg.2009.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046323379
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.jcmg.2015.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026167848
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.rcl.2014.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037746088
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1080/10976640500295417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058381098
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1097/rli.0b013e31828c351a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017796928
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/42.845177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170900
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1136/heartjnl-2014-305538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031195841
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1136/hrt.2005.074187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048929217
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1148/radiology.169.1.3420283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079735381
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1148/radiology.171.3.2717762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079270177
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1148/radiology.188.1.8511281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082838479
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1161/circulationaha.105.561423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053395986
209 rdf:type schema:CreativeWork
210 https://doi.org/10.3791/2356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051547915
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
213 schema:name Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada
214 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
215 Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Ontario, Canada
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.231844.8 schema:alternateName University Health Network
218 schema:name Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.415886.6 schema:alternateName Siemens Healthcare (United States)
221 schema:name Siemens Healthcare AG, Medical Imaging Technologies, Princeton, NJ, USA
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
224 schema:name Siemens Healthcare GmbH, Erlangen, Germany
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...