Quantification of myocardial deformation by deformable registration–based analysis of cine MRI: validation with tagged CMR View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-15

AUTHORS

Mariana M. Lamacie, Christian P. Houbois, Andreas Greiser, Marie-Pierre Jolly, Paaladinesh Thavendiranathan, Bernd J. Wintersperger

ABSTRACT

OBJECTIVES: To validate deformable registration algorithms (DRAs) for cine balanced steady-state free precession (bSSFP) assessment of global longitudinal strain (GLS) and global circumferential strain (GCS) using harmonic phase (HARP) cardiovascular magnetic resonance as standard of reference (SoR). METHODS: Seventeen patients and 17 volunteers underwent short axis stack and 2-/4-chamber cine bSSFP imaging with matching slice long-axis and mid-ventricular spatial modulation of magnetization (SPAMM) myocardial tagging. Inverse DRA was applied on bSSFP data for assessment of GLS and GCS while myocardial tagging was processed using HARP. Intra- and inter-observer variability assessment was based on repeated analysis by a single observer and analysis by a second observer, respectively. Standard semi-automated short axis stack segmentation was performed for analysis of left ventricular (LV) volumes and ejection fraction (EF). RESULTS: DRA demonstrated strong relationships to HARP for myocardial GLS (R2 = 0.75; p < 0.0001) and endocardial GLS (R2 = 0.61; p < 0.0001). GCS result comparison also demonstrated significant relationships between DRA and HARP for myocardial strain (R2 = 0.61; p < 0.0001) and endocardial strain (R2 = 0.51; p < 0.0001). Both methods demonstrated small systematic errors for intra- and inter-observer variability but DRA demonstrated consistently lower CV. Global LVEF was significantly lower (p = 0.0099) in patients (53.7%; IQR 43.9/64.0%) than in healthy volunteers (62.6%; IQR 61.1/66.2%). DRA and HARP strain data demonstrated significant relationships to LVEF. CONCLUSIONS: Non-rigid deformation method-based DRA provides a reliable measure of peak systolic GCS and GLS based on cine bSSFP with superior intra- and inter-observer reproducibility compared to HARP. KEY POINT: • Myocardial strain can be reliably analyzed using inverse deformable registration algorithms (DRAs) on cine CMR. • Inverse DRA-derived strain shows higher reproducibility than tagged CMR. • DRA and tagged CMR-based myocardial strain demonstrate strong relationships to global left ventricular function. More... »

PAGES

1-11

References to SciGraph publications

  • 2017-08. The consistency of myocardial strain derived from heart deformation analysis in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2017-04. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography in EUROPEAN RADIOLOGY
  • 2009-12. Myocardial tissue tagging with cardiovascular magnetic resonance in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2017-12. Automated assessments of circumferential strain from cine CMR correlate with LVEF declines in cancer patients early after receipt of cardio-toxic chemotherapy in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2012-12. Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of fallot and healthy controls in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2018-12. Left ventricular global myocardial strain assessment comparing the reproducibility of four commercially available CMR-feature tracking algorithms in EUROPEAN RADIOLOGY
  • 2013-12. Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2011-12. Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2013-12. Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender in JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE
  • 2014-02. Normal values of regional and global myocardial wall motion in young and elderly individuals using navigator gated tissue phase mapping in GEROSCIENCE
  • 2014-09. Strain measurement by cardiovascular magnetic resonance in pediatric cancer survivors: validation of feature tracking against harmonic phase imaging in PEDIATRIC RADIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00330-019-06019-9

    DOI

    http://dx.doi.org/10.1007/s00330-019-06019-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112158355

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30770973


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University Health Network", 
              "id": "https://www.grid.ac/institutes/grid.231844.8", 
              "name": [
                "Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lamacie", 
            "givenName": "Mariana M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Toronto", 
              "id": "https://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada", 
                "Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Houbois", 
            "givenName": "Christian P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siemens (Germany)", 
              "id": "https://www.grid.ac/institutes/grid.5406.7", 
              "name": [
                "Siemens Healthcare GmbH, Erlangen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Greiser", 
            "givenName": "Andreas", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siemens Healthcare (United States)", 
              "id": "https://www.grid.ac/institutes/grid.415886.6", 
              "name": [
                "Siemens Healthcare AG, Medical Imaging Technologies, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jolly", 
            "givenName": "Marie-Pierre", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Toronto", 
              "id": "https://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada", 
                "Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thavendiranathan", 
            "givenName": "Paaladinesh", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Toronto", 
              "id": "https://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada", 
                "Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wintersperger", 
            "givenName": "Bernd J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1532-429x-15-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002947681", 
              "https://doi.org/10.1186/1532-429x-15-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11357-013-9535-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003464232", 
              "https://doi.org/10.1007/s11357-013-9535-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-016-4514-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005570283", 
              "https://doi.org/10.1007/s00330-016-4514-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-016-4514-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005570283", 
              "https://doi.org/10.1007/s00330-016-4514-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.23756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005983284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008419005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmre.1998.1676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012493788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0b013e31828c351a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017796928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0b013e31828c351a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017796928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.echo.2011.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019871842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1532-429x-15-95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025458709", 
              "https://doi.org/10.1186/1532-429x-15-95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcmg.2015.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026167848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-8703(94)90636-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030323684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/heartjnl-2014-305538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031195841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.echo.2014.11.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032850891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rcl.2014.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037746088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.crad.2015.05.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042311042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1532-429x-13-58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042665816", 
              "https://doi.org/10.1186/1532-429x-13-58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1532-429x-14-32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043111155", 
              "https://doi.org/10.1186/1532-429x-14-32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1532-429x-11-55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043451951", 
              "https://doi.org/10.1186/1532-429x-11-55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.24749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044714665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00247-014-2992-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044728681", 
              "https://doi.org/10.1007/s00247-014-2992-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcmg.2009.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046323379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/hrt.2005.074187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048929217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.1195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050230561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jacc.2008.12.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050457576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.echo.2009.07.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051291082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3791/2356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051547915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2014.10.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052215794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circulationaha.105.561423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053395986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10976640500295417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058381098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/42.845177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061170900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.171.3.2717762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079270177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.169.1.3420283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079735381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.188.1.8511281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082838479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-017-1090-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084025448", 
              "https://doi.org/10.1007/s10554-017-1090-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-017-1090-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084025448", 
              "https://doi.org/10.1007/s10554-017-1090-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12968-017-0373-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090955407", 
              "https://doi.org/10.1186/s12968-017-0373-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12968-017-0373-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090955407", 
              "https://doi.org/10.1186/s12968-017-0373-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijcha.2018.02.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101340562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5538-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104406557", 
              "https://doi.org/10.1007/s00330-018-5538-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5538-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104406557", 
              "https://doi.org/10.1007/s00330-018-5538-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-15", 
        "datePublishedReg": "2019-02-15", 
        "description": "OBJECTIVES: To validate deformable registration algorithms (DRAs) for cine balanced steady-state free precession (bSSFP) assessment of global longitudinal strain (GLS) and global circumferential strain (GCS) using harmonic phase (HARP) cardiovascular magnetic resonance as standard of reference (SoR).\nMETHODS: Seventeen patients and 17 volunteers underwent short axis stack and 2-/4-chamber cine bSSFP imaging with matching slice long-axis and mid-ventricular spatial modulation of magnetization (SPAMM) myocardial tagging. Inverse DRA was applied on bSSFP data for assessment of GLS and GCS while myocardial tagging was processed using HARP. Intra- and inter-observer variability assessment was based on repeated analysis by a single observer and analysis by a second observer, respectively. Standard semi-automated short axis stack segmentation was performed for analysis of left ventricular (LV) volumes and ejection fraction (EF).\nRESULTS: DRA demonstrated strong relationships to HARP for myocardial GLS (R2\u2009=\u20090.75; p\u2009<\u20090.0001) and endocardial GLS (R2\u2009=\u20090.61; p\u2009<\u20090.0001). GCS result comparison also demonstrated significant relationships between DRA and HARP for myocardial strain (R2\u2009=\u20090.61; p\u2009<\u20090.0001) and endocardial strain (R2\u2009=\u20090.51; p\u2009<\u20090.0001). Both methods demonstrated small systematic errors for intra- and inter-observer variability but DRA demonstrated consistently lower CV. Global LVEF was significantly lower (p\u2009=\u20090.0099) in patients (53.7%; IQR 43.9/64.0%) than in healthy volunteers (62.6%; IQR 61.1/66.2%). DRA and HARP strain data demonstrated significant relationships to LVEF.\nCONCLUSIONS: Non-rigid deformation method-based DRA provides a reliable measure of peak systolic GCS and GLS based on cine bSSFP with superior intra- and inter-observer reproducibility compared to HARP.\nKEY POINT: \u2022 Myocardial strain can be reliably analyzed using inverse deformable registration algorithms (DRAs) on cine CMR. \u2022 Inverse DRA-derived strain shows higher reproducibility than tagged CMR. \u2022 DRA and tagged CMR-based myocardial strain demonstrate strong relationships to global left ventricular function.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00330-019-06019-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1289120", 
            "issn": [
              "0938-7994", 
              "1432-1084"
            ], 
            "name": "European Radiology", 
            "type": "Periodical"
          }
        ], 
        "name": "Quantification of myocardial deformation by deformable registration\u2013based analysis of cine MRI: validation with tagged CMR", 
        "pagination": "1-11", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e14aa7464f0d12055032e544064aad609d1aceade07097acc3faa349da6fadfa"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30770973"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9114774"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00330-019-06019-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112158355"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00330-019-06019-9", 
          "https://app.dimensions.ai/details/publication/pub.1112158355"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37588_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00330-019-06019-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06019-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06019-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06019-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06019-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      63 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00330-019-06019-9 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N687e88f3820840419b1d81b004b492ff
    4 schema:citation sg:pub.10.1007/s00247-014-2992-2
    5 sg:pub.10.1007/s00330-016-4514-0
    6 sg:pub.10.1007/s00330-018-5538-4
    7 sg:pub.10.1007/s10554-017-1090-6
    8 sg:pub.10.1007/s11357-013-9535-x
    9 sg:pub.10.1186/1532-429x-11-55
    10 sg:pub.10.1186/1532-429x-13-58
    11 sg:pub.10.1186/1532-429x-14-32
    12 sg:pub.10.1186/1532-429x-15-8
    13 sg:pub.10.1186/1532-429x-15-95
    14 sg:pub.10.1186/s12968-017-0373-3
    15 https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m
    16 https://doi.org/10.1002/jmri.23756
    17 https://doi.org/10.1002/jmri.24749
    18 https://doi.org/10.1002/mrm.1195
    19 https://doi.org/10.1006/jmre.1998.1676
    20 https://doi.org/10.1016/0002-8703(94)90636-x
    21 https://doi.org/10.1016/j.crad.2015.05.006
    22 https://doi.org/10.1016/j.echo.2009.07.027
    23 https://doi.org/10.1016/j.echo.2011.08.003
    24 https://doi.org/10.1016/j.echo.2014.11.018
    25 https://doi.org/10.1016/j.ejrad.2014.10.011
    26 https://doi.org/10.1016/j.ijcha.2018.02.007
    27 https://doi.org/10.1016/j.jacc.2008.12.032
    28 https://doi.org/10.1016/j.jcmg.2009.11.006
    29 https://doi.org/10.1016/j.jcmg.2015.02.005
    30 https://doi.org/10.1016/j.rcl.2014.11.001
    31 https://doi.org/10.1080/10976640500295417
    32 https://doi.org/10.1097/rli.0b013e31828c351a
    33 https://doi.org/10.1109/42.845177
    34 https://doi.org/10.1136/heartjnl-2014-305538
    35 https://doi.org/10.1136/hrt.2005.074187
    36 https://doi.org/10.1148/radiology.169.1.3420283
    37 https://doi.org/10.1148/radiology.171.3.2717762
    38 https://doi.org/10.1148/radiology.188.1.8511281
    39 https://doi.org/10.1161/circulationaha.105.561423
    40 https://doi.org/10.3791/2356
    41 schema:datePublished 2019-02-15
    42 schema:datePublishedReg 2019-02-15
    43 schema:description OBJECTIVES: To validate deformable registration algorithms (DRAs) for cine balanced steady-state free precession (bSSFP) assessment of global longitudinal strain (GLS) and global circumferential strain (GCS) using harmonic phase (HARP) cardiovascular magnetic resonance as standard of reference (SoR). METHODS: Seventeen patients and 17 volunteers underwent short axis stack and 2-/4-chamber cine bSSFP imaging with matching slice long-axis and mid-ventricular spatial modulation of magnetization (SPAMM) myocardial tagging. Inverse DRA was applied on bSSFP data for assessment of GLS and GCS while myocardial tagging was processed using HARP. Intra- and inter-observer variability assessment was based on repeated analysis by a single observer and analysis by a second observer, respectively. Standard semi-automated short axis stack segmentation was performed for analysis of left ventricular (LV) volumes and ejection fraction (EF). RESULTS: DRA demonstrated strong relationships to HARP for myocardial GLS (R2 = 0.75; p < 0.0001) and endocardial GLS (R2 = 0.61; p < 0.0001). GCS result comparison also demonstrated significant relationships between DRA and HARP for myocardial strain (R2 = 0.61; p < 0.0001) and endocardial strain (R2 = 0.51; p < 0.0001). Both methods demonstrated small systematic errors for intra- and inter-observer variability but DRA demonstrated consistently lower CV. Global LVEF was significantly lower (p = 0.0099) in patients (53.7%; IQR 43.9/64.0%) than in healthy volunteers (62.6%; IQR 61.1/66.2%). DRA and HARP strain data demonstrated significant relationships to LVEF. CONCLUSIONS: Non-rigid deformation method-based DRA provides a reliable measure of peak systolic GCS and GLS based on cine bSSFP with superior intra- and inter-observer reproducibility compared to HARP. KEY POINT: • Myocardial strain can be reliably analyzed using inverse deformable registration algorithms (DRAs) on cine CMR. • Inverse DRA-derived strain shows higher reproducibility than tagged CMR. • DRA and tagged CMR-based myocardial strain demonstrate strong relationships to global left ventricular function.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf sg:journal.1289120
    48 schema:name Quantification of myocardial deformation by deformable registration–based analysis of cine MRI: validation with tagged CMR
    49 schema:pagination 1-11
    50 schema:productId N15ffdb587a544b4fb341cd53c7d4c691
    51 N205a8393db354f4e98cf9cb7f38c632a
    52 N3f0347896bb04823865d86f5cee291f1
    53 N571f15acd3c3443c9968c8aad2160fc3
    54 N7d09172188964f4e808c03b9b6371eeb
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112158355
    56 https://doi.org/10.1007/s00330-019-06019-9
    57 schema:sdDatePublished 2019-04-11T09:07
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher N60034c3d33ab40d5a31176a5f938451e
    60 schema:url https://link.springer.com/10.1007%2Fs00330-019-06019-9
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N04e7b4464b134ec7b19fb2a0772fd833 rdf:first Nb55f1bed22994b0ebccec1d8aca31cc3
    65 rdf:rest rdf:nil
    66 N15ffdb587a544b4fb341cd53c7d4c691 schema:name nlm_unique_id
    67 schema:value 9114774
    68 rdf:type schema:PropertyValue
    69 N205a8393db354f4e98cf9cb7f38c632a schema:name doi
    70 schema:value 10.1007/s00330-019-06019-9
    71 rdf:type schema:PropertyValue
    72 N3018e6d6cefe4b11b869cd63a421543c schema:affiliation https://www.grid.ac/institutes/grid.415886.6
    73 schema:familyName Jolly
    74 schema:givenName Marie-Pierre
    75 rdf:type schema:Person
    76 N3f0347896bb04823865d86f5cee291f1 schema:name dimensions_id
    77 schema:value pub.1112158355
    78 rdf:type schema:PropertyValue
    79 N3f35e52e017247baaa4618b4cf05c6fe schema:affiliation https://www.grid.ac/institutes/grid.17063.33
    80 schema:familyName Thavendiranathan
    81 schema:givenName Paaladinesh
    82 rdf:type schema:Person
    83 N4226f4713c754571944fa6ddd12cf757 rdf:first Nbebe887035d4474b80de8d692ee7f901
    84 rdf:rest Nddb812ebd155416bb531ba898ac3d681
    85 N571f15acd3c3443c9968c8aad2160fc3 schema:name pubmed_id
    86 schema:value 30770973
    87 rdf:type schema:PropertyValue
    88 N60034c3d33ab40d5a31176a5f938451e schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 N687e88f3820840419b1d81b004b492ff rdf:first Nc0e8b1d634c4423eac1c22b491489be3
    91 rdf:rest N4226f4713c754571944fa6ddd12cf757
    92 N6d5ad24eaeff488ab4f857b5fe241c4d schema:affiliation https://www.grid.ac/institutes/grid.5406.7
    93 schema:familyName Greiser
    94 schema:givenName Andreas
    95 rdf:type schema:Person
    96 N7d09172188964f4e808c03b9b6371eeb schema:name readcube_id
    97 schema:value e14aa7464f0d12055032e544064aad609d1aceade07097acc3faa349da6fadfa
    98 rdf:type schema:PropertyValue
    99 Na8b9c8dd6a6843038871eac16b4dba42 rdf:first N3f35e52e017247baaa4618b4cf05c6fe
    100 rdf:rest N04e7b4464b134ec7b19fb2a0772fd833
    101 Nb55f1bed22994b0ebccec1d8aca31cc3 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
    102 schema:familyName Wintersperger
    103 schema:givenName Bernd J.
    104 rdf:type schema:Person
    105 Nbebe887035d4474b80de8d692ee7f901 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
    106 schema:familyName Houbois
    107 schema:givenName Christian P.
    108 rdf:type schema:Person
    109 Nc0e8b1d634c4423eac1c22b491489be3 schema:affiliation https://www.grid.ac/institutes/grid.231844.8
    110 schema:familyName Lamacie
    111 schema:givenName Mariana M.
    112 rdf:type schema:Person
    113 Nddb812ebd155416bb531ba898ac3d681 rdf:first N6d5ad24eaeff488ab4f857b5fe241c4d
    114 rdf:rest Nead6b03fa3f940bc874ac036f13602de
    115 Nead6b03fa3f940bc874ac036f13602de rdf:first N3018e6d6cefe4b11b869cd63a421543c
    116 rdf:rest Na8b9c8dd6a6843038871eac16b4dba42
    117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Information and Computing Sciences
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Artificial Intelligence and Image Processing
    122 rdf:type schema:DefinedTerm
    123 sg:journal.1289120 schema:issn 0938-7994
    124 1432-1084
    125 schema:name European Radiology
    126 rdf:type schema:Periodical
    127 sg:pub.10.1007/s00247-014-2992-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044728681
    128 https://doi.org/10.1007/s00247-014-2992-2
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00330-016-4514-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005570283
    131 https://doi.org/10.1007/s00330-016-4514-0
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00330-018-5538-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104406557
    134 https://doi.org/10.1007/s00330-018-5538-4
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s10554-017-1090-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084025448
    137 https://doi.org/10.1007/s10554-017-1090-6
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s11357-013-9535-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003464232
    140 https://doi.org/10.1007/s11357-013-9535-x
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1186/1532-429x-11-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043451951
    143 https://doi.org/10.1186/1532-429x-11-55
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1186/1532-429x-13-58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042665816
    146 https://doi.org/10.1186/1532-429x-13-58
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1186/1532-429x-14-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043111155
    149 https://doi.org/10.1186/1532-429x-14-32
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1186/1532-429x-15-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002947681
    152 https://doi.org/10.1186/1532-429x-15-8
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1186/1532-429x-15-95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025458709
    155 https://doi.org/10.1186/1532-429x-15-95
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1186/s12968-017-0373-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090955407
    158 https://doi.org/10.1186/s12968-017-0373-3
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1008419005
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1002/jmri.23756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005983284
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1002/jmri.24749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044714665
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1002/mrm.1195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050230561
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1006/jmre.1998.1676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012493788
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/0002-8703(94)90636-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030323684
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.crad.2015.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042311042
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.echo.2009.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051291082
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.echo.2011.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019871842
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.echo.2014.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032850891
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.ejrad.2014.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052215794
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.ijcha.2018.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101340562
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.jacc.2008.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050457576
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.jcmg.2009.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046323379
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.jcmg.2015.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026167848
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.rcl.2014.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037746088
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1080/10976640500295417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058381098
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1097/rli.0b013e31828c351a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017796928
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1109/42.845177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170900
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1136/heartjnl-2014-305538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031195841
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1136/hrt.2005.074187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048929217
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1148/radiology.169.1.3420283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079735381
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1148/radiology.171.3.2717762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079270177
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1148/radiology.188.1.8511281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082838479
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1161/circulationaha.105.561423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053395986
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.3791/2356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051547915
    211 rdf:type schema:CreativeWork
    212 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
    213 schema:name Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada
    214 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
    215 Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Ontario, Canada
    216 rdf:type schema:Organization
    217 https://www.grid.ac/institutes/grid.231844.8 schema:alternateName University Health Network
    218 schema:name Department of Medical Imaging, University Health Network, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada
    219 rdf:type schema:Organization
    220 https://www.grid.ac/institutes/grid.415886.6 schema:alternateName Siemens Healthcare (United States)
    221 schema:name Siemens Healthcare AG, Medical Imaging Technologies, Princeton, NJ, USA
    222 rdf:type schema:Organization
    223 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
    224 schema:name Siemens Healthcare GmbH, Erlangen, Germany
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...