Forensic age estimation based on T1 SE and VIBE wrist MRI: do a one-fits-all staging technique and age estimation model ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-07

AUTHORS

Jannick De Tobel, Elke Hillewig, Michiel Bart de Haas, Bram Van Eeckhout, Steffen Fieuws, Patrick Werner Thevissen, Koenraad Luc Verstraete

ABSTRACT

OBJECTIVES: Providing recommendations for wrist MRI in age estimation by determining (1) which anatomical structures to include in the statistical model, (2) which MRI sequence to conduct, and (3) which staging technique to apply. METHODS: Radius and ulna were prospectively studied on 3 T MRI in 363 healthy Caucasian participants (185 females, 178 males) between 14 and 26 years old, using T1 spin echo (SE) and T1 gradient echo VIBE. Bone development was assessed applying a 5-stage staging technique with several amelioration attempts to optimise staging. A Bayesian model rendered point predictions of age and diagnostic indices to discern minors from adults. RESULTS: All approaches rendered similar results, with none of them outperforming the others. A single bone assessment of radius or ulna sufficed. SE and VIBE sequences were both suitable, but needed sequence-specific age estimation. A one-fits-all 5-stage staging technique-with substages in stage 3-was suitable and did not benefit from profound substaging. Age estimation based on SE radius resulted in a mean absolute error of 1.79 years, a specificity (correctly identified minors) of 93%, and a discrimination slope of 0.640. CONCLUSION: Radius and ulna perform similarly to estimate age, and so do SE and VIBE. A one-fits-all staging technique can be applied. KEY POINTS: • Radius and ulna perform similarly to estimate age. • SE and VIBE perform similarly, but age estimation should be based on the corresponding sequence-specific reference data. • A one-fits-all 5-stage staging technique with substages 3a, 3b, and 3c can be applied to both bones and both sequences. More... »

PAGES

1-12

References to SciGraph publications

  • 2014-06. The value of sub-stages and thin slices for the assessment of the medial clavicular epiphysis: a prospective multi-center CT study in FORENSIC SCIENCE, MEDICINE AND PATHOLOGY
  • 2018-07. Hand MRI and the Greulich-Pyle atlas in skeletal age estimation in adolescents in SKELETAL RADIOLOGY
  • 2014-12. Subclassification of clavicular substage 3a is useful for diagnosing the age of 17 years in RECHTSMEDIZIN
  • 2010-01. Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults? in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2013-05. Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2010-07. Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2003-02. Subchondral bone and cartilage thickness from MRI: effects of chemical-shift artifact in MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE
  • 2018-08. Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages in EUROPEAN RADIOLOGY
  • 2017-03. Magnetic resonance imaging of the distal radial epiphysis: a new criterion of maturity for determining whether the age of 18 has been completed? in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2011-04. Magnetic resonance imaging of the medial extremity of the clavicle in forensic bone age determination: a new four-minute approach in EUROPEAN RADIOLOGY
  • 2016-07. Contribution of magnetic resonance imaging of the wrist and hand to forensic age assessment in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2017. Multi-factorial Age Estimation from Skeletal and Dental MRI Volumes in MACHINE LEARNING IN MEDICAL IMAGING
  • 2019-03. Magnetic resonance imaging of third molars in forensic age estimation: comparison of the Ghent and Graz protocols focusing on apical closure in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2019-01. Advancing estimation of chronological age by utilizing available evidence based on two radiographical methods in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2014-01. Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2015-11. Estimation of forensic age using substages of ossification of the medial clavicle in living individuals in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2015-05. Accuracy of MRI skeletal age estimation for subjects 12–19. Potential use for subjects of unknown age in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2017-12. Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence in EUROPEAN RADIOLOGY
  • 2016-03. Obtaining appropriate interval estimates for age when multiple indicators are used: evaluation of an ad-hoc procedure in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2004-02. Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00330-018-5944-7

    DOI

    http://dx.doi.org/10.1007/s00330-018-5944-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111253166

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30617494


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ghent University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.410566.0", 
              "name": [
                "Department of Radiology and Nuclear Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium", 
                "Department of Imaging and Pathology \u2013 Forensic Odontology, KU Leuven, Leuven, Belgium", 
                "Department of Head, Neck and Maxillofacial Surgery, Ghent University Hospital, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Tobel", 
            "givenName": "Jannick", 
            "id": "sg:person.015622766651.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015622766651.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ghent University", 
              "id": "https://www.grid.ac/institutes/grid.5342.0", 
              "name": [
                "Department of Radiology and Nuclear Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hillewig", 
            "givenName": "Elke", 
            "id": "sg:person.01075117031.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075117031.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Netherlands Forensic Institute", 
              "id": "https://www.grid.ac/institutes/grid.419915.1", 
              "name": [
                "Department of Forensic Anthropology, Netherlands Forensic Institute, Den Haag, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Haas", 
            "givenName": "Michiel Bart", 
            "id": "sg:person.015514471460.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514471460.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ghent University", 
              "id": "https://www.grid.ac/institutes/grid.5342.0", 
              "name": [
                "Department of Radiology and Nuclear Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Eeckhout", 
            "givenName": "Bram", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department Public Health and Primary Care, KU Leuven \u2013 University of Leuven & Universiteit Hasselt, I-BioStat, Leuven, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fieuws", 
            "givenName": "Steffen", 
            "id": "sg:person.01042015014.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042015014.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "KU Leuven", 
              "id": "https://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "Department of Imaging and Pathology \u2013 Forensic Odontology, KU Leuven, Leuven, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thevissen", 
            "givenName": "Patrick Werner", 
            "id": "sg:person.0756122505.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756122505.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ghent University", 
              "id": "https://www.grid.ac/institutes/grid.5342.0", 
              "name": [
                "Department of Radiology and Nuclear Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verstraete", 
            "givenName": "Koenraad Luc", 
            "id": "sg:person.0576505517.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576505517.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/jmri.25140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001919022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10334-003-0001-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003346216", 
              "https://doi.org/10.1007/s10334-003-0001-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/03014460.2015.1043945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004701242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-012-0798-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007617821", 
              "https://doi.org/10.1007/s00414-012-0798-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511542428.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009485253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scijus.2014.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010992877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.24286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012657281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-010-1978-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013668976", 
              "https://doi.org/10.1007/s00330-010-1978-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-016-1362-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013979621", 
              "https://doi.org/10.1007/s00414-016-1362-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03014460.2016.1202321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014274815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bjsm.2006.033431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014469916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-015-1234-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016119191", 
              "https://doi.org/10.1007/s00414-015-1234-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-013-0932-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019270440", 
              "https://doi.org/10.1007/s00414-013-0932-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apunts.2015.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020398299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/sms.12461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022264522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-015-1161-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022812248", 
              "https://doi.org/10.1007/s00414-015-1161-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bmb/lds014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024628829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-016-1502-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025717981", 
              "https://doi.org/10.1007/s00414-016-1502-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-016-1502-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025717981", 
              "https://doi.org/10.1007/s00414-016-1502-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-010-0448-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026376135", 
              "https://doi.org/10.1007/s00414-010-0448-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-010-0448-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026376135", 
              "https://doi.org/10.1007/s00414-010-0448-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00194-014-0990-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026521516", 
              "https://doi.org/10.1007/s00194-014-0990-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1556-4029.12063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032951198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-009-0329-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036286552", 
              "https://doi.org/10.1007/s00414-009-0329-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-009-0329-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036286552", 
              "https://doi.org/10.1007/s00414-009-0329-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2463/mrms.2013-0098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036763538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bjsm.2009.067439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038048242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.forsciint.2006.05.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040011228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bjsm.2006.031021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040691399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12024-013-9511-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040988025", 
              "https://doi.org/10.1007/s12024-013-9511-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bjsm.2010.074948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043615347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.24439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043779355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.forsciint.2016.06.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045671110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.forsciint.2009.09.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048442516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-015-1200-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052515919", 
              "https://doi.org/10.1007/s00414-015-1200-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-003-0404-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052624305", 
              "https://doi.org/10.1007/s00414-003-0404-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03014460.2016.1223884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053248549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078658449", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3238/arztebl.2016.0044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079228082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080545461", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.207.3.9609885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083270804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4880-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090349952", 
              "https://doi.org/10.1007/s00330-017-4880-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4880-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090349952", 
              "https://doi.org/10.1007/s00330-017-4880-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-67389-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091547202", 
              "https://doi.org/10.1007/978-3-319-67389-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00256-017-2867-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100651707", 
              "https://doi.org/10.1007/s00256-017-2867-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1100754236", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jofri.2018.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101019007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-5281-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101526043", 
              "https://doi.org/10.1007/s00330-017-5281-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-5281-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101526043", 
              "https://doi.org/10.1007/s00330-017-5281-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-5281-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101526043", 
              "https://doi.org/10.1007/s00330-017-5281-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrnm.2017.12.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103401123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-018-1848-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103853185", 
              "https://doi.org/10.1007/s00414-018-1848-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-018-1848-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103853185", 
              "https://doi.org/10.1007/s00414-018-1848-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-018-1905-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105877652", 
              "https://doi.org/10.1007/s00414-018-1905-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-018-1905-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105877652", 
              "https://doi.org/10.1007/s00414-018-1905-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-018-1905-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105877652", 
              "https://doi.org/10.1007/s00414-018-1905-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-07", 
        "datePublishedReg": "2019-01-07", 
        "description": "OBJECTIVES: Providing recommendations for wrist MRI in age estimation by determining (1) which anatomical structures to include in the statistical model, (2) which MRI sequence to conduct, and (3) which staging technique to apply.\nMETHODS: Radius and ulna were prospectively studied on 3\u00a0T MRI in 363 healthy Caucasian participants (185 females, 178 males) between 14 and 26\u00a0years old, using T1 spin echo (SE) and T1 gradient echo VIBE. Bone development was assessed applying a 5-stage staging technique with several amelioration attempts to optimise staging. A Bayesian model rendered point predictions of age and diagnostic indices to discern minors from adults.\nRESULTS: All approaches rendered similar results, with none of them outperforming the others. A single bone assessment of radius or ulna sufficed. SE and VIBE sequences were both suitable, but needed sequence-specific age estimation. A one-fits-all 5-stage staging technique-with substages in stage 3-was suitable and did not benefit from profound substaging. Age estimation based on SE radius resulted in a mean absolute error of 1.79\u00a0years, a specificity (correctly identified minors) of 93%, and a discrimination slope of 0.640.\nCONCLUSION: Radius and ulna perform similarly to estimate age, and so do SE and VIBE. A one-fits-all staging technique can be applied.\nKEY POINTS: \u2022 Radius and ulna perform similarly to estimate age. \u2022 SE and VIBE perform similarly, but age estimation should be based on the corresponding sequence-specific reference data. \u2022 A one-fits-all 5-stage staging technique with substages 3a, 3b, and 3c can be applied to both bones and both sequences.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00330-018-5944-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1289120", 
            "issn": [
              "0938-7994", 
              "1432-1084"
            ], 
            "name": "European Radiology", 
            "type": "Periodical"
          }
        ], 
        "name": "Forensic age estimation based on T1 SE and VIBE wrist MRI: do a one-fits-all staging technique and age estimation model apply?", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cabd490578b31c8c410904352e5fca3c356c2966b93ce2771070f65587ce781a"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30617494"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9114774"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00330-018-5944-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111253166"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00330-018-5944-7", 
          "https://app.dimensions.ai/details/publication/pub.1111253166"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55842_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00330-018-5944-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5944-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5944-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5944-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5944-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    275 TRIPLES      21 PREDICATES      73 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00330-018-5944-7 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N55f25d240dd04194a729cc8e9d150667
    4 schema:citation sg:pub.10.1007/978-3-319-67389-9_8
    5 sg:pub.10.1007/s00194-014-0990-1
    6 sg:pub.10.1007/s00256-017-2867-3
    7 sg:pub.10.1007/s00330-010-1978-1
    8 sg:pub.10.1007/s00330-017-4880-2
    9 sg:pub.10.1007/s00330-017-5281-2
    10 sg:pub.10.1007/s00414-003-0404-5
    11 sg:pub.10.1007/s00414-009-0329-8
    12 sg:pub.10.1007/s00414-010-0448-2
    13 sg:pub.10.1007/s00414-012-0798-z
    14 sg:pub.10.1007/s00414-013-0932-6
    15 sg:pub.10.1007/s00414-015-1161-y
    16 sg:pub.10.1007/s00414-015-1200-8
    17 sg:pub.10.1007/s00414-015-1234-y
    18 sg:pub.10.1007/s00414-016-1362-z
    19 sg:pub.10.1007/s00414-016-1502-5
    20 sg:pub.10.1007/s00414-018-1848-y
    21 sg:pub.10.1007/s00414-018-1905-6
    22 sg:pub.10.1007/s10334-003-0001-0
    23 sg:pub.10.1007/s12024-013-9511-x
    24 https://app.dimensions.ai/details/publication/pub.1078658449
    25 https://app.dimensions.ai/details/publication/pub.1080545461
    26 https://app.dimensions.ai/details/publication/pub.1100754236
    27 https://doi.org/10.1002/jmri.24286
    28 https://doi.org/10.1002/jmri.25140
    29 https://doi.org/10.1002/mrm.24439
    30 https://doi.org/10.1016/j.apunts.2015.05.002
    31 https://doi.org/10.1016/j.ejrnm.2017.12.005
    32 https://doi.org/10.1016/j.forsciint.2006.05.016
    33 https://doi.org/10.1016/j.forsciint.2009.09.008
    34 https://doi.org/10.1016/j.forsciint.2016.06.016
    35 https://doi.org/10.1016/j.jofri.2018.02.005
    36 https://doi.org/10.1016/j.scijus.2014.12.003
    37 https://doi.org/10.1017/cbo9780511542428.005
    38 https://doi.org/10.1080/03014460.2016.1202321
    39 https://doi.org/10.1080/03014460.2016.1223884
    40 https://doi.org/10.1093/bmb/lds014
    41 https://doi.org/10.1111/1556-4029.12063
    42 https://doi.org/10.1111/sms.12461
    43 https://doi.org/10.1136/bjsm.2006.031021
    44 https://doi.org/10.1136/bjsm.2006.033431
    45 https://doi.org/10.1136/bjsm.2009.067439
    46 https://doi.org/10.1136/bjsm.2010.074948
    47 https://doi.org/10.1148/radiology.207.3.9609885
    48 https://doi.org/10.2463/mrms.2013-0098
    49 https://doi.org/10.3109/03014460.2015.1043945
    50 https://doi.org/10.3238/arztebl.2016.0044
    51 schema:datePublished 2019-01-07
    52 schema:datePublishedReg 2019-01-07
    53 schema:description OBJECTIVES: Providing recommendations for wrist MRI in age estimation by determining (1) which anatomical structures to include in the statistical model, (2) which MRI sequence to conduct, and (3) which staging technique to apply. METHODS: Radius and ulna were prospectively studied on 3 T MRI in 363 healthy Caucasian participants (185 females, 178 males) between 14 and 26 years old, using T1 spin echo (SE) and T1 gradient echo VIBE. Bone development was assessed applying a 5-stage staging technique with several amelioration attempts to optimise staging. A Bayesian model rendered point predictions of age and diagnostic indices to discern minors from adults. RESULTS: All approaches rendered similar results, with none of them outperforming the others. A single bone assessment of radius or ulna sufficed. SE and VIBE sequences were both suitable, but needed sequence-specific age estimation. A one-fits-all 5-stage staging technique-with substages in stage 3-was suitable and did not benefit from profound substaging. Age estimation based on SE radius resulted in a mean absolute error of 1.79 years, a specificity (correctly identified minors) of 93%, and a discrimination slope of 0.640. CONCLUSION: Radius and ulna perform similarly to estimate age, and so do SE and VIBE. A one-fits-all staging technique can be applied. KEY POINTS: • Radius and ulna perform similarly to estimate age. • SE and VIBE perform similarly, but age estimation should be based on the corresponding sequence-specific reference data. • A one-fits-all 5-stage staging technique with substages 3a, 3b, and 3c can be applied to both bones and both sequences.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf sg:journal.1289120
    58 schema:name Forensic age estimation based on T1 SE and VIBE wrist MRI: do a one-fits-all staging technique and age estimation model apply?
    59 schema:pagination 1-12
    60 schema:productId N216c3417420e422baa95997c7038ab9f
    61 N41ef5d7c53e348f481c634df6856148d
    62 N72a42882a6e7456488a39ddc31a0fefd
    63 Nb17bf2ddef524535b8d2f5cfdc223fcf
    64 Nebf50a78ef2a4da5a79e1f43693e80b7
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111253166
    66 https://doi.org/10.1007/s00330-018-5944-7
    67 schema:sdDatePublished 2019-04-11T08:36
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N1ba82c28e5834d59a2fcd008c03c8524
    70 schema:url https://link.springer.com/10.1007%2Fs00330-018-5944-7
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N0340a43209a04439b00b45026829a8a6 rdf:first N4280101f1ef945418b5c711743b8e803
    75 rdf:rest Nc601b5fada2e468ea4c1527e3c4b6746
    76 N1ba82c28e5834d59a2fcd008c03c8524 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N216c3417420e422baa95997c7038ab9f schema:name readcube_id
    79 schema:value cabd490578b31c8c410904352e5fca3c356c2966b93ce2771070f65587ce781a
    80 rdf:type schema:PropertyValue
    81 N41ef5d7c53e348f481c634df6856148d schema:name nlm_unique_id
    82 schema:value 9114774
    83 rdf:type schema:PropertyValue
    84 N4280101f1ef945418b5c711743b8e803 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
    85 schema:familyName Van Eeckhout
    86 schema:givenName Bram
    87 rdf:type schema:Person
    88 N43202aecf44948a99cc8d6da4b80601b rdf:first sg:person.015514471460.19
    89 rdf:rest N0340a43209a04439b00b45026829a8a6
    90 N55f25d240dd04194a729cc8e9d150667 rdf:first sg:person.015622766651.71
    91 rdf:rest N90ff9f8a6ffb4434981d3baf9c705e63
    92 N67b76a7d67c44030a6e97c3d853e0926 rdf:first sg:person.0756122505.02
    93 rdf:rest N7321d19275e34f02938219415167c1a2
    94 N72a42882a6e7456488a39ddc31a0fefd schema:name pubmed_id
    95 schema:value 30617494
    96 rdf:type schema:PropertyValue
    97 N7321d19275e34f02938219415167c1a2 rdf:first sg:person.0576505517.03
    98 rdf:rest rdf:nil
    99 N7b6da06430654117b71e677d2d836795 schema:name Department Public Health and Primary Care, KU Leuven – University of Leuven & Universiteit Hasselt, I-BioStat, Leuven, Belgium
    100 rdf:type schema:Organization
    101 N90ff9f8a6ffb4434981d3baf9c705e63 rdf:first sg:person.01075117031.25
    102 rdf:rest N43202aecf44948a99cc8d6da4b80601b
    103 Nb17bf2ddef524535b8d2f5cfdc223fcf schema:name doi
    104 schema:value 10.1007/s00330-018-5944-7
    105 rdf:type schema:PropertyValue
    106 Nc601b5fada2e468ea4c1527e3c4b6746 rdf:first sg:person.01042015014.90
    107 rdf:rest N67b76a7d67c44030a6e97c3d853e0926
    108 Nebf50a78ef2a4da5a79e1f43693e80b7 schema:name dimensions_id
    109 schema:value pub.1111253166
    110 rdf:type schema:PropertyValue
    111 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Medical and Health Sciences
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Clinical Sciences
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1289120 schema:issn 0938-7994
    118 1432-1084
    119 schema:name European Radiology
    120 rdf:type schema:Periodical
    121 sg:person.01042015014.90 schema:affiliation N7b6da06430654117b71e677d2d836795
    122 schema:familyName Fieuws
    123 schema:givenName Steffen
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042015014.90
    125 rdf:type schema:Person
    126 sg:person.01075117031.25 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
    127 schema:familyName Hillewig
    128 schema:givenName Elke
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075117031.25
    130 rdf:type schema:Person
    131 sg:person.015514471460.19 schema:affiliation https://www.grid.ac/institutes/grid.419915.1
    132 schema:familyName de Haas
    133 schema:givenName Michiel Bart
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015514471460.19
    135 rdf:type schema:Person
    136 sg:person.015622766651.71 schema:affiliation https://www.grid.ac/institutes/grid.410566.0
    137 schema:familyName De Tobel
    138 schema:givenName Jannick
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015622766651.71
    140 rdf:type schema:Person
    141 sg:person.0576505517.03 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
    142 schema:familyName Verstraete
    143 schema:givenName Koenraad Luc
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576505517.03
    145 rdf:type schema:Person
    146 sg:person.0756122505.02 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
    147 schema:familyName Thevissen
    148 schema:givenName Patrick Werner
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756122505.02
    150 rdf:type schema:Person
    151 sg:pub.10.1007/978-3-319-67389-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091547202
    152 https://doi.org/10.1007/978-3-319-67389-9_8
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s00194-014-0990-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026521516
    155 https://doi.org/10.1007/s00194-014-0990-1
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s00256-017-2867-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100651707
    158 https://doi.org/10.1007/s00256-017-2867-3
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00330-010-1978-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013668976
    161 https://doi.org/10.1007/s00330-010-1978-1
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00330-017-4880-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090349952
    164 https://doi.org/10.1007/s00330-017-4880-2
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00330-017-5281-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101526043
    167 https://doi.org/10.1007/s00330-017-5281-2
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00414-003-0404-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052624305
    170 https://doi.org/10.1007/s00414-003-0404-5
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00414-009-0329-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036286552
    173 https://doi.org/10.1007/s00414-009-0329-8
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00414-010-0448-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026376135
    176 https://doi.org/10.1007/s00414-010-0448-2
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00414-012-0798-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007617821
    179 https://doi.org/10.1007/s00414-012-0798-z
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00414-013-0932-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019270440
    182 https://doi.org/10.1007/s00414-013-0932-6
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00414-015-1161-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022812248
    185 https://doi.org/10.1007/s00414-015-1161-y
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00414-015-1200-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052515919
    188 https://doi.org/10.1007/s00414-015-1200-8
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00414-015-1234-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016119191
    191 https://doi.org/10.1007/s00414-015-1234-y
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00414-016-1362-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013979621
    194 https://doi.org/10.1007/s00414-016-1362-z
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s00414-016-1502-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025717981
    197 https://doi.org/10.1007/s00414-016-1502-5
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00414-018-1848-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1103853185
    200 https://doi.org/10.1007/s00414-018-1848-y
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00414-018-1905-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105877652
    203 https://doi.org/10.1007/s00414-018-1905-6
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s10334-003-0001-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003346216
    206 https://doi.org/10.1007/s10334-003-0001-0
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s12024-013-9511-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040988025
    209 https://doi.org/10.1007/s12024-013-9511-x
    210 rdf:type schema:CreativeWork
    211 https://app.dimensions.ai/details/publication/pub.1078658449 schema:CreativeWork
    212 https://app.dimensions.ai/details/publication/pub.1080545461 schema:CreativeWork
    213 https://app.dimensions.ai/details/publication/pub.1100754236 schema:CreativeWork
    214 https://doi.org/10.1002/jmri.24286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012657281
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1002/jmri.25140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001919022
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1002/mrm.24439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043779355
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.apunts.2015.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020398299
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.ejrnm.2017.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103401123
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.forsciint.2006.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040011228
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.forsciint.2009.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048442516
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.forsciint.2016.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045671110
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.jofri.2018.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101019007
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.scijus.2014.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010992877
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1017/cbo9780511542428.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009485253
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1080/03014460.2016.1202321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014274815
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1080/03014460.2016.1223884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053248549
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1093/bmb/lds014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024628829
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1111/1556-4029.12063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032951198
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1111/sms.12461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022264522
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1136/bjsm.2006.031021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040691399
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1136/bjsm.2006.033431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014469916
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1136/bjsm.2009.067439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038048242
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1136/bjsm.2010.074948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043615347
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1148/radiology.207.3.9609885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083270804
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.2463/mrms.2013-0098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036763538
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.3109/03014460.2015.1043945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004701242
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.3238/arztebl.2016.0044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079228082
    261 rdf:type schema:CreativeWork
    262 https://www.grid.ac/institutes/grid.410566.0 schema:alternateName Ghent University Hospital
    263 schema:name Department of Head, Neck and Maxillofacial Surgery, Ghent University Hospital, Ghent, Belgium
    264 Department of Imaging and Pathology – Forensic Odontology, KU Leuven, Leuven, Belgium
    265 Department of Radiology and Nuclear Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
    266 rdf:type schema:Organization
    267 https://www.grid.ac/institutes/grid.419915.1 schema:alternateName Netherlands Forensic Institute
    268 schema:name Department of Forensic Anthropology, Netherlands Forensic Institute, Den Haag, The Netherlands
    269 rdf:type schema:Organization
    270 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
    271 schema:name Department of Radiology and Nuclear Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
    272 rdf:type schema:Organization
    273 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
    274 schema:name Department of Imaging and Pathology – Forensic Odontology, KU Leuven, Leuven, Belgium
    275 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...