Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-23

AUTHORS

Zahra Sedghi Gamechi, Lidia R. Bons, Marco Giordano, Daniel Bos, Ricardo P. J. Budde, Klaus F. Kofoed, Jesper Holst Pedersen, Jolien W. Roos-Hesselink, Marleen de Bruijne

ABSTRACT

ObjectivesTo develop and evaluate a fully automatic method to measure diameters of the ascending and descending aorta on non-ECG-gated, non-contrast computed tomography (CT) scans.Material and methodsThe method combines multi-atlas registration to obtain seed points, aorta centerline extraction, and an optimal surface segmentation approach to extract the aorta surface around the centerline. From the extracted 3D aorta segmentation, the diameter of the ascending and descending aorta was calculated at cross-sectional slices perpendicular to the extracted centerline, at the level of the pulmonary artery bifurcation, and at 1-cm intervals up to 3 cm above and below this level. Agreement with manual annotations was evaluated by dice similarity coefficient (DSC) for segmentation overlap, mean surface distance (MSD), and intra-class correlation (ICC) of diameters on 100 CT scans from a lung cancer screening trial. Repeatability of the diameter measurements was evaluated on 617 baseline-one year follow-up CT scan pairs.ResultsThe agreement between manual and automatic segmentations was good with 0.95 ± 0.01 DSC and 0.56 ± 0.08 mm MSD. ICC between the diameters derived from manual and from automatic segmentations was 0.97, with the per-level ICC ranging from 0.87 to 0.94. An ICC of 0.98 for all measurements and per-level ICC ranging from 0.91 to 0.96 were obtained for repeatability.ConclusionThis fully automatic method can assess diameters in the thoracic aorta reliably even in non-ECG-gated, non-contrast CT scans. This could be a promising tool to assess aorta dilatation in screening and in clinical practice.Key Points• Fully automatic method to assess thoracic aorta diameters.• High agreement between fully automatic method and manual segmentations.• Method is suitable for non-ECG-gated CT and can therefore be used in screening. More... »

PAGES

4613-4623

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5931-z

DOI

http://dx.doi.org/10.1007/s00330-018-5931-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111615835

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30673817


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aorta", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aorta, Thoracic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computed Tomography Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedghi Gamechi", 
        "givenName": "Zahra", 
        "id": "sg:person.012541225421.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012541225421.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bons", 
        "givenName": "Lidia R.", 
        "id": "sg:person.01331414571.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331414571.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giordano", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands", 
            "Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bos", 
        "givenName": "Daniel", 
        "id": "sg:person.01076746746.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076746746.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Budde", 
        "givenName": "Ricardo P. J.", 
        "id": "sg:person.010736541477.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010736541477.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kofoed", 
        "givenName": "Klaus F.", 
        "id": "sg:person.016452166277.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452166277.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pedersen", 
        "givenName": "Jesper Holst", 
        "id": "sg:person.07725433554.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725433554.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roos-Hesselink", 
        "givenName": "Jolien W.", 
        "id": "sg:person.0674502266.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674502266.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Machine Learning Section, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, The Netherlands", 
            "Machine Learning Section, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Bruijne", 
        "givenName": "Marleen", 
        "id": "sg:person.013733372770.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733372770.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11548-013-0924-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051816447", 
          "https://doi.org/10.1007/s11548-013-0924-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-012-0102-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021730904", 
          "https://doi.org/10.1007/s10554-012-0102-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s380-002-8315-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008473069", 
          "https://doi.org/10.1007/s380-002-8315-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-014-1165-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039812342", 
          "https://doi.org/10.1007/s11517-014-1165-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-23", 
    "datePublishedReg": "2019-01-23", 
    "description": "ObjectivesTo develop and evaluate a fully automatic method to measure diameters of the ascending and descending aorta on non-ECG-gated, non-contrast computed tomography (CT) scans.Material and methodsThe method combines multi-atlas registration to obtain seed points, aorta centerline extraction, and an optimal surface segmentation approach to extract the aorta surface around the centerline. From the extracted 3D aorta segmentation, the diameter of the ascending and descending aorta was calculated at cross-sectional slices perpendicular to the extracted centerline, at the level of the pulmonary artery bifurcation, and at 1-cm intervals up to 3\u00a0cm above and below this level. Agreement with manual annotations was evaluated by dice similarity coefficient (DSC) for segmentation overlap, mean surface distance (MSD), and intra-class correlation (ICC) of diameters on 100 CT scans from a lung cancer screening trial. Repeatability of the diameter measurements was evaluated on 617 baseline-one year follow-up CT scan pairs.ResultsThe agreement between manual and automatic segmentations was good with 0.95\u2009\u00b1\u20090.01 DSC and 0.56\u2009\u00b1\u20090.08\u00a0mm MSD. ICC between the diameters derived from manual and from automatic segmentations was 0.97, with the per-level ICC ranging from 0.87 to 0.94. An ICC of 0.98 for all measurements and per-level ICC ranging from 0.91 to 0.96 were obtained for repeatability.ConclusionThis fully automatic method can assess diameters in the thoracic aorta reliably even in non-ECG-gated, non-contrast CT scans. This could be a promising tool to assess aorta dilatation in screening and in clinical practice.Key Points\u2022 Fully automatic method to assess thoracic aorta diameters.\u2022 High agreement between fully automatic method and manual segmentations.\u2022 Method is suitable for non-ECG-gated CT and can therefore be used in screening.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-018-5931-z", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "intra-class correlation", 
      "thoracic aorta", 
      "CT scan", 
      "non-contrast CT scan", 
      "thoracic aorta diameter", 
      "pulmonary artery bifurcation", 
      "aorta dilatation", 
      "year follow", 
      "aorta diameter", 
      "lung cancer", 
      "tomography scan", 
      "clinical practice", 
      "aorta", 
      "mean surface distance", 
      "artery bifurcation", 
      "diameter measurements", 
      "aorta surface", 
      "scans", 
      "Dice similarity coefficient", 
      "CT", 
      "scan pairs", 
      "high agreement", 
      "ascending", 
      "dilatation", 
      "follow", 
      "cancer", 
      "ConclusionThis", 
      "ObjectivesTo", 
      "trials", 
      "promising tool", 
      "levels", 
      "slices perpendicular", 
      "MethodsThe method", 
      "segmentation overlap", 
      "manual segmentation", 
      "interval", 
      "diameter", 
      "manual", 
      "correlation", 
      "aorta segmentation", 
      "practice", 
      "method", 
      "registration", 
      "measurements", 
      "surface distance", 
      "overlap", 
      "similarity coefficient", 
      "automatic segmentation", 
      "repeatability", 
      "tool", 
      "multi-atlas registration", 
      "point", 
      "bifurcation", 
      "materials", 
      "approach", 
      "extraction", 
      "agreement", 
      "automatic method", 
      "centerline extraction", 
      "pairs", 
      "segmentation", 
      "distance", 
      "coefficient", 
      "manual annotation", 
      "surface", 
      "seed points", 
      "segmentation approach", 
      "annotation", 
      "centerline", 
      "perpendicular"
    ], 
    "name": "Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT", 
    "pagination": "4613-4623", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111615835"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5931-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30673817"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5931-z", 
      "https://app.dimensions.ai/details/publication/pub.1111615835"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_805.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-018-5931-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5931-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5931-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5931-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5931-z'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      113 URIs      101 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5931-z schema:about N00c2392490da44db92ea458027bcecf3
2 N0da4f6d5b3cf41aba5b2980188a35a73
3 N172df447159747c7a4f0436e807d58c1
4 N1adeea6508de432195375bd23fc456d1
5 N1dc476fe7b9a45908efda115681b928b
6 N522f50b66dd34fb095b887e6b43abac3
7 N5f1d642781dc4e989ed3a02473c0892d
8 N6abd00a7f57a4d979b7cf7d68655f2b1
9 N6fc2fdcd85f94f97af443ca107a3e0fa
10 N8e5fddfcd62745dd88914c873b5a5f38
11 Nb033d522f6514289b8956c29c5f79846
12 Nda9b16fb47ed4409845660b7444658fd
13 Ndcd2a861263f464dabf3ab365d78a1ee
14 Ne6706ee237fb4dc1bd378f075de19114
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author Ne3b4da12ee2b48f2bd2b40bde740585c
18 schema:citation sg:pub.10.1007/s10554-012-0102-9
19 sg:pub.10.1007/s11517-014-1165-7
20 sg:pub.10.1007/s11548-013-0924-5
21 sg:pub.10.1007/s380-002-8315-1
22 schema:datePublished 2019-01-23
23 schema:datePublishedReg 2019-01-23
24 schema:description ObjectivesTo develop and evaluate a fully automatic method to measure diameters of the ascending and descending aorta on non-ECG-gated, non-contrast computed tomography (CT) scans.Material and methodsThe method combines multi-atlas registration to obtain seed points, aorta centerline extraction, and an optimal surface segmentation approach to extract the aorta surface around the centerline. From the extracted 3D aorta segmentation, the diameter of the ascending and descending aorta was calculated at cross-sectional slices perpendicular to the extracted centerline, at the level of the pulmonary artery bifurcation, and at 1-cm intervals up to 3 cm above and below this level. Agreement with manual annotations was evaluated by dice similarity coefficient (DSC) for segmentation overlap, mean surface distance (MSD), and intra-class correlation (ICC) of diameters on 100 CT scans from a lung cancer screening trial. Repeatability of the diameter measurements was evaluated on 617 baseline-one year follow-up CT scan pairs.ResultsThe agreement between manual and automatic segmentations was good with 0.95 ± 0.01 DSC and 0.56 ± 0.08 mm MSD. ICC between the diameters derived from manual and from automatic segmentations was 0.97, with the per-level ICC ranging from 0.87 to 0.94. An ICC of 0.98 for all measurements and per-level ICC ranging from 0.91 to 0.96 were obtained for repeatability.ConclusionThis fully automatic method can assess diameters in the thoracic aorta reliably even in non-ECG-gated, non-contrast CT scans. This could be a promising tool to assess aorta dilatation in screening and in clinical practice.Key Points• Fully automatic method to assess thoracic aorta diameters.• High agreement between fully automatic method and manual segmentations.• Method is suitable for non-ECG-gated CT and can therefore be used in screening.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf Nb301a74aee5f4bcf961aab2029b8afcf
28 Nd6fd39a1be3c4df1bb9c57036db13b20
29 sg:journal.1289120
30 schema:keywords CT
31 CT scan
32 ConclusionThis
33 Dice similarity coefficient
34 MethodsThe method
35 ObjectivesTo
36 agreement
37 annotation
38 aorta
39 aorta diameter
40 aorta dilatation
41 aorta segmentation
42 aorta surface
43 approach
44 artery bifurcation
45 ascending
46 automatic method
47 automatic segmentation
48 bifurcation
49 cancer
50 centerline
51 centerline extraction
52 clinical practice
53 coefficient
54 correlation
55 diameter
56 diameter measurements
57 dilatation
58 distance
59 extraction
60 follow
61 high agreement
62 interval
63 intra-class correlation
64 levels
65 lung cancer
66 manual
67 manual annotation
68 manual segmentation
69 materials
70 mean surface distance
71 measurements
72 method
73 multi-atlas registration
74 non-contrast CT scan
75 overlap
76 pairs
77 perpendicular
78 point
79 practice
80 promising tool
81 pulmonary artery bifurcation
82 registration
83 repeatability
84 scan pairs
85 scans
86 seed points
87 segmentation
88 segmentation approach
89 segmentation overlap
90 similarity coefficient
91 slices perpendicular
92 surface
93 surface distance
94 thoracic aorta
95 thoracic aorta diameter
96 tomography scan
97 tool
98 trials
99 year follow
100 schema:name Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT
101 schema:pagination 4613-4623
102 schema:productId N88e0078301574b8fb029e766b11d6f6b
103 Na6ec11c5c950481794ef665e2497feaa
104 Nda38973750b04298aae6e692dc8f834b
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111615835
106 https://doi.org/10.1007/s00330-018-5931-z
107 schema:sdDatePublished 2022-12-01T06:39
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher Ned9693bae9974df1a58fd61a12cec4b1
110 schema:url https://doi.org/10.1007/s00330-018-5931-z
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N00c2392490da44db92ea458027bcecf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Algorithms
116 rdf:type schema:DefinedTerm
117 N0da4f6d5b3cf41aba5b2980188a35a73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Computed Tomography Angiography
119 rdf:type schema:DefinedTerm
120 N172df447159747c7a4f0436e807d58c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Aorta
122 rdf:type schema:DefinedTerm
123 N19c60c7a9edc46b38aa31a1de31938cc rdf:first sg:person.010736541477.02
124 rdf:rest Nc934c426c0654f2f92c9d644de27d887
125 N1adeea6508de432195375bd23fc456d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Aorta, Thoracic
127 rdf:type schema:DefinedTerm
128 N1dc476fe7b9a45908efda115681b928b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Male
130 rdf:type schema:DefinedTerm
131 N3fe581184000447ea89f629e5f3ecde9 rdf:first sg:person.013733372770.12
132 rdf:rest rdf:nil
133 N522f50b66dd34fb095b887e6b43abac3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Middle Aged
135 rdf:type schema:DefinedTerm
136 N5490e8b6c77e464e9345e4f28c3191b5 rdf:first sg:person.01331414571.09
137 rdf:rest N6c38a0bc1e1d435bbdf720858dc134af
138 N5f1d642781dc4e989ed3a02473c0892d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Imaging, Three-Dimensional
140 rdf:type schema:DefinedTerm
141 N6abd00a7f57a4d979b7cf7d68655f2b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Reproducibility of Results
143 rdf:type schema:DefinedTerm
144 N6c38a0bc1e1d435bbdf720858dc134af rdf:first N7ec2ed4f0fc247edac4aee6f33f181c4
145 rdf:rest Nfc6a694ffd27433ca0e26d3cec6bf88e
146 N6e711b67c3a54197b21da51898a7eceb rdf:first sg:person.0674502266.45
147 rdf:rest N3fe581184000447ea89f629e5f3ecde9
148 N6fc2fdcd85f94f97af443ca107a3e0fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Humans
150 rdf:type schema:DefinedTerm
151 N7c502773392b4b6583581b46e30dc9c5 rdf:first sg:person.07725433554.11
152 rdf:rest N6e711b67c3a54197b21da51898a7eceb
153 N7ec2ed4f0fc247edac4aee6f33f181c4 schema:affiliation grid-institutes:grid.5645.2
154 schema:familyName Giordano
155 schema:givenName Marco
156 rdf:type schema:Person
157 N88e0078301574b8fb029e766b11d6f6b schema:name doi
158 schema:value 10.1007/s00330-018-5931-z
159 rdf:type schema:PropertyValue
160 N8e5fddfcd62745dd88914c873b5a5f38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Aged
162 rdf:type schema:DefinedTerm
163 Na6ec11c5c950481794ef665e2497feaa schema:name dimensions_id
164 schema:value pub.1111615835
165 rdf:type schema:PropertyValue
166 Nb033d522f6514289b8956c29c5f79846 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Tomography, X-Ray Computed
168 rdf:type schema:DefinedTerm
169 Nb301a74aee5f4bcf961aab2029b8afcf schema:volumeNumber 29
170 rdf:type schema:PublicationVolume
171 Nc934c426c0654f2f92c9d644de27d887 rdf:first sg:person.016452166277.03
172 rdf:rest N7c502773392b4b6583581b46e30dc9c5
173 Nd6fd39a1be3c4df1bb9c57036db13b20 schema:issueNumber 9
174 rdf:type schema:PublicationIssue
175 Nda38973750b04298aae6e692dc8f834b schema:name pubmed_id
176 schema:value 30673817
177 rdf:type schema:PropertyValue
178 Nda9b16fb47ed4409845660b7444658fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Female
180 rdf:type schema:DefinedTerm
181 Ndcd2a861263f464dabf3ab365d78a1ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Cross-Sectional Studies
183 rdf:type schema:DefinedTerm
184 Ne3b4da12ee2b48f2bd2b40bde740585c rdf:first sg:person.012541225421.89
185 rdf:rest N5490e8b6c77e464e9345e4f28c3191b5
186 Ne6706ee237fb4dc1bd378f075de19114 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Radiographic Image Interpretation, Computer-Assisted
188 rdf:type schema:DefinedTerm
189 Ned9693bae9974df1a58fd61a12cec4b1 schema:name Springer Nature - SN SciGraph project
190 rdf:type schema:Organization
191 Nfc6a694ffd27433ca0e26d3cec6bf88e rdf:first sg:person.01076746746.74
192 rdf:rest N19c60c7a9edc46b38aa31a1de31938cc
193 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
194 schema:name Medical and Health Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
197 schema:name Clinical Sciences
198 rdf:type schema:DefinedTerm
199 sg:journal.1289120 schema:issn 0938-7994
200 1432-1084
201 schema:name European Radiology
202 schema:publisher Springer Nature
203 rdf:type schema:Periodical
204 sg:person.010736541477.02 schema:affiliation grid-institutes:grid.5645.2
205 schema:familyName Budde
206 schema:givenName Ricardo P. J.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010736541477.02
208 rdf:type schema:Person
209 sg:person.01076746746.74 schema:affiliation grid-institutes:grid.5645.2
210 schema:familyName Bos
211 schema:givenName Daniel
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076746746.74
213 rdf:type schema:Person
214 sg:person.012541225421.89 schema:affiliation grid-institutes:grid.5645.2
215 schema:familyName Sedghi Gamechi
216 schema:givenName Zahra
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012541225421.89
218 rdf:type schema:Person
219 sg:person.01331414571.09 schema:affiliation grid-institutes:grid.5645.2
220 schema:familyName Bons
221 schema:givenName Lidia R.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331414571.09
223 rdf:type schema:Person
224 sg:person.013733372770.12 schema:affiliation grid-institutes:grid.5254.6
225 schema:familyName de Bruijne
226 schema:givenName Marleen
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013733372770.12
228 rdf:type schema:Person
229 sg:person.016452166277.03 schema:affiliation grid-institutes:grid.475435.4
230 schema:familyName Kofoed
231 schema:givenName Klaus F.
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452166277.03
233 rdf:type schema:Person
234 sg:person.0674502266.45 schema:affiliation grid-institutes:grid.5645.2
235 schema:familyName Roos-Hesselink
236 schema:givenName Jolien W.
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674502266.45
238 rdf:type schema:Person
239 sg:person.07725433554.11 schema:affiliation grid-institutes:grid.475435.4
240 schema:familyName Pedersen
241 schema:givenName Jesper Holst
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725433554.11
243 rdf:type schema:Person
244 sg:pub.10.1007/s10554-012-0102-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021730904
245 https://doi.org/10.1007/s10554-012-0102-9
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/s11517-014-1165-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039812342
248 https://doi.org/10.1007/s11517-014-1165-7
249 rdf:type schema:CreativeWork
250 sg:pub.10.1007/s11548-013-0924-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051816447
251 https://doi.org/10.1007/s11548-013-0924-5
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s380-002-8315-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008473069
254 https://doi.org/10.1007/s380-002-8315-1
255 rdf:type schema:CreativeWork
256 grid-institutes:grid.475435.4 schema:alternateName Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
257 schema:name Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
258 rdf:type schema:Organization
259 grid-institutes:grid.5254.6 schema:alternateName Machine Learning Section, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
260 schema:name Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
261 Machine Learning Section, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
262 rdf:type schema:Organization
263 grid-institutes:grid.5645.2 schema:alternateName Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
264 Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
265 Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
266 Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
267 schema:name Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
268 Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
269 Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
270 Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...