Second-generation motion correction algorithm improves diagnostic accuracy of single-beat coronary CT angiography in patients with increased heart rate View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-07

AUTHORS

Junfu Liang, Ying Sun, Ziqing Ye, Yanchun Sun, Lei Xu, Zhen Zhou, Brian Thomsen, Jianying Li, Zhonghua Sun, Zhanming Fan

ABSTRACT

OBJECTIVE: To assess the effect of a second-generation motion correction algorithm on the diagnostic accuracy of coronary computed tomography angiography (CCTA) using a 256-detector row CT in patients with increased heart rates. METHODS: Eighty-one consecutive symptomatic cardiac patients with increased heart rates (≥ 75 beats per min) were enrolled. All patients underwent CCTA and invasive coronary angiography (ICA). CCTA was performed with a 256-detector row CT using prospectively ECG-triggered single-beat protocol. Images were reconstructed using standard (STD) algorithm, first-generation intra-cycle motion correction (MC1) algorithm, and second-generation intra-cycle motion correction (MC2) algorithm. The image quality of coronary artery segments was assessed by two experienced radiologists using a 4-point scale (1: non-diagnostic and 4: excellent), according to the 18-segment model. Diagnostic performance for segments with significant lumen stenosis (≥ 50%) was compared between STD, MC1, and MC2 by using ICA as the reference standard. RESULTS: The mean effective dose of CCTA was 1.0 mSv. On per-segment level, the overall image quality score and interpretability were improved to 3.56 ± 0.63 and 99.2% due to the use of MC2, as compared to 2.81 ± 0.85 and 92.5% with STD and 3.21 ± 0.79 and 97.2% with MC1. On per-segment level, compared to STD and MC1, MC2 improved the sensitivity (92.2% vs. 79.2%, 80.7%), specificity (97.8% vs. 82.1%, 90.8%), positive predictive value (89.9% vs. 48.4%, 65.1%), negative predictive value (98.3% vs. 94.9%, 95.7%), and diagnostic accuracy (96.8% vs. 81.5%, 89.0%). CONCLUSION: A second-generation intra-cycle motion correction algorithm for single-beat CCTA significantly improves image quality and diagnostic accuracy in patients with increased heart rate. KEY POINTS: • A second-generation motion correction (MC2) algorithm can further improve the image quality of all coronary arteries than a first-generation motion correction (MC1). • MC2 algorithm can significantly reduce the number of false positive segments compared to standard and MC1 algorithm. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5929-6

DOI

http://dx.doi.org/10.1007/s00330-018-5929-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111251155

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30617487


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd., Chaoyang District, 100029, Beijing, China", 
            "Department of Radiology, Beijing Huairou Hospital, No. 9 Yongtai North Street, Huairou District, 101400, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Junfu", 
        "id": "sg:person.011765116737.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011765116737.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Beijing Huairou Hospital, No. 9 Yongtai North Street, Huairou District, 101400, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Beijing Huairou Hospital, No. 9 Yongtai North Street, Huairou District, 101400, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Ziqing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Beijing Huairou Hospital, No. 9 Yongtai North Street, Huairou District, 101400, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Yanchun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd., Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd., Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Zhen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GE Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.474545.3", 
          "name": [
            "GE Healthcare, Milwaukee, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomsen", 
        "givenName": "Brian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CT Laboratory, GE Healthcare China, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jianying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Curtin University", 
          "id": "https://www.grid.ac/institutes/grid.1032.0", 
          "name": [
            "Department of Medical Radiation Sciences, Curtin University, 6845, Perth, WA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Zhonghua", 
        "id": "sg:person.01127454361.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127454361.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Capital Medical University", 
          "id": "https://www.grid.ac/institutes/grid.24696.3f", 
          "name": [
            "Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd., Chaoyang District, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Zhanming", 
        "id": "sg:person.01017406664.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017406664.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-011-2185-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000726081", 
          "https://doi.org/10.1007/s00330-011-2185-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17434440.2016.1184968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002912661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007831151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007831151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010014409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinimag.2015.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015646457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2472070906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016603234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2015.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017299699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diii.2015.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019947048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2016.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021280868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2014.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021388610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022151226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022151226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2012.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023454775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026294403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026294403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2016.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030322168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-014-0382-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030447868", 
          "https://doi.org/10.1007/s11604-014-0382-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3822-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032477069", 
          "https://doi.org/10.1007/s00330-015-3822-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-014-0499-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036467958", 
          "https://doi.org/10.1007/s10554-014-0499-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2014.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043748772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13130909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044575644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2013.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046634713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0028-1109621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057125176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jev033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059501486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.2078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.2620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/xst-160589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071128387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2016.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074227481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/02841851.2010.492792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078201365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/02841851.2010.492792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078201365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.2016160079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079345235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcct.2017.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091887562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-5131-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092845202", 
          "https://doi.org/10.1007/s00330-017-5131-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100655680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100655680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106155860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106155860"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-07", 
    "datePublishedReg": "2019-01-07", 
    "description": "OBJECTIVE: To assess the effect of a second-generation motion correction algorithm on the diagnostic accuracy of coronary computed tomography angiography (CCTA) using a 256-detector row CT in patients with increased heart rates.\nMETHODS: Eighty-one consecutive symptomatic cardiac patients with increased heart rates (\u2265\u200975 beats per min) were enrolled. All patients underwent CCTA and invasive coronary angiography (ICA). CCTA was performed with a 256-detector row CT using prospectively ECG-triggered single-beat protocol. Images were reconstructed using standard (STD) algorithm, first-generation intra-cycle motion correction (MC1) algorithm, and second-generation intra-cycle motion correction (MC2) algorithm. The image quality of coronary artery segments was assessed by two experienced radiologists using a 4-point scale (1: non-diagnostic and 4: excellent), according to the 18-segment model. Diagnostic performance for segments with significant lumen stenosis (\u2265\u200950%) was compared between STD, MC1, and MC2 by using ICA as the reference standard.\nRESULTS: The mean effective dose of CCTA was 1.0\u00a0mSv. On per-segment level, the overall image quality score and interpretability were improved to 3.56\u2009\u00b1\u20090.63 and 99.2% due to the use of MC2, as compared to 2.81\u2009\u00b1\u20090.85 and 92.5% with STD and 3.21\u2009\u00b1\u20090.79 and 97.2% with MC1. On per-segment level, compared to STD and MC1, MC2 improved the sensitivity (92.2% vs. 79.2%, 80.7%), specificity (97.8% vs. 82.1%, 90.8%), positive predictive value (89.9% vs. 48.4%, 65.1%), negative predictive value (98.3% vs. 94.9%, 95.7%), and diagnostic accuracy (96.8% vs. 81.5%, 89.0%).\nCONCLUSION: A second-generation intra-cycle motion correction algorithm for single-beat CCTA significantly improves image quality and diagnostic accuracy in patients with increased heart rate.\nKEY POINTS: \u2022 A second-generation motion correction (MC2) algorithm can further improve the image quality of all coronary arteries than a first-generation motion correction (MC1). \u2022 MC2 algorithm\u00a0can significantly reduce the number of false positive segments compared to standard and MC1 algorithm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5929-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Second-generation motion correction algorithm improves diagnostic accuracy of single-beat coronary CT angiography in patients with increased heart rate", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a6a83e96233ba845326c57dc3acfc8573b8e0ca18aee4eb211ff80c28daf4c48"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30617487"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5929-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111251155"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5929-6", 
      "https://app.dimensions.ai/details/publication/pub.1111251155"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55856_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5929-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5929-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5929-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5929-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5929-6'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      59 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5929-6 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N45ffd40ae73c404bbca6ef79ec871ddd
4 schema:citation sg:pub.10.1007/s00330-011-2185-4
5 sg:pub.10.1007/s00330-015-3822-0
6 sg:pub.10.1007/s00330-017-5131-2
7 sg:pub.10.1007/s10554-014-0499-4
8 sg:pub.10.1007/s11604-014-0382-1
9 https://doi.org/10.1016/j.acra.2013.10.014
10 https://doi.org/10.1016/j.acra.2014.07.016
11 https://doi.org/10.1016/j.acra.2016.03.015
12 https://doi.org/10.1016/j.clinimag.2015.07.023
13 https://doi.org/10.1016/j.crad.2016.12.001
14 https://doi.org/10.1016/j.diii.2015.10.008
15 https://doi.org/10.1016/j.jcct.2012.04.004
16 https://doi.org/10.1016/j.jcct.2014.07.003
17 https://doi.org/10.1016/j.jcct.2015.04.005
18 https://doi.org/10.1016/j.jcct.2016.08.001
19 https://doi.org/10.1016/j.jcct.2017.09.011
20 https://doi.org/10.1055/s-0028-1109621
21 https://doi.org/10.1080/17434440.2016.1184968
22 https://doi.org/10.1093/ehjci/jev033
23 https://doi.org/10.1097/rct.0000000000000193
24 https://doi.org/10.1097/rct.0000000000000428
25 https://doi.org/10.1097/rct.0000000000000708
26 https://doi.org/10.1097/rct.0000000000000787
27 https://doi.org/10.1097/rli.0000000000000263
28 https://doi.org/10.1148/radiol.10100047
29 https://doi.org/10.1148/radiol.13130909
30 https://doi.org/10.1148/radiol.2472070906
31 https://doi.org/10.1148/rg.2016160079
32 https://doi.org/10.2214/ajr.07.2000
33 https://doi.org/10.2214/ajr.07.2078
34 https://doi.org/10.2214/ajr.07.2620
35 https://doi.org/10.3109/02841851.2010.492792
36 https://doi.org/10.3233/xst-160589
37 schema:datePublished 2019-01-07
38 schema:datePublishedReg 2019-01-07
39 schema:description OBJECTIVE: To assess the effect of a second-generation motion correction algorithm on the diagnostic accuracy of coronary computed tomography angiography (CCTA) using a 256-detector row CT in patients with increased heart rates. METHODS: Eighty-one consecutive symptomatic cardiac patients with increased heart rates (≥ 75 beats per min) were enrolled. All patients underwent CCTA and invasive coronary angiography (ICA). CCTA was performed with a 256-detector row CT using prospectively ECG-triggered single-beat protocol. Images were reconstructed using standard (STD) algorithm, first-generation intra-cycle motion correction (MC1) algorithm, and second-generation intra-cycle motion correction (MC2) algorithm. The image quality of coronary artery segments was assessed by two experienced radiologists using a 4-point scale (1: non-diagnostic and 4: excellent), according to the 18-segment model. Diagnostic performance for segments with significant lumen stenosis (≥ 50%) was compared between STD, MC1, and MC2 by using ICA as the reference standard. RESULTS: The mean effective dose of CCTA was 1.0 mSv. On per-segment level, the overall image quality score and interpretability were improved to 3.56 ± 0.63 and 99.2% due to the use of MC2, as compared to 2.81 ± 0.85 and 92.5% with STD and 3.21 ± 0.79 and 97.2% with MC1. On per-segment level, compared to STD and MC1, MC2 improved the sensitivity (92.2% vs. 79.2%, 80.7%), specificity (97.8% vs. 82.1%, 90.8%), positive predictive value (89.9% vs. 48.4%, 65.1%), negative predictive value (98.3% vs. 94.9%, 95.7%), and diagnostic accuracy (96.8% vs. 81.5%, 89.0%). CONCLUSION: A second-generation intra-cycle motion correction algorithm for single-beat CCTA significantly improves image quality and diagnostic accuracy in patients with increased heart rate. KEY POINTS: • A second-generation motion correction (MC2) algorithm can further improve the image quality of all coronary arteries than a first-generation motion correction (MC1). • MC2 algorithm can significantly reduce the number of false positive segments compared to standard and MC1 algorithm.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf sg:journal.1289120
44 schema:name Second-generation motion correction algorithm improves diagnostic accuracy of single-beat coronary CT angiography in patients with increased heart rate
45 schema:pagination 1-13
46 schema:productId N4a8db15cf6ad44a9bc58aba7cc49140d
47 N533228d6c1484ae28cb0f9f4bc2a930c
48 N59162e49f56d42afa1e6fce4ee5bd35b
49 N6a6ddebb6570456f93502b782df5bc43
50 Na882b4b7b9244f9f893acfaf1d43a488
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111251155
52 https://doi.org/10.1007/s00330-018-5929-6
53 schema:sdDatePublished 2019-04-11T08:36
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N2d034ac3ec5b40ff8d400e13f652981e
56 schema:url https://link.springer.com/10.1007%2Fs00330-018-5929-6
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N08d5ad28704e4297afeb33fcdb56a119 schema:name CT Laboratory, GE Healthcare China, Beijing, China
61 rdf:type schema:Organization
62 N2a211f666fef495697a267d1286ca519 rdf:first N6596255b3cc043339b83caba8745a408
63 rdf:rest N65c1898bd6af4ec0ab5e16fa26f69173
64 N2d034ac3ec5b40ff8d400e13f652981e schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N3cd9a1673f5344ab8e65c35f314c771e rdf:first Nd90165c551e64d468e3e08d82860ef32
67 rdf:rest Nc19b72a4e67040029bbf9d183e6f494b
68 N45ffd40ae73c404bbca6ef79ec871ddd rdf:first sg:person.011765116737.35
69 rdf:rest N2a211f666fef495697a267d1286ca519
70 N4930b2ad1b184957a2b79cc8fc977652 schema:name Department of Radiology, Beijing Huairou Hospital, No. 9 Yongtai North Street, Huairou District, 101400, Beijing, China
71 rdf:type schema:Organization
72 N4a8db15cf6ad44a9bc58aba7cc49140d schema:name doi
73 schema:value 10.1007/s00330-018-5929-6
74 rdf:type schema:PropertyValue
75 N533228d6c1484ae28cb0f9f4bc2a930c schema:name nlm_unique_id
76 schema:value 9114774
77 rdf:type schema:PropertyValue
78 N57614f6a84324dd2883cfe519cc863ba schema:affiliation N08d5ad28704e4297afeb33fcdb56a119
79 schema:familyName Li
80 schema:givenName Jianying
81 rdf:type schema:Person
82 N59162e49f56d42afa1e6fce4ee5bd35b schema:name dimensions_id
83 schema:value pub.1111251155
84 rdf:type schema:PropertyValue
85 N6596255b3cc043339b83caba8745a408 schema:affiliation N931f2bdbc45c42849695252897133bdc
86 schema:familyName Sun
87 schema:givenName Ying
88 rdf:type schema:Person
89 N65c1898bd6af4ec0ab5e16fa26f69173 rdf:first Na302ac2c1c04475da706755402fea476
90 rdf:rest N992b7c8fa553487e8b83711cedf3b24b
91 N6a6ddebb6570456f93502b782df5bc43 schema:name pubmed_id
92 schema:value 30617487
93 rdf:type schema:PropertyValue
94 N6fc0872794704fbb8e0ccd7d713981c5 rdf:first sg:person.01017406664.97
95 rdf:rest rdf:nil
96 N802d17549e034839bad7c8da093a499f rdf:first Nb8819592dcf64660a5dfb51079f0f3f1
97 rdf:rest Nf089a25cf23d4e8dbf69c87e258dbb77
98 N8278d22ad613498883d4aea2c8730250 schema:name Department of Radiology, Beijing Huairou Hospital, No. 9 Yongtai North Street, Huairou District, 101400, Beijing, China
99 rdf:type schema:Organization
100 N931f2bdbc45c42849695252897133bdc schema:name Department of Radiology, Beijing Huairou Hospital, No. 9 Yongtai North Street, Huairou District, 101400, Beijing, China
101 rdf:type schema:Organization
102 N992b7c8fa553487e8b83711cedf3b24b rdf:first Ncd23961863564051b558abb52e942aa7
103 rdf:rest N3cd9a1673f5344ab8e65c35f314c771e
104 N9c5b8c8f8d724b599c9a95ef18f41ecc rdf:first sg:person.01127454361.85
105 rdf:rest N6fc0872794704fbb8e0ccd7d713981c5
106 Na302ac2c1c04475da706755402fea476 schema:affiliation N4930b2ad1b184957a2b79cc8fc977652
107 schema:familyName Ye
108 schema:givenName Ziqing
109 rdf:type schema:Person
110 Na882b4b7b9244f9f893acfaf1d43a488 schema:name readcube_id
111 schema:value a6a83e96233ba845326c57dc3acfc8573b8e0ca18aee4eb211ff80c28daf4c48
112 rdf:type schema:PropertyValue
113 Nb8819592dcf64660a5dfb51079f0f3f1 schema:affiliation https://www.grid.ac/institutes/grid.474545.3
114 schema:familyName Thomsen
115 schema:givenName Brian
116 rdf:type schema:Person
117 Nc19b72a4e67040029bbf9d183e6f494b rdf:first Nf516870f9dc443f98d8a3769b9209c22
118 rdf:rest N802d17549e034839bad7c8da093a499f
119 Ncd23961863564051b558abb52e942aa7 schema:affiliation N8278d22ad613498883d4aea2c8730250
120 schema:familyName Sun
121 schema:givenName Yanchun
122 rdf:type schema:Person
123 Nd90165c551e64d468e3e08d82860ef32 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
124 schema:familyName Xu
125 schema:givenName Lei
126 rdf:type schema:Person
127 Nf089a25cf23d4e8dbf69c87e258dbb77 rdf:first N57614f6a84324dd2883cfe519cc863ba
128 rdf:rest N9c5b8c8f8d724b599c9a95ef18f41ecc
129 Nf516870f9dc443f98d8a3769b9209c22 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
130 schema:familyName Zhou
131 schema:givenName Zhen
132 rdf:type schema:Person
133 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
134 schema:name Medical and Health Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
137 schema:name Cardiorespiratory Medicine and Haematology
138 rdf:type schema:DefinedTerm
139 sg:journal.1289120 schema:issn 0938-7994
140 1432-1084
141 schema:name European Radiology
142 rdf:type schema:Periodical
143 sg:person.01017406664.97 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
144 schema:familyName Fan
145 schema:givenName Zhanming
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017406664.97
147 rdf:type schema:Person
148 sg:person.01127454361.85 schema:affiliation https://www.grid.ac/institutes/grid.1032.0
149 schema:familyName Sun
150 schema:givenName Zhonghua
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127454361.85
152 rdf:type schema:Person
153 sg:person.011765116737.35 schema:affiliation https://www.grid.ac/institutes/grid.24696.3f
154 schema:familyName Liang
155 schema:givenName Junfu
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011765116737.35
157 rdf:type schema:Person
158 sg:pub.10.1007/s00330-011-2185-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000726081
159 https://doi.org/10.1007/s00330-011-2185-4
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s00330-015-3822-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032477069
162 https://doi.org/10.1007/s00330-015-3822-0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s00330-017-5131-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092845202
165 https://doi.org/10.1007/s00330-017-5131-2
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s10554-014-0499-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036467958
168 https://doi.org/10.1007/s10554-014-0499-4
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11604-014-0382-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030447868
171 https://doi.org/10.1007/s11604-014-0382-1
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.acra.2013.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046634713
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.acra.2014.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043748772
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.acra.2016.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021280868
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.clinimag.2015.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015646457
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.crad.2016.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074227481
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.diii.2015.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019947048
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jcct.2012.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023454775
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.jcct.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021388610
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jcct.2015.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017299699
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jcct.2016.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030322168
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jcct.2017.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091887562
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1055/s-0028-1109621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057125176
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1080/17434440.2016.1184968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002912661
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/ehjci/jev033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059501486
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1097/rct.0000000000000193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026294403
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1097/rct.0000000000000428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007831151
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1097/rct.0000000000000708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100655680
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1097/rct.0000000000000787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106155860
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1097/rli.0000000000000263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022151226
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1148/radiol.10100047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010014409
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1148/radiol.13130909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044575644
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1148/radiol.2472070906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016603234
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1148/rg.2016160079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079345235
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2214/ajr.07.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298451
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2214/ajr.07.2078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298490
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2214/ajr.07.2620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298761
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3109/02841851.2010.492792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078201365
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3233/xst-160589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071128387
228 rdf:type schema:CreativeWork
229 https://www.grid.ac/institutes/grid.1032.0 schema:alternateName Curtin University
230 schema:name Department of Medical Radiation Sciences, Curtin University, 6845, Perth, WA, Australia
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.24696.3f schema:alternateName Capital Medical University
233 schema:name Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd., Chaoyang District, 100029, Beijing, China
234 Department of Radiology, Beijing Huairou Hospital, No. 9 Yongtai North Street, Huairou District, 101400, Beijing, China
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.474545.3 schema:alternateName GE Healthcare (United States)
237 schema:name GE Healthcare, Milwaukee, WI, USA
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...