A rapid high-performance semi-automated tool to measure total kidney volume from MRI in autosomal dominant polycystic kidney disease View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-21

AUTHORS

Roslyn J. Simms, Trushali Doshi, Peter Metherall, Desmond Ryan, Peter Wright, Nicolas Gruel, Maatje D. A. van Gastel, Ron T. Gansevoort, Wendy Tindale, Albert C. M. Ong

ABSTRACT

OBJECTIVES: To develop a high-performance, rapid semi-automated method (Sheffield TKV Tool) for measuring total kidney volume (TKV) from magnetic resonance images (MRI) in patients with autosomal dominant polycystic kidney disease (ADPKD). METHODS: TKV was initially measured in 61 patients with ADPKD using the Sheffield TKV Tool and its performance compared to manual segmentation and other published methods (ellipsoidal, mid-slice, MIROS). It was then validated using an external dataset of MRI scans from 65 patients with ADPKD. RESULTS: Sixty-one patients (mean age 45 ± 14 years, baseline eGFR 76 ± 32 ml/min/1.73 m2) with ADPKD had a wide range of TKV (258-3680 ml) measured manually. The Sheffield TKV Tool was highly accurate (mean volume error 0.5 ± 5.3% for right kidney, - 0.7 ± 5.5% for left kidney), reproducible (intra-operator variability - 0.2 ± 1.3%; inter-operator variability 1.1 ± 2.9%) and outperformed published methods. It took less than 6 min to execute and performed consistently with high accuracy in an external MRI dataset of T2-weighted sequences with TKV acquired using three different scanners and measured using a different segmentation methodology (mean volume error was 3.45 ± 3.96%, n = 65). CONCLUSIONS: The Sheffield TKV Tool is operator friendly, requiring minimal user interaction to rapidly, accurately and reproducibly measure TKV in this, the largest reported unselected European patient cohort with ADPKD. It is more accurate than estimating equations and its accuracy is maintained at larger kidney volumes than previously reported with other semi-automated methods. It is free to use, can run as an independent executable and will accelerate the application of TKV as a prognostic biomarker for ADPKD into clinical practice. KEY POINTS: • This new semi-automated method (Sheffield TKV Tool) to measure total kidney volume (TKV) will facilitate the routine clinical assessment of patients with ADPKD. • Measuring TKV manually is time consuming and laborious. • TKV is a prognostic indicator in ADPKD and the only imaging biomarker approved by the FDA and EMA. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5918-9

DOI

http://dx.doi.org/10.1007/s00330-018-5918-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111577176

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30666443


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Kidney Genetics Group, Academic Unit of Nephrology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK", 
            "Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK", 
            "Institute for in silico Medicine, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simms", 
        "givenName": "Roslyn J.", 
        "id": "sg:person.01303050176.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303050176.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Kidney Genetics Group, Academic Unit of Nephrology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doshi", 
        "givenName": "Trushali", 
        "id": "sg:person.0755760651.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755760651.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sheffield Teaching Hospitals NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.31410.37", 
          "name": [
            "Institute for in silico Medicine, University of Sheffield, Sheffield, UK", 
            "Medical Imaging and Medical Physics, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Metherall", 
        "givenName": "Peter", 
        "id": "sg:person.01012277070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012277070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Kidney Genetics Group, Academic Unit of Nephrology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryan", 
        "givenName": "Desmond", 
        "id": "sg:person.016304717131.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016304717131.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sheffield Teaching Hospitals NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.31410.37", 
          "name": [
            "Medical Imaging and Medical Physics, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wright", 
        "givenName": "Peter", 
        "id": "sg:person.014162510731.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014162510731.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Institute for in silico Medicine, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gruel", 
        "givenName": "Nicolas", 
        "id": "sg:person.016316146121.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316146121.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Medical Center Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4494.d", 
          "name": [
            "Department of Nephrology, University Medical Center Groningen, Groningen, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Gastel", 
        "givenName": "Maatje D. A.", 
        "id": "sg:person.0723773735.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723773735.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Medical Center Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4494.d", 
          "name": [
            "Department of Nephrology, University Medical Center Groningen, Groningen, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gansevoort", 
        "givenName": "Ron T.", 
        "id": "sg:person.01357255137.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357255137.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sheffield Teaching Hospitals NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.31410.37", 
          "name": [
            "Institute for in silico Medicine, University of Sheffield, Sheffield, UK", 
            "Medical Imaging and Medical Physics, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tindale", 
        "givenName": "Wendy", 
        "id": "sg:person.01155340354.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155340354.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Kidney Genetics Group, Academic Unit of Nephrology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK", 
            "Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK", 
            "Institute for in silico Medicine, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ong", 
        "givenName": "Albert C. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1053/j.ajkd.2015.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006905565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1205511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007206887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfv314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010493466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2015.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014205582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(15)60907-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018870366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.313.7049.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021609580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2013101138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028334982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2013101138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028334982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2013.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033636357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000355375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034620658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ekir.2017.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038595360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ijb-2015-0039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040925021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.09500911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044495159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrneph.2011.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046151090", 
          "https://doi.org/10.1038/nrneph.2011.109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gfv456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047510686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1076-6332(03)00671-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049557947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.10561012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051357969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200007000-00019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051701187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200007000-00019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051701187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1440-1797.2006.00535.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053182695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2006.871418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.8657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.15.15875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069304630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.15.15875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069304630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.08300815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069331321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.08300815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069331321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-150-9-200905050-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073710774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-01779-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085379684", 
          "https://doi.org/10.1038/s41598-017-01779-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-017-9978-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085608696", 
          "https://doi.org/10.1007/s10278-017-9978-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-017-9978-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085608696", 
          "https://doi.org/10.1007/s10278-017-9978-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0178488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085724484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1285-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091428256", 
          "https://doi.org/10.1007/s00261-017-1285-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/medivis.2008.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094674027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000491022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105971521"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-21", 
    "datePublishedReg": "2019-01-21", 
    "description": "OBJECTIVES: To develop a high-performance, rapid semi-automated method (Sheffield TKV Tool) for measuring total kidney volume (TKV) from magnetic resonance images (MRI) in patients with autosomal dominant polycystic kidney disease (ADPKD).\nMETHODS: TKV was initially measured in 61 patients with ADPKD using the Sheffield TKV Tool and its performance compared to manual segmentation and other published methods (ellipsoidal, mid-slice, MIROS). It was then validated using an external dataset of MRI scans from 65 patients with ADPKD.\nRESULTS: Sixty-one patients (mean age 45\u2009\u00b1\u200914\u00a0years, baseline eGFR 76\u2009\u00b1\u200932\u00a0ml/min/1.73\u00a0m2) with ADPKD had a wide range of TKV (258-3680\u00a0ml) measured manually. The Sheffield TKV Tool was highly accurate (mean volume error 0.5\u2009\u00b1\u20095.3% for right kidney, -\u20090.7\u2009\u00b1\u20095.5% for left kidney), reproducible (intra-operator variability -\u20090.2\u2009\u00b1\u20091.3%; inter-operator variability 1.1\u2009\u00b1\u20092.9%) and outperformed published methods. It took less than 6\u00a0min to execute and performed consistently with high accuracy in an external MRI dataset of T2-weighted sequences with TKV acquired using three different scanners and measured using a different segmentation methodology (mean volume error was 3.45\u2009\u00b1\u20093.96%, n\u2009=\u200965).\nCONCLUSIONS: The Sheffield TKV Tool is operator friendly, requiring minimal user interaction to rapidly, accurately and reproducibly measure TKV in this, the largest reported unselected European patient cohort with ADPKD. It is more accurate than estimating equations and its accuracy is maintained at larger kidney volumes than previously reported with other semi-automated methods. It is free to use, can run as an independent executable and will accelerate the application of TKV as a prognostic biomarker for ADPKD into clinical practice.\nKEY POINTS: \u2022 This new semi-automated method (Sheffield TKV Tool) to measure total kidney volume (TKV) will facilitate the routine clinical assessment of patients with ADPKD. \u2022 Measuring TKV manually is time consuming and laborious. \u2022 TKV is a prognostic indicator in ADPKD and the only imaging biomarker approved by the FDA and EMA.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5918-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "A rapid high-performance semi-automated tool to measure total kidney volume from MRI in autosomal dominant polycystic kidney disease", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6e831de370a68c915d4fdecbf8ee0c6ffac75fc3f8bfffa2cef6971dbe89d9c9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30666443"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5918-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111577176"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5918-9", 
      "https://app.dimensions.ai/details/publication/pub.1111577176"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5918-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5918-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5918-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5918-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5918-9'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      55 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5918-9 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nfaa32a1d73bf4074848b0e5c8ea07413
4 schema:citation sg:pub.10.1007/s00261-017-1285-2
5 sg:pub.10.1007/s10278-017-9978-1
6 sg:pub.10.1038/nrneph.2011.109
7 sg:pub.10.1038/s41598-017-01779-0
8 https://doi.org/10.1016/j.acra.2015.06.018
9 https://doi.org/10.1016/j.ekir.2017.01.003
10 https://doi.org/10.1016/s0140-6736(15)60907-2
11 https://doi.org/10.1016/s1076-6332(03)00671-8
12 https://doi.org/10.1053/j.ajkd.2013.10.011
13 https://doi.org/10.1053/j.ajkd.2015.06.017
14 https://doi.org/10.1056/nejmoa1205511
15 https://doi.org/10.1093/ndt/gfv314
16 https://doi.org/10.1093/ndt/gfv456
17 https://doi.org/10.1097/00004728-200007000-00019
18 https://doi.org/10.1109/medivis.2008.12
19 https://doi.org/10.1109/tmi.2006.871418
20 https://doi.org/10.1111/j.1440-1797.2006.00535.x
21 https://doi.org/10.1136/bmj.313.7049.106
22 https://doi.org/10.1159/000355375
23 https://doi.org/10.1159/000491022
24 https://doi.org/10.1371/journal.pone.0178488
25 https://doi.org/10.1515/ijb-2015-0039
26 https://doi.org/10.1681/asn.2013101138
27 https://doi.org/10.2214/ajr.12.8657
28 https://doi.org/10.2214/ajr.15.15875
29 https://doi.org/10.2215/cjn.08300815
30 https://doi.org/10.2215/cjn.09500911
31 https://doi.org/10.2215/cjn.10561012
32 https://doi.org/10.7326/0003-4819-150-9-200905050-00006
33 schema:datePublished 2019-01-21
34 schema:datePublishedReg 2019-01-21
35 schema:description OBJECTIVES: To develop a high-performance, rapid semi-automated method (Sheffield TKV Tool) for measuring total kidney volume (TKV) from magnetic resonance images (MRI) in patients with autosomal dominant polycystic kidney disease (ADPKD). METHODS: TKV was initially measured in 61 patients with ADPKD using the Sheffield TKV Tool and its performance compared to manual segmentation and other published methods (ellipsoidal, mid-slice, MIROS). It was then validated using an external dataset of MRI scans from 65 patients with ADPKD. RESULTS: Sixty-one patients (mean age 45 ± 14 years, baseline eGFR 76 ± 32 ml/min/1.73 m2) with ADPKD had a wide range of TKV (258-3680 ml) measured manually. The Sheffield TKV Tool was highly accurate (mean volume error 0.5 ± 5.3% for right kidney, - 0.7 ± 5.5% for left kidney), reproducible (intra-operator variability - 0.2 ± 1.3%; inter-operator variability 1.1 ± 2.9%) and outperformed published methods. It took less than 6 min to execute and performed consistently with high accuracy in an external MRI dataset of T2-weighted sequences with TKV acquired using three different scanners and measured using a different segmentation methodology (mean volume error was 3.45 ± 3.96%, n = 65). CONCLUSIONS: The Sheffield TKV Tool is operator friendly, requiring minimal user interaction to rapidly, accurately and reproducibly measure TKV in this, the largest reported unselected European patient cohort with ADPKD. It is more accurate than estimating equations and its accuracy is maintained at larger kidney volumes than previously reported with other semi-automated methods. It is free to use, can run as an independent executable and will accelerate the application of TKV as a prognostic biomarker for ADPKD into clinical practice. KEY POINTS: • This new semi-automated method (Sheffield TKV Tool) to measure total kidney volume (TKV) will facilitate the routine clinical assessment of patients with ADPKD. • Measuring TKV manually is time consuming and laborious. • TKV is a prognostic indicator in ADPKD and the only imaging biomarker approved by the FDA and EMA.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1289120
40 schema:name A rapid high-performance semi-automated tool to measure total kidney volume from MRI in autosomal dominant polycystic kidney disease
41 schema:pagination 1-10
42 schema:productId N202100279be248e3a9ad7480f9dbca4b
43 N2bb7ff24bffa4bf0939944582ab4fe3e
44 N9ad53d6c0d204acca2629799d023771a
45 Nb5ef1b5d8869494ca9031d30d1166b51
46 Nbbeff50f73c44e448c1b0cf74e93304e
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111577176
48 https://doi.org/10.1007/s00330-018-5918-9
49 schema:sdDatePublished 2019-04-11T08:55
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nab38512b2e074cec92965b734f829594
52 schema:url https://link.springer.com/10.1007%2Fs00330-018-5918-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N03623296aa724d1c830bac068e632417 rdf:first sg:person.016304717131.02
57 rdf:rest Nb479b9d0ec12498caa28faad8941c420
58 N0e5c8ba5c36e49628552e9b0987deca1 rdf:first sg:person.0723773735.13
59 rdf:rest N2a968081393f42b687cc3d9ccbe5072e
60 N16919923220144b6ac5f0a9b7747d555 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
61 schema:familyName Ong
62 schema:givenName Albert C. M.
63 rdf:type schema:Person
64 N202100279be248e3a9ad7480f9dbca4b schema:name nlm_unique_id
65 schema:value 9114774
66 rdf:type schema:PropertyValue
67 N2a968081393f42b687cc3d9ccbe5072e rdf:first sg:person.01357255137.25
68 rdf:rest Nf78e2ef4c60f440bb8a2dd82745344ec
69 N2bb7ff24bffa4bf0939944582ab4fe3e schema:name doi
70 schema:value 10.1007/s00330-018-5918-9
71 rdf:type schema:PropertyValue
72 N6843bf185b6843a3bcafab035636df93 rdf:first sg:person.0755760651.43
73 rdf:rest Nf8c63b77dc1c405ca7401b8f44f6a553
74 N9ad53d6c0d204acca2629799d023771a schema:name dimensions_id
75 schema:value pub.1111577176
76 rdf:type schema:PropertyValue
77 Nab38512b2e074cec92965b734f829594 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nb479b9d0ec12498caa28faad8941c420 rdf:first sg:person.014162510731.74
80 rdf:rest Nc06701e3f60744a2b7adfded576116f0
81 Nb5ef1b5d8869494ca9031d30d1166b51 schema:name readcube_id
82 schema:value 6e831de370a68c915d4fdecbf8ee0c6ffac75fc3f8bfffa2cef6971dbe89d9c9
83 rdf:type schema:PropertyValue
84 Nbbeff50f73c44e448c1b0cf74e93304e schema:name pubmed_id
85 schema:value 30666443
86 rdf:type schema:PropertyValue
87 Nc06701e3f60744a2b7adfded576116f0 rdf:first sg:person.016316146121.38
88 rdf:rest N0e5c8ba5c36e49628552e9b0987deca1
89 Ndf2bd857d97646348092e36d2943b9a4 rdf:first N16919923220144b6ac5f0a9b7747d555
90 rdf:rest rdf:nil
91 Nf78e2ef4c60f440bb8a2dd82745344ec rdf:first sg:person.01155340354.45
92 rdf:rest Ndf2bd857d97646348092e36d2943b9a4
93 Nf8c63b77dc1c405ca7401b8f44f6a553 rdf:first sg:person.01012277070.00
94 rdf:rest N03623296aa724d1c830bac068e632417
95 Nfaa32a1d73bf4074848b0e5c8ea07413 rdf:first sg:person.01303050176.10
96 rdf:rest N6843bf185b6843a3bcafab035636df93
97 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
98 schema:name Medical and Health Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
101 schema:name Clinical Sciences
102 rdf:type schema:DefinedTerm
103 sg:journal.1289120 schema:issn 0938-7994
104 1432-1084
105 schema:name European Radiology
106 rdf:type schema:Periodical
107 sg:person.01012277070.00 schema:affiliation https://www.grid.ac/institutes/grid.31410.37
108 schema:familyName Metherall
109 schema:givenName Peter
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012277070.00
111 rdf:type schema:Person
112 sg:person.01155340354.45 schema:affiliation https://www.grid.ac/institutes/grid.31410.37
113 schema:familyName Tindale
114 schema:givenName Wendy
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155340354.45
116 rdf:type schema:Person
117 sg:person.01303050176.10 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
118 schema:familyName Simms
119 schema:givenName Roslyn J.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303050176.10
121 rdf:type schema:Person
122 sg:person.01357255137.25 schema:affiliation https://www.grid.ac/institutes/grid.4494.d
123 schema:familyName Gansevoort
124 schema:givenName Ron T.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357255137.25
126 rdf:type schema:Person
127 sg:person.014162510731.74 schema:affiliation https://www.grid.ac/institutes/grid.31410.37
128 schema:familyName Wright
129 schema:givenName Peter
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014162510731.74
131 rdf:type schema:Person
132 sg:person.016304717131.02 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
133 schema:familyName Ryan
134 schema:givenName Desmond
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016304717131.02
136 rdf:type schema:Person
137 sg:person.016316146121.38 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
138 schema:familyName Gruel
139 schema:givenName Nicolas
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316146121.38
141 rdf:type schema:Person
142 sg:person.0723773735.13 schema:affiliation https://www.grid.ac/institutes/grid.4494.d
143 schema:familyName van Gastel
144 schema:givenName Maatje D. A.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723773735.13
146 rdf:type schema:Person
147 sg:person.0755760651.43 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
148 schema:familyName Doshi
149 schema:givenName Trushali
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755760651.43
151 rdf:type schema:Person
152 sg:pub.10.1007/s00261-017-1285-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091428256
153 https://doi.org/10.1007/s00261-017-1285-2
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10278-017-9978-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085608696
156 https://doi.org/10.1007/s10278-017-9978-1
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nrneph.2011.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046151090
159 https://doi.org/10.1038/nrneph.2011.109
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/s41598-017-01779-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085379684
162 https://doi.org/10.1038/s41598-017-01779-0
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.acra.2015.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014205582
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ekir.2017.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038595360
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0140-6736(15)60907-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018870366
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s1076-6332(03)00671-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049557947
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1053/j.ajkd.2013.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033636357
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1053/j.ajkd.2015.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006905565
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1056/nejmoa1205511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007206887
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/ndt/gfv314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010493466
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/ndt/gfv456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047510686
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1097/00004728-200007000-00019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051701187
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/medivis.2008.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094674027
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tmi.2006.871418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694839
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/j.1440-1797.2006.00535.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053182695
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1136/bmj.313.7049.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021609580
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1159/000355375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034620658
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1159/000491022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105971521
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pone.0178488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085724484
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1515/ijb-2015-0039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040925021
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1681/asn.2013101138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028334982
201 rdf:type schema:CreativeWork
202 https://doi.org/10.2214/ajr.12.8657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302566
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2214/ajr.15.15875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069304630
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2215/cjn.08300815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069331321
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2215/cjn.09500911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044495159
209 rdf:type schema:CreativeWork
210 https://doi.org/10.2215/cjn.10561012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051357969
211 rdf:type schema:CreativeWork
212 https://doi.org/10.7326/0003-4819-150-9-200905050-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073710774
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
215 schema:name Institute for in silico Medicine, University of Sheffield, Sheffield, UK
216 Kidney Genetics Group, Academic Unit of Nephrology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
217 Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.31410.37 schema:alternateName Sheffield Teaching Hospitals NHS Foundation Trust
220 schema:name Institute for in silico Medicine, University of Sheffield, Sheffield, UK
221 Medical Imaging and Medical Physics, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.4494.d schema:alternateName University Medical Center Groningen
224 schema:name Department of Nephrology, University Medical Center Groningen, Groningen, the Netherlands
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...