Development and validation of a prognostic index for efficacy evaluation and prognosis of first-line chemotherapy in stage III–IV lung squamous ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Jiangdian Song, Jie Tian, Lina Zhang, Xiujuan Qu, Wei Qian, Bin Zheng, Lina Zhang, Jia Zhao, Meng Niu, Mu Zhou, Lei Cui, Yunpeng Liu, Mingfang Zhao

ABSTRACT

OBJECTIVES: To establish a pre-therapy prognostic index model (PIM) of the first-line chemotherapy aiming to achieve accurate prediction of time to progression (TTP) and overall survival among the patients diagnosed with locally advanced (stage III) or distant metastasis (stage IV) lung squamous cell carcinoma (LSCC). METHODS: Ninety-six LSCC patients treated with first-line chemotherapy were retrospectively enrolled to build the model. Fourteen epidermal growth factor receptor (EGFR)-mutant LSCC patients treated with first-line EGFR-tyrosine kinase inhibitor (TKI) therapy were enrolled for validation dataset. From CT images, 56,000 phenotype features were initially computed. PIM was constructed by integrating a CT phenotype signature selected by the least absolute shrinkage and selection operator and the significant blood-based biomarkers selected by multivariate Cox regression. PIM was then compared with other four prognostic models constructed by the CT phenotype signature, clinical factors, post-therapy tumor response, and Glasgow Prognostic Score. RESULTS: The signature includes eight optimal features extracted from co-occurrence, run length, and Gabor features. By using PIM, chemotherapy efficacy of patients categorized in the low-risk, intermediate-risk, and high-risk progression subgroups (median TTP = 7.2 months, 3.4 months, and 1.8 months, respectively) was significantly different (p < 0.0001, log-rank test). Chemotherapy efficacy of the low-risk progression subgroup was comparable with EGFR-TKI therapy (p = 0.835, log-rank test). Prognostic prediction of chemotherapy efficacy by PIM was significantly higher than other models (p < 0.05, z test). CONCLUSION: The study demonstrated that the PIM yielded significantly higher performance to identify individual stage III-IV LSCC patients who can potentially benefit most from first-line chemotherapy, and predict the risk of failure from chemotherapy for individual patients. KEY POINTS: • TTP and OS of first-line chemotherapy in individual stage III-IV LSCC patients could be predicted by pre-therapy blood-based biomarkers and image-based signatures. • Risk status of pre-therapy indicators affected the efficacy of first-line chemotherapy in stage III-IV LSCC patients. • Those stage III-IV LSCC patients who were able to achieve similar efficacy to EGFR-TKI therapy through chemotherapy were identified. More... »

PAGES

2388-2398

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5912-2

DOI

http://dx.doi.org/10.1007/s00330-018-5912-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111411321

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30643941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "First Hospital of China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412636.4", 
          "name": [
            "School of Medical Informatics, China Medical University, Shenyang, Liaoning, China", 
            "Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Jiangdian", 
        "id": "sg:person.010147744401.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147744401.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Automation", 
          "id": "https://www.grid.ac/institutes/grid.429126.a", 
          "name": [
            "CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Jie", 
        "id": "sg:person.01124562550.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124562550.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "First Hospital of China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412636.4", 
          "name": [
            "Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "First Hospital of China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412636.4", 
          "name": [
            "Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu", 
        "givenName": "Xiujuan", 
        "id": "sg:person.01042415716.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042415716.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "College of Engineering, University of Texas, El Paso, TX, USA", 
            "Sino-Dutch Biomedical Engineering School, Northeastern University, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Wei", 
        "id": "sg:person.01323410072.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323410072.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oklahoma", 
          "id": "https://www.grid.ac/institutes/grid.266900.b", 
          "name": [
            "Sino-Dutch Biomedical Engineering School, Northeastern University, Shenyang, Liaoning, China", 
            "Medicine and Biological Information Engineering, University of Oklahoma, Norman, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Bin", 
        "id": "sg:person.01046355714.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046355714.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "First Hospital of China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412636.4", 
          "name": [
            "Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "First Hospital of China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412636.4", 
          "name": [
            "Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "First Hospital of China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412636.4", 
          "name": [
            "Department interventional therapy, The First Hospital of China Medical University, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niu", 
        "givenName": "Meng", 
        "id": "sg:person.0717277031.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717277031.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Artificial Intelligence in Medicine and Imaging (AIMI) Center, Department of Radiology, Stanford University, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Mu", 
        "id": "sg:person.01355755544.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755544.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412449.e", 
          "name": [
            "School of Medical Informatics, China Medical University, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "First Hospital of China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412636.4", 
          "name": [
            "Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yunpeng", 
        "id": "sg:person.01132313737.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132313737.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "First Hospital of China Medical University", 
          "id": "https://www.grid.ac/institutes/grid.412636.4", 
          "name": [
            "Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Mingfang", 
        "id": "sg:person.01331053674.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331053674.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1470-2045(15)00305-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004255748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(11)70393-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004429924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep15355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004724880", 
          "https://doi.org/10.1038/srep15355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmcpc049016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007892182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009469125", 
          "https://doi.org/10.1038/ncomms5006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2014.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009556624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2015.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009964673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2013.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011516927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0904554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012351385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013257560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(15)00121-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014173002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014314609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(16)30560-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015251972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0810699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020150048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(13)62159-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020199484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejme1200656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022904036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(15)00021-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025750831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(15)00006-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026975331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-04-0713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031102903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1113205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031166230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaoncol.2016.2631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032988205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(16)32517-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033503380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtho.2016.11.2226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041996297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(15)00533-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042433263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e3182582a93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049157091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(15)70054-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049970377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2014.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050326492", 
          "https://doi.org/10.1038/bjc.2014.33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2014.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050326492", 
          "https://doi.org/10.1038/bjc.2014.33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2015.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050463218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2015.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050463218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1504627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052572745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1990.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053201549", 
          "https://doi.org/10.1038/bjc.1990.133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1990.133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053201549", 
          "https://doi.org/10.1038/bjc.1990.133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrclinonc.2016.162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053267137", 
          "https://doi.org/10.1038/nrclinonc.2016.162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2015.65.9128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064204513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9738/intsurg-d-13-00118.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074144318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9738/intsurg-d-13-00118.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074144318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4751-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083687941", 
          "https://doi.org/10.1007/s00330-017-4751-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4751-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083687941", 
          "https://doi.org/10.1007/s00330-017-4751-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2017.0050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084819289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2017.0050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084819289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-17-0122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085766336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-17-0122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085766336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2017161845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090851457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2017161845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090851457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4900-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091051849", 
          "https://doi.org/10.1007/s00330-017-4900-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4900-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091051849", 
          "https://doi.org/10.1007/s00330-017-4900-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-5031-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092115186", 
          "https://doi.org/10.1007/s00330-017-5031-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdx369.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092214214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2018.01.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101409071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-17-2507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101672028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5368-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103179278", 
          "https://doi.org/10.1007/s00330-018-5368-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5368-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103179278", 
          "https://doi.org/10.1007/s00330-018-5368-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2018171756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103278003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5389-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103859251", 
          "https://doi.org/10.1007/s00330-018-5389-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "OBJECTIVES: To establish a pre-therapy prognostic index model (PIM) of the first-line chemotherapy aiming to achieve accurate prediction of time to progression (TTP) and overall survival among the patients diagnosed with locally advanced (stage III) or distant metastasis (stage IV) lung squamous cell carcinoma (LSCC).\nMETHODS: Ninety-six LSCC patients treated with first-line chemotherapy were retrospectively enrolled to build the model. Fourteen epidermal growth factor receptor (EGFR)-mutant LSCC patients treated with first-line EGFR-tyrosine kinase inhibitor (TKI) therapy were enrolled for validation dataset. From CT images, 56,000 phenotype features were initially computed. PIM was constructed by integrating a CT phenotype signature selected by the least absolute shrinkage and selection operator and the significant blood-based biomarkers selected by multivariate Cox regression. PIM was then compared with other four prognostic models constructed by the CT phenotype signature, clinical factors, post-therapy tumor response, and Glasgow Prognostic Score.\nRESULTS: The signature includes eight optimal features extracted from co-occurrence, run length, and Gabor features. By using PIM, chemotherapy efficacy of patients categorized in the low-risk, intermediate-risk, and high-risk progression subgroups (median TTP\u00a0=\u00a07.2\u00a0months, 3.4\u00a0months, and 1.8\u00a0months, respectively) was significantly different (p\u2009<\u20090.0001, log-rank test). Chemotherapy efficacy of the low-risk progression subgroup was comparable with EGFR-TKI therapy (p\u2009=\u20090.835, log-rank test). Prognostic prediction of chemotherapy efficacy by PIM was significantly higher than other models (p\u2009<\u20090.05, z test).\nCONCLUSION: The study demonstrated that the PIM yielded significantly higher performance to identify individual stage III-IV LSCC patients who can potentially benefit most from first-line chemotherapy, and predict the risk of failure from chemotherapy for individual patients.\nKEY POINTS: \u2022 TTP and OS of first-line chemotherapy in individual stage III-IV LSCC patients could be predicted by pre-therapy blood-based biomarkers and image-based signatures. \u2022 Risk status of pre-therapy indicators affected the efficacy of first-line chemotherapy in stage III-IV LSCC patients. \u2022 Those stage III-IV LSCC patients who were able to achieve similar efficacy to EGFR-TKI therapy through chemotherapy were identified.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5912-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Development and validation of a prognostic index for efficacy evaluation and prognosis of first-line chemotherapy in stage III\u2013IV lung squamous cell carcinoma", 
    "pagination": "2388-2398", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d22fb54811edba19e7079d8427b21aaa757f2430a86cf42002e1cecc98db5c57"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30643941"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5912-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111411321"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5912-2", 
      "https://app.dimensions.ai/details/publication/pub.1111411321"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5912-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5912-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5912-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5912-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5912-2'


 

This table displays all metadata directly associated to this object as RDF triples.

314 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5912-2 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Nffe60a2e95b04f848262d07e1e3d052a
4 schema:citation sg:pub.10.1007/s00330-017-4751-x
5 sg:pub.10.1007/s00330-017-4900-2
6 sg:pub.10.1007/s00330-017-5031-5
7 sg:pub.10.1007/s00330-018-5368-4
8 sg:pub.10.1007/s00330-018-5389-z
9 sg:pub.10.1038/bjc.1990.133
10 sg:pub.10.1038/bjc.2014.33
11 sg:pub.10.1038/ncomms5006
12 sg:pub.10.1038/nrclinonc.2016.162
13 sg:pub.10.1038/srep15355
14 https://doi.org/10.1001/jamaoncol.2016.2631
15 https://doi.org/10.1016/j.ejca.2018.01.112
16 https://doi.org/10.1016/j.jhep.2015.02.034
17 https://doi.org/10.1016/j.jtho.2016.11.2226
18 https://doi.org/10.1016/j.lungcan.2013.01.002
19 https://doi.org/10.1016/j.lungcan.2014.07.020
20 https://doi.org/10.1016/j.lungcan.2015.02.012
21 https://doi.org/10.1016/s0140-6736(13)62159-5
22 https://doi.org/10.1016/s0140-6736(16)32517-x
23 https://doi.org/10.1016/s1470-2045(11)70393-x
24 https://doi.org/10.1016/s1470-2045(15)00006-6
25 https://doi.org/10.1016/s1470-2045(15)00021-2
26 https://doi.org/10.1016/s1470-2045(15)00121-7
27 https://doi.org/10.1016/s1470-2045(15)00305-8
28 https://doi.org/10.1016/s1470-2045(15)00533-1
29 https://doi.org/10.1016/s1470-2045(15)70054-9
30 https://doi.org/10.1016/s1470-2045(16)30560-5
31 https://doi.org/10.1056/nejmcpc049016
32 https://doi.org/10.1056/nejme1200656
33 https://doi.org/10.1056/nejmoa0810699
34 https://doi.org/10.1056/nejmoa0904554
35 https://doi.org/10.1056/nejmoa1113205
36 https://doi.org/10.1056/nejmoa1504627
37 https://doi.org/10.1093/annonc/mdx369.037
38 https://doi.org/10.1097/jto.0b013e3182582a93
39 https://doi.org/10.1148/radiol.2016151829
40 https://doi.org/10.1148/radiol.2017161845
41 https://doi.org/10.1148/radiol.2018171756
42 https://doi.org/10.1158/0008-5472.can-17-0122
43 https://doi.org/10.1158/1078-0432.ccr-04-0713
44 https://doi.org/10.1158/1078-0432.ccr-17-2507
45 https://doi.org/10.1200/jco.2015.65.9128
46 https://doi.org/10.3322/caac.21262
47 https://doi.org/10.6004/jnccn.2017.0050
48 https://doi.org/10.9738/intsurg-d-13-00118.1
49 schema:datePublished 2019-05
50 schema:datePublishedReg 2019-05-01
51 schema:description OBJECTIVES: To establish a pre-therapy prognostic index model (PIM) of the first-line chemotherapy aiming to achieve accurate prediction of time to progression (TTP) and overall survival among the patients diagnosed with locally advanced (stage III) or distant metastasis (stage IV) lung squamous cell carcinoma (LSCC). METHODS: Ninety-six LSCC patients treated with first-line chemotherapy were retrospectively enrolled to build the model. Fourteen epidermal growth factor receptor (EGFR)-mutant LSCC patients treated with first-line EGFR-tyrosine kinase inhibitor (TKI) therapy were enrolled for validation dataset. From CT images, 56,000 phenotype features were initially computed. PIM was constructed by integrating a CT phenotype signature selected by the least absolute shrinkage and selection operator and the significant blood-based biomarkers selected by multivariate Cox regression. PIM was then compared with other four prognostic models constructed by the CT phenotype signature, clinical factors, post-therapy tumor response, and Glasgow Prognostic Score. RESULTS: The signature includes eight optimal features extracted from co-occurrence, run length, and Gabor features. By using PIM, chemotherapy efficacy of patients categorized in the low-risk, intermediate-risk, and high-risk progression subgroups (median TTP = 7.2 months, 3.4 months, and 1.8 months, respectively) was significantly different (p < 0.0001, log-rank test). Chemotherapy efficacy of the low-risk progression subgroup was comparable with EGFR-TKI therapy (p = 0.835, log-rank test). Prognostic prediction of chemotherapy efficacy by PIM was significantly higher than other models (p < 0.05, z test). CONCLUSION: The study demonstrated that the PIM yielded significantly higher performance to identify individual stage III-IV LSCC patients who can potentially benefit most from first-line chemotherapy, and predict the risk of failure from chemotherapy for individual patients. KEY POINTS: • TTP and OS of first-line chemotherapy in individual stage III-IV LSCC patients could be predicted by pre-therapy blood-based biomarkers and image-based signatures. • Risk status of pre-therapy indicators affected the efficacy of first-line chemotherapy in stage III-IV LSCC patients. • Those stage III-IV LSCC patients who were able to achieve similar efficacy to EGFR-TKI therapy through chemotherapy were identified.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N137575e7b49f4da291efe2a723058522
56 N89e9c79a72d34704b09be53be20f438d
57 sg:journal.1289120
58 schema:name Development and validation of a prognostic index for efficacy evaluation and prognosis of first-line chemotherapy in stage III–IV lung squamous cell carcinoma
59 schema:pagination 2388-2398
60 schema:productId N11a90c882e4b434cbcc7680914a8e2c7
61 N34ce94d450624f5a8b07f5cbe1f36640
62 N3e7655058e6b41628891c4da758bbef8
63 N62a63dc40a954d4ca9aea13558332308
64 N8d702a341f934835902db4a9334a7ca1
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111411321
66 https://doi.org/10.1007/s00330-018-5912-2
67 schema:sdDatePublished 2019-04-11T13:51
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Ne659a628da4947eaae4d15c002370633
70 schema:url https://link.springer.com/10.1007%2Fs00330-018-5912-2
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N11a90c882e4b434cbcc7680914a8e2c7 schema:name nlm_unique_id
75 schema:value 9114774
76 rdf:type schema:PropertyValue
77 N137575e7b49f4da291efe2a723058522 schema:issueNumber 5
78 rdf:type schema:PublicationIssue
79 N26812fa19de04b94b20c5f069bec87e6 rdf:first sg:person.01132313737.45
80 rdf:rest N925cc910c47649e7a8de1f279de5e512
81 N2b387620387f4380a9cbfb40e4a19217 rdf:first Nc6d23e31d331499bb7fa375cf847ce0e
82 rdf:rest Nba6493718b3f4a95bcdebe0a98481d04
83 N2c9e4a4ba99548eeb60dc9a9c78c4679 schema:affiliation https://www.grid.ac/institutes/grid.412636.4
84 schema:familyName Zhao
85 schema:givenName Jia
86 rdf:type schema:Person
87 N34ce94d450624f5a8b07f5cbe1f36640 schema:name doi
88 schema:value 10.1007/s00330-018-5912-2
89 rdf:type schema:PropertyValue
90 N3e7655058e6b41628891c4da758bbef8 schema:name readcube_id
91 schema:value d22fb54811edba19e7079d8427b21aaa757f2430a86cf42002e1cecc98db5c57
92 rdf:type schema:PropertyValue
93 N4ddbf5da4d334127b063e2b1830f491f rdf:first N5f2914240eba403db1e2da01acf741cc
94 rdf:rest Ne1f378957d174ae199fd53e9f65f7439
95 N524f216798554aeaaccf895bcfc3a7bd schema:affiliation https://www.grid.ac/institutes/grid.412449.e
96 schema:familyName Cui
97 schema:givenName Lei
98 rdf:type schema:Person
99 N53bac493d7eb4a4b8094ffe96753d2fc rdf:first sg:person.01323410072.62
100 rdf:rest Na7268d77bfea47f3a3c8f913b82663cf
101 N5d3a17a1a8fe4bf7ac547bd26b518994 rdf:first sg:person.01124562550.66
102 rdf:rest N4ddbf5da4d334127b063e2b1830f491f
103 N5f2914240eba403db1e2da01acf741cc schema:affiliation https://www.grid.ac/institutes/grid.412636.4
104 schema:familyName Zhang
105 schema:givenName Lina
106 rdf:type schema:Person
107 N62a63dc40a954d4ca9aea13558332308 schema:name dimensions_id
108 schema:value pub.1111411321
109 rdf:type schema:PropertyValue
110 N89e9c79a72d34704b09be53be20f438d schema:volumeNumber 29
111 rdf:type schema:PublicationVolume
112 N8d702a341f934835902db4a9334a7ca1 schema:name pubmed_id
113 schema:value 30643941
114 rdf:type schema:PropertyValue
115 N925cc910c47649e7a8de1f279de5e512 rdf:first sg:person.01331053674.07
116 rdf:rest rdf:nil
117 Na7268d77bfea47f3a3c8f913b82663cf rdf:first sg:person.01046355714.35
118 rdf:rest N2b387620387f4380a9cbfb40e4a19217
119 Nba6493718b3f4a95bcdebe0a98481d04 rdf:first N2c9e4a4ba99548eeb60dc9a9c78c4679
120 rdf:rest Nbfdf5a3c59c24c92953c57eb2a070d5c
121 Nbfdf5a3c59c24c92953c57eb2a070d5c rdf:first sg:person.0717277031.52
122 rdf:rest Nf9847e9fa0ca46d6a1331a1af10102bc
123 Nc6d23e31d331499bb7fa375cf847ce0e schema:affiliation https://www.grid.ac/institutes/grid.412636.4
124 schema:familyName Zhang
125 schema:givenName Lina
126 rdf:type schema:Person
127 Nce8fbd04e9664aa68f4bdec18fbdcf79 rdf:first N524f216798554aeaaccf895bcfc3a7bd
128 rdf:rest N26812fa19de04b94b20c5f069bec87e6
129 Ne1f378957d174ae199fd53e9f65f7439 rdf:first sg:person.01042415716.57
130 rdf:rest N53bac493d7eb4a4b8094ffe96753d2fc
131 Ne659a628da4947eaae4d15c002370633 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Nf9847e9fa0ca46d6a1331a1af10102bc rdf:first sg:person.01355755544.74
134 rdf:rest Nce8fbd04e9664aa68f4bdec18fbdcf79
135 Nffe60a2e95b04f848262d07e1e3d052a rdf:first sg:person.010147744401.47
136 rdf:rest N5d3a17a1a8fe4bf7ac547bd26b518994
137 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
138 schema:name Medical and Health Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
141 schema:name Oncology and Carcinogenesis
142 rdf:type schema:DefinedTerm
143 sg:journal.1289120 schema:issn 0938-7994
144 1432-1084
145 schema:name European Radiology
146 rdf:type schema:Periodical
147 sg:person.010147744401.47 schema:affiliation https://www.grid.ac/institutes/grid.412636.4
148 schema:familyName Song
149 schema:givenName Jiangdian
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147744401.47
151 rdf:type schema:Person
152 sg:person.01042415716.57 schema:affiliation https://www.grid.ac/institutes/grid.412636.4
153 schema:familyName Qu
154 schema:givenName Xiujuan
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042415716.57
156 rdf:type schema:Person
157 sg:person.01046355714.35 schema:affiliation https://www.grid.ac/institutes/grid.266900.b
158 schema:familyName Zheng
159 schema:givenName Bin
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046355714.35
161 rdf:type schema:Person
162 sg:person.01124562550.66 schema:affiliation https://www.grid.ac/institutes/grid.429126.a
163 schema:familyName Tian
164 schema:givenName Jie
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124562550.66
166 rdf:type schema:Person
167 sg:person.01132313737.45 schema:affiliation https://www.grid.ac/institutes/grid.412636.4
168 schema:familyName Liu
169 schema:givenName Yunpeng
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132313737.45
171 rdf:type schema:Person
172 sg:person.01323410072.62 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
173 schema:familyName Qian
174 schema:givenName Wei
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323410072.62
176 rdf:type schema:Person
177 sg:person.01331053674.07 schema:affiliation https://www.grid.ac/institutes/grid.412636.4
178 schema:familyName Zhao
179 schema:givenName Mingfang
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331053674.07
181 rdf:type schema:Person
182 sg:person.01355755544.74 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
183 schema:familyName Zhou
184 schema:givenName Mu
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755544.74
186 rdf:type schema:Person
187 sg:person.0717277031.52 schema:affiliation https://www.grid.ac/institutes/grid.412636.4
188 schema:familyName Niu
189 schema:givenName Meng
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717277031.52
191 rdf:type schema:Person
192 sg:pub.10.1007/s00330-017-4751-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083687941
193 https://doi.org/10.1007/s00330-017-4751-x
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00330-017-4900-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091051849
196 https://doi.org/10.1007/s00330-017-4900-2
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s00330-017-5031-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092115186
199 https://doi.org/10.1007/s00330-017-5031-5
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s00330-018-5368-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103179278
202 https://doi.org/10.1007/s00330-018-5368-4
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s00330-018-5389-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103859251
205 https://doi.org/10.1007/s00330-018-5389-z
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/bjc.1990.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053201549
208 https://doi.org/10.1038/bjc.1990.133
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/bjc.2014.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050326492
211 https://doi.org/10.1038/bjc.2014.33
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
214 https://doi.org/10.1038/ncomms5006
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/nrclinonc.2016.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053267137
217 https://doi.org/10.1038/nrclinonc.2016.162
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/srep15355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004724880
220 https://doi.org/10.1038/srep15355
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1001/jamaoncol.2016.2631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032988205
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.ejca.2018.01.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101409071
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.jhep.2015.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009964673
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.jtho.2016.11.2226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041996297
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.lungcan.2013.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011516927
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.lungcan.2014.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009556624
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.lungcan.2015.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050463218
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/s0140-6736(13)62159-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020199484
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/s0140-6736(16)32517-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033503380
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/s1470-2045(11)70393-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004429924
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/s1470-2045(15)00006-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026975331
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/s1470-2045(15)00021-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025750831
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/s1470-2045(15)00121-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014173002
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/s1470-2045(15)00305-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004255748
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/s1470-2045(15)00533-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042433263
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/s1470-2045(15)70054-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049970377
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/s1470-2045(16)30560-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015251972
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1056/nejmcpc049016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007892182
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1056/nejme1200656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022904036
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1056/nejmoa0810699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020150048
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1056/nejmoa0904554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012351385
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1056/nejmoa1113205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031166230
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1056/nejmoa1504627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052572745
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/annonc/mdx369.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092214214
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1097/jto.0b013e3182582a93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049157091
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1148/radiol.2016151829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014314609
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1148/radiol.2017161845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090851457
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1148/radiol.2018171756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103278003
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1158/0008-5472.can-17-0122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085766336
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1158/1078-0432.ccr-04-0713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031102903
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1158/1078-0432.ccr-17-2507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101672028
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1200/jco.2015.65.9128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204513
285 rdf:type schema:CreativeWork
286 https://doi.org/10.3322/caac.21262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013257560
287 rdf:type schema:CreativeWork
288 https://doi.org/10.6004/jnccn.2017.0050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084819289
289 rdf:type schema:CreativeWork
290 https://doi.org/10.9738/intsurg-d-13-00118.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074144318
291 rdf:type schema:CreativeWork
292 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
293 schema:name Artificial Intelligence in Medicine and Imaging (AIMI) Center, Department of Radiology, Stanford University, San Francisco, CA, USA
294 rdf:type schema:Organization
295 https://www.grid.ac/institutes/grid.266900.b schema:alternateName University of Oklahoma
296 schema:name Medicine and Biological Information Engineering, University of Oklahoma, Norman, OK, USA
297 Sino-Dutch Biomedical Engineering School, Northeastern University, Shenyang, Liaoning, China
298 rdf:type schema:Organization
299 https://www.grid.ac/institutes/grid.412252.2 schema:alternateName Northeastern University
300 schema:name College of Engineering, University of Texas, El Paso, TX, USA
301 Sino-Dutch Biomedical Engineering School, Northeastern University, Shenyang, Liaoning, China
302 rdf:type schema:Organization
303 https://www.grid.ac/institutes/grid.412449.e schema:alternateName China Medical University
304 schema:name School of Medical Informatics, China Medical University, Shenyang, Liaoning, China
305 rdf:type schema:Organization
306 https://www.grid.ac/institutes/grid.412636.4 schema:alternateName First Hospital of China Medical University
307 schema:name Department interventional therapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
308 Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, Liaoning, China
309 Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
310 School of Medical Informatics, China Medical University, Shenyang, Liaoning, China
311 rdf:type schema:Organization
312 https://www.grid.ac/institutes/grid.429126.a schema:alternateName Institute of Automation
313 schema:name CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
314 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...