Revised Atlanta classification for CT pancreatic and peripancreatic collections in the first month of acute pancreatitis: interobserver agreement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Neesmah Badat, Ingrid Millet, Lucie Corno, Wassef Khaled, Isabelle Boulay-Coletta, Marc Zins

ABSTRACT

PURPOSE: To assess interobserver agreement when using the revised Atlanta classification (RAC) to categorize pancreatic and peripancreatic collections during the first month of acute pancreatitis (AP), and to correlate type of collection to outcome. MATERIAL AND METHODS: This retrospective study of 115 consecutive patients admitted for 123 AP episodes, 178 CTs performed within the first month showed peripancreatic abnormalities. Each AP episode was classified as mild, moderately severe, or severe based on the RAC. Two radiologists, blinded to clinical data, used RAC criteria to retrospectively categorize the collections as acute peripancreatic fluid collections (APFC) or acute necrotic collections (ANC). Interobserver agreement was assessed based on Cohen's κ statistics and compared according to CT timing. RESULTS: Interobserver agreement for categorizing peripancreatic collections was moderate (κ = 0.45) and did not improve with time to CT (κ values, 0.53 < day 3, 0.34 on days 3-6, and 0.43 ≥ day 7). For detecting parenchymal necrosis, interobserver agreement was also moderate (κ = 0.45). AP was less severe in patients with APFC versus ANC (p = 0.04). CONCLUSION: Our finding of moderate interobserver agreement when using the RAC to categorize pancreatic and peripancreatic collections by CT indicates that the accurate diagnosis of APFC or ANC by CT in the first 4 weeks after symptom onset is often challenging. KEY POINTS: • Interobserver agreement was moderate for categorizing peripancreatic collections. • Interobserver agreement did not improve with time from onset to CT. • Interobserver agreement was moderate for detecting parenchymal necrosis. More... »

PAGES

2302-2310

Journal

TITLE

European Radiology

ISSUE

5

VOLUME

29

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5906-0

DOI

http://dx.doi.org/10.1007/s00330-018-5906-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111330169

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30631920


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Radiology, H\u00f4pital Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Badat", 
        "givenName": "Neesmah", 
        "id": "sg:person.010023220173.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010023220173.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "Department of Medical Imaging, CHU Lapeyronie, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France", 
            "Montpellier University, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Millet", 
        "givenName": "Ingrid", 
        "id": "sg:person.01245432277.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245432277.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, H\u00f4pital Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corno", 
        "givenName": "Lucie", 
        "id": "sg:person.01053764101.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053764101.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, H\u00f4pital Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khaled", 
        "givenName": "Wassef", 
        "id": "sg:person.01070253550.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070253550.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, H\u00f4pital Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boulay-Coletta", 
        "givenName": "Isabelle", 
        "id": "sg:person.01113425470.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113425470.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, H\u00f4pital Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zins", 
        "givenName": "Marc", 
        "id": "sg:person.01360232034.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360232034.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.pan.2016.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000813697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cgh.2007.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002165955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-014-0226-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004522960", 
          "https://doi.org/10.1007/s00261-014-0226-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra1505202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006567612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2012-302870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008156328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14131480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.9346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011026584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011448240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cgh.2011.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012086192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2015.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012422695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)60649-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014089570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archsurg.1993.01420170122019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015767287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.mpa.0000240598.88193.8e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020603853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.mpa.0000240598.88193.8e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020603853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.mpa.0000240598.88193.8e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020603853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-014-0303-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023078078", 
          "https://doi.org/10.1007/s00261-014-0303-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000243731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024970437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2012-302779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025127467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcl.2015.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029398814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pan.2015.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031116898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.13.10957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.13.12222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.345130012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078970509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.203.3.9169703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083096615"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "PURPOSE: To assess interobserver agreement when using the revised Atlanta classification (RAC) to categorize pancreatic and peripancreatic collections during the first month of acute pancreatitis (AP), and to correlate type of collection to outcome.\nMATERIAL AND METHODS: This retrospective study of 115 consecutive patients admitted for 123 AP episodes, 178 CTs performed within the first month showed peripancreatic abnormalities. Each AP episode was classified as mild, moderately severe, or severe based on the RAC. Two radiologists, blinded to clinical data, used RAC criteria to retrospectively categorize the collections as acute peripancreatic fluid collections (APFC) or acute necrotic collections (ANC). Interobserver agreement was assessed based on Cohen's \u03ba statistics and compared according to CT timing.\nRESULTS: Interobserver agreement for categorizing peripancreatic collections was moderate (\u03ba\u2009=\u20090.45) and did not improve with time to CT (\u03ba values, 0.53 < day 3, 0.34 on days 3-6, and 0.43 \u2265 day 7). For detecting parenchymal necrosis, interobserver agreement was also moderate (\u03ba\u2009=\u20090.45). AP was less severe in patients with APFC versus ANC (p\u2009=\u20090.04).\nCONCLUSION: Our finding of moderate interobserver agreement when using the RAC to categorize pancreatic and peripancreatic collections by CT indicates that the accurate diagnosis of APFC or ANC by CT in the first 4\u00a0weeks after symptom onset is often challenging.\nKEY POINTS: \u2022 Interobserver agreement was moderate for categorizing peripancreatic collections. \u2022 Interobserver agreement did not improve with time from onset to CT. \u2022 Interobserver agreement was moderate for detecting parenchymal necrosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5906-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Revised Atlanta classification for CT pancreatic and peripancreatic collections in the first month of acute pancreatitis: interobserver agreement", 
    "pagination": "2302-2310", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fe550cd41ade13ceb54770a24e47726afb1583c1e4cb2069bf9367803a1df9a0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30631920"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5906-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111330169"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5906-0", 
      "https://app.dimensions.ai/details/publication/pub.1111330169"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117106_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5906-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5906-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5906-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5906-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5906-0'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5906-0 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Na3a027bdb4fa424c842aac9b5b4b9081
4 schema:citation sg:pub.10.1007/s00261-014-0226-6
5 sg:pub.10.1007/s00261-014-0303-x
6 https://doi.org/10.1001/archsurg.1993.01420170122019
7 https://doi.org/10.1002/bjs.9346
8 https://doi.org/10.1016/j.cgh.2007.07.014
9 https://doi.org/10.1016/j.cgh.2011.08.026
10 https://doi.org/10.1016/j.crad.2015.09.013
11 https://doi.org/10.1016/j.pan.2015.10.010
12 https://doi.org/10.1016/j.pan.2016.08.007
13 https://doi.org/10.1016/j.rcl.2015.06.006
14 https://doi.org/10.1016/s0140-6736(14)60649-8
15 https://doi.org/10.1056/nejmra1505202
16 https://doi.org/10.1097/01.mpa.0000240598.88193.8e
17 https://doi.org/10.1136/gutjnl-2012-302779
18 https://doi.org/10.1136/gutjnl-2012-302870
19 https://doi.org/10.1148/radiol.11110947
20 https://doi.org/10.1148/radiol.14131480
21 https://doi.org/10.1148/radiology.203.3.9169703
22 https://doi.org/10.1148/rg.345130012
23 https://doi.org/10.1159/000243731
24 https://doi.org/10.2214/ajr.13.10957
25 https://doi.org/10.2214/ajr.13.12222
26 https://doi.org/10.2307/2529310
27 schema:datePublished 2019-05
28 schema:datePublishedReg 2019-05-01
29 schema:description PURPOSE: To assess interobserver agreement when using the revised Atlanta classification (RAC) to categorize pancreatic and peripancreatic collections during the first month of acute pancreatitis (AP), and to correlate type of collection to outcome. MATERIAL AND METHODS: This retrospective study of 115 consecutive patients admitted for 123 AP episodes, 178 CTs performed within the first month showed peripancreatic abnormalities. Each AP episode was classified as mild, moderately severe, or severe based on the RAC. Two radiologists, blinded to clinical data, used RAC criteria to retrospectively categorize the collections as acute peripancreatic fluid collections (APFC) or acute necrotic collections (ANC). Interobserver agreement was assessed based on Cohen's κ statistics and compared according to CT timing. RESULTS: Interobserver agreement for categorizing peripancreatic collections was moderate (κ = 0.45) and did not improve with time to CT (κ values, 0.53 < day 3, 0.34 on days 3-6, and 0.43 ≥ day 7). For detecting parenchymal necrosis, interobserver agreement was also moderate (κ = 0.45). AP was less severe in patients with APFC versus ANC (p = 0.04). CONCLUSION: Our finding of moderate interobserver agreement when using the RAC to categorize pancreatic and peripancreatic collections by CT indicates that the accurate diagnosis of APFC or ANC by CT in the first 4 weeks after symptom onset is often challenging. KEY POINTS: • Interobserver agreement was moderate for categorizing peripancreatic collections. • Interobserver agreement did not improve with time from onset to CT. • Interobserver agreement was moderate for detecting parenchymal necrosis.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf Nc4664062c3c64b3d80d363b53c7df5f3
34 Nf9bb16f3447d479a80563f1cb61af2d7
35 sg:journal.1289120
36 schema:name Revised Atlanta classification for CT pancreatic and peripancreatic collections in the first month of acute pancreatitis: interobserver agreement
37 schema:pagination 2302-2310
38 schema:productId N0f422f0d086146c9a30eba8933257e0e
39 N26a3b5a06ad34531b74a5c0a83bb12f5
40 N358229aa27f445cda5cb802f72cf9e20
41 Na508f4d23ac54bce84df63c96b17fb92
42 Nc2061c4e1be84ac497f2bd062f824ad8
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111330169
44 https://doi.org/10.1007/s00330-018-5906-0
45 schema:sdDatePublished 2019-04-11T14:18
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N882f9e7a6ba24275aa615fc3f0469753
48 schema:url https://link.springer.com/10.1007%2Fs00330-018-5906-0
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0554f21985c14d668b4a9b77fed46749 rdf:first sg:person.01053764101.28
53 rdf:rest N47eeba9863bf4532897766178ad9ed13
54 N0f422f0d086146c9a30eba8933257e0e schema:name pubmed_id
55 schema:value 30631920
56 rdf:type schema:PropertyValue
57 N26a3b5a06ad34531b74a5c0a83bb12f5 schema:name dimensions_id
58 schema:value pub.1111330169
59 rdf:type schema:PropertyValue
60 N358229aa27f445cda5cb802f72cf9e20 schema:name readcube_id
61 schema:value fe550cd41ade13ceb54770a24e47726afb1583c1e4cb2069bf9367803a1df9a0
62 rdf:type schema:PropertyValue
63 N47eeba9863bf4532897766178ad9ed13 rdf:first sg:person.01070253550.79
64 rdf:rest Nfe0bd087633c4db8b61084b737a84583
65 N680e6c2849a84a3a8202c7c88bcfaf26 schema:name Department of Radiology, Hôpital Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France
66 rdf:type schema:Organization
67 N882f9e7a6ba24275aa615fc3f0469753 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Na3a027bdb4fa424c842aac9b5b4b9081 rdf:first sg:person.010023220173.44
70 rdf:rest Ne532257e5e954ce6a3c6fe8674885454
71 Na508f4d23ac54bce84df63c96b17fb92 schema:name doi
72 schema:value 10.1007/s00330-018-5906-0
73 rdf:type schema:PropertyValue
74 Nbdb51c7b27ce40c1ae274dc9f64f8032 schema:name Department of Radiology, Hôpital Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France
75 rdf:type schema:Organization
76 Nc2061c4e1be84ac497f2bd062f824ad8 schema:name nlm_unique_id
77 schema:value 9114774
78 rdf:type schema:PropertyValue
79 Nc4664062c3c64b3d80d363b53c7df5f3 schema:volumeNumber 29
80 rdf:type schema:PublicationVolume
81 Nd94c3a9f0600415f9e48d861a5ebca2d schema:name Department of Radiology, Hôpital Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France
82 rdf:type schema:Organization
83 Ndd85892cda904b12a0bfb9cd6ad6d593 schema:name Department of Radiology, Hôpital Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France
84 rdf:type schema:Organization
85 Ne532257e5e954ce6a3c6fe8674885454 rdf:first sg:person.01245432277.06
86 rdf:rest N0554f21985c14d668b4a9b77fed46749
87 Ne8df36e923bc475eb6a84816c78b6272 rdf:first sg:person.01360232034.15
88 rdf:rest rdf:nil
89 Nf7b5cef4906148b8b89e30937582a68c schema:name Department of Radiology, Hôpital Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France
90 rdf:type schema:Organization
91 Nf9bb16f3447d479a80563f1cb61af2d7 schema:issueNumber 5
92 rdf:type schema:PublicationIssue
93 Nfe0bd087633c4db8b61084b737a84583 rdf:first sg:person.01113425470.29
94 rdf:rest Ne8df36e923bc475eb6a84816c78b6272
95 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
96 schema:name Medical and Health Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
99 schema:name Clinical Sciences
100 rdf:type schema:DefinedTerm
101 sg:journal.1289120 schema:issn 0938-7994
102 1432-1084
103 schema:name European Radiology
104 rdf:type schema:Periodical
105 sg:person.010023220173.44 schema:affiliation Nf7b5cef4906148b8b89e30937582a68c
106 schema:familyName Badat
107 schema:givenName Neesmah
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010023220173.44
109 rdf:type schema:Person
110 sg:person.01053764101.28 schema:affiliation Nd94c3a9f0600415f9e48d861a5ebca2d
111 schema:familyName Corno
112 schema:givenName Lucie
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053764101.28
114 rdf:type schema:Person
115 sg:person.01070253550.79 schema:affiliation N680e6c2849a84a3a8202c7c88bcfaf26
116 schema:familyName Khaled
117 schema:givenName Wassef
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070253550.79
119 rdf:type schema:Person
120 sg:person.01113425470.29 schema:affiliation Nbdb51c7b27ce40c1ae274dc9f64f8032
121 schema:familyName Boulay-Coletta
122 schema:givenName Isabelle
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113425470.29
124 rdf:type schema:Person
125 sg:person.01245432277.06 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
126 schema:familyName Millet
127 schema:givenName Ingrid
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245432277.06
129 rdf:type schema:Person
130 sg:person.01360232034.15 schema:affiliation Ndd85892cda904b12a0bfb9cd6ad6d593
131 schema:familyName Zins
132 schema:givenName Marc
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360232034.15
134 rdf:type schema:Person
135 sg:pub.10.1007/s00261-014-0226-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004522960
136 https://doi.org/10.1007/s00261-014-0226-6
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00261-014-0303-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023078078
139 https://doi.org/10.1007/s00261-014-0303-x
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1001/archsurg.1993.01420170122019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015767287
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/bjs.9346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011026584
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cgh.2007.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002165955
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.cgh.2011.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012086192
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.crad.2015.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012422695
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.pan.2015.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031116898
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.pan.2016.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000813697
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.rcl.2015.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029398814
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0140-6736(14)60649-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014089570
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1056/nejmra1505202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006567612
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1097/01.mpa.0000240598.88193.8e schema:sameAs https://app.dimensions.ai/details/publication/pub.1020603853
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1136/gutjnl-2012-302779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025127467
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1136/gutjnl-2012-302870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008156328
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1148/radiol.11110947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011448240
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1148/radiol.14131480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009993689
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1148/radiology.203.3.9169703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083096615
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1148/rg.345130012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078970509
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1159/000243731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024970437
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2214/ajr.13.10957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303175
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2214/ajr.13.12222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303559
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2307/2529310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974986
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.121334.6 schema:alternateName University of Montpellier
184 schema:name Department of Medical Imaging, CHU Lapeyronie, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France
185 Montpellier University, Montpellier, France
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...