CT indices for the diagnosis of hepatic steatosis using non-enhanced CT images: development and validation of diagnostic cut-off values in ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-19

AUTHORS

Jieun Byun, Seung Soo Lee, Yu Sub Sung, Youngbin Shin, Jessica Yun, Ho Sung Kim, Eun sil Yu, Sung-Gyu Lee, Moon-gyu Lee

ABSTRACT

ObjectivesTo compare the performances of CT indices for diagnosing hepatic steatosis (HS) and to determine and validate the CT index cut-off values.MethodsThree indices were measured on non-enhanced CT images of 4413 living liver donor candidates (2939 men, 1474 women; mean age, 31.4 years): hepatic attenuation (CTL), hepatic attenuation minus splenic attenuation (CTL-S), and hepatic attenuation divided by splenic attenuation (CTL/S). The performances of these CT indices in diagnosing HS, relative to pathologic diagnosis, were compared in the development cohort of 3312 subjects by receiver operating characteristic (ROC) analysis. The cut-off values for diagnosing HS > 33% in the development cohort were determined at 95% specificity and 95% sensitivity using bootstrap ROC analysis, and the diagnostic performance of these cut-off values was validated in the test cohort of 1101 subjects.ResultsCTL-S showed the highest performance for diagnosing HS ≥ 5% and HS > 33% (areas under the curve (AUCs) = 0.737 and 0.926, respectively), followed by CTL/S (AUCs = 0.732 and 0.925, respectively) and CTL (AUCs = 0.707 and 0.880, respectively). For CT scans using 120 kVp, the CTL-S cut-off values for highly specific (i.e., − 2.1) and highly sensitive (i.e., 7.6) diagnosis of HS > 33% resulted in a specificity of 96.4% with a sensitivity of 64.0% and a sensitivity of 97.3% with a specificity of 54.9%, respectively, in the test cohort.ConclusionCT indices using liver and spleen attenuations have higher performance for diagnosing HS than indices using liver attenuation alone. The CTL-S cut-off values in this study may have utility for diagnosing HS in clinical practice and research.Key Points• CT indices based on both liver attenuation and spleen attenuation (CTL-Sand CTL/S) have higher diagnostic performance than CTLbased on liver attenuation alone in diagnosing HS using various CT techniques.• The CT index cut-off values determined in this study can be utilized for reliable diagnosis or to rule out subjects with moderate to severe HS in clinical practice and research, including the selection of living liver donors and the development of cohorts with HS or healthy controls. More... »

PAGES

4427-4435

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5905-1

DOI

http://dx.doi.org/10.1007/s00330-018-5905-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110758710

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30569183


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Living Donors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Byun", 
        "givenName": "Jieun", 
        "id": "sg:person.07753416540.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07753416540.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Seung Soo", 
        "id": "sg:person.01367656120.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367656120.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sung", 
        "givenName": "Yu Sub", 
        "id": "sg:person.0671111600.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671111600.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Youngbin", 
        "id": "sg:person.010222413237.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010222413237.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yun", 
        "givenName": "Jessica", 
        "id": "sg:person.07354252267.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354252267.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Ho Sung", 
        "id": "sg:person.01303223164.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303223164.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Diagnostic Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Eun sil", 
        "id": "sg:person.01366713724.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366713724.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.267370.7", 
          "name": [
            "Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sung-Gyu", 
        "id": "sg:person.01141712025.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141712025.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Moon-gyu", 
        "id": "sg:person.01073103763.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073103763.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003300050267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046456145", 
          "https://doi.org/10.1007/s003300050267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2349-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047959732", 
          "https://doi.org/10.1007/s00330-011-2349-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-5264-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100720084", 
          "https://doi.org/10.1007/s00330-017-5264-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-19", 
    "datePublishedReg": "2018-12-19", 
    "description": "ObjectivesTo compare the performances of CT indices for diagnosing hepatic steatosis (HS) and to determine and validate the CT index cut-off values.MethodsThree indices were measured on non-enhanced CT images of 4413 living liver donor candidates (2939 men, 1474 women; mean age, 31.4\u00a0years): hepatic attenuation (CTL), hepatic attenuation minus splenic attenuation (CTL-S), and hepatic attenuation divided by splenic attenuation (CTL/S). The performances of these CT indices in diagnosing HS, relative to pathologic diagnosis, were compared in the development cohort of 3312 subjects by receiver operating characteristic (ROC) analysis. The cut-off values for diagnosing HS >\u200933% in the development cohort were determined at 95% specificity and 95% sensitivity using bootstrap ROC analysis, and the diagnostic performance of these cut-off values was validated in the test cohort of 1101 subjects.ResultsCTL-S showed the highest performance for diagnosing HS \u2265\u20095% and HS >\u200933% (areas under the curve (AUCs)\u00a0=\u00a00.737 and 0.926, respectively), followed by CTL/S (AUCs\u00a0=\u00a00.732 and 0.925, respectively) and CTL (AUCs\u00a0=\u00a00.707 and 0.880, respectively). For CT scans using 120\u00a0kVp, the CTL-S cut-off values for highly specific (i.e., \u2212\u20092.1) and highly sensitive (i.e., 7.6) diagnosis of HS >\u200933% resulted in a specificity of 96.4% with a sensitivity of 64.0% and a sensitivity of 97.3% with a specificity of 54.9%, respectively, in the test cohort.ConclusionCT indices using liver and spleen attenuations have higher performance for diagnosing HS than indices using liver attenuation alone. The CTL-S cut-off values in this study may have utility for diagnosing HS in clinical practice and research.Key Points\u2022 CT indices based on both liver attenuation and spleen attenuation (CTL-Sand CTL/S) have higher diagnostic performance than CTLbased on liver attenuation alone in diagnosing HS using various CT techniques.\u2022 The CT index cut-off values determined in this study can be utilized for reliable diagnosis or to rule out subjects with moderate to severe HS in clinical practice and research, including the selection of living liver donors and the development of cohorts with HS or healthy controls.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-018-5905-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "hepatic steatosis", 
      "hepatic attenuation", 
      "liver attenuation", 
      "CT indices", 
      "splenic attenuation", 
      "development cohort", 
      "spleen attenuation", 
      "test cohort", 
      "clinical practice", 
      "liver donor candidates", 
      "severe hepatic steatosis", 
      "diagnostic performance", 
      "non-enhanced CT images", 
      "high diagnostic performance", 
      "liver donors", 
      "pathologic diagnosis", 
      "healthy controls", 
      "CT scan", 
      "CT images", 
      "large cohort", 
      "donor candidates", 
      "cohort", 
      "index cut", 
      "development of cohorts", 
      "diagnostic cut", 
      "diagnosis", 
      "ROC analysis", 
      "CTL", 
      "reliable diagnosis", 
      "CT technique", 
      "steatosis", 
      "reference standard", 
      "sensitive diagnosis", 
      "subjects", 
      "characteristic analysis", 
      "index", 
      "specificity", 
      "ObjectivesTo", 
      "CT", 
      "liver", 
      "sensitivity", 
      "scans", 
      "attenuation", 
      "study", 
      "donors", 
      "practice", 
      "development", 
      "control", 
      "cut", 
      "values", 
      "analysis", 
      "utility", 
      "candidates", 
      "research", 
      "standards", 
      "validation", 
      "receiver", 
      "images", 
      "selection", 
      "technique", 
      "performance", 
      "high performance", 
      "MethodsThree indices", 
      "bootstrap ROC analysis", 
      "ResultsCTL", 
      "CTL/S", 
      "ConclusionCT indices", 
      "CT index cut", 
      "pathological reference standard"
    ], 
    "name": "CT indices for the diagnosis of hepatic steatosis using non-enhanced CT images: development and validation of diagnostic cut-off values in a large cohort with pathological reference standard", 
    "pagination": "4427-4435", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110758710"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5905-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30569183"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5905-1", 
      "https://app.dimensions.ai/details/publication/pub.1110758710"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_781.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-018-5905-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5905-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5905-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5905-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5905-1'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      22 PREDICATES      113 URIs      102 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5905-1 schema:about N234f171d99bd48ba8af9f51272ffe767
2 N246b5b05a1124d53807c40bea7be14d5
3 N3fa2959ff5c741e7bedec3849d842c8a
4 N4d0d298bbf2647e194126b6e9e5e52c5
5 N54633a8f5d234a72b7876f9ba434ea5a
6 N5da8bec373734afa8c37b2090245ea10
7 N6bc7d41ce8fc4f57961f31d3409ce22a
8 N72176a5ab8cc447aafb8d9cf4d81c31d
9 N97e5241134934e91bc5fade4409766cd
10 Na63ebf3ab0494558997f218e9db471dd
11 Nb0ff4f8e9144441bb061b0d1a3318be9
12 Nc2525d3a08984e4293eb8925935234dc
13 Nd9d8ae3098d74ac5989d3da245710c59
14 Nf8eaac1ad7734d13b0e244cf816c9fa6
15 Nfd0ba5ead2d840908e03c350de47e893
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author N70c3d2c8c7794ea096e69050886f5f39
19 schema:citation sg:pub.10.1007/s00330-011-2349-2
20 sg:pub.10.1007/s00330-017-5264-3
21 sg:pub.10.1007/s003300050267
22 schema:datePublished 2018-12-19
23 schema:datePublishedReg 2018-12-19
24 schema:description ObjectivesTo compare the performances of CT indices for diagnosing hepatic steatosis (HS) and to determine and validate the CT index cut-off values.MethodsThree indices were measured on non-enhanced CT images of 4413 living liver donor candidates (2939 men, 1474 women; mean age, 31.4 years): hepatic attenuation (CTL), hepatic attenuation minus splenic attenuation (CTL-S), and hepatic attenuation divided by splenic attenuation (CTL/S). The performances of these CT indices in diagnosing HS, relative to pathologic diagnosis, were compared in the development cohort of 3312 subjects by receiver operating characteristic (ROC) analysis. The cut-off values for diagnosing HS > 33% in the development cohort were determined at 95% specificity and 95% sensitivity using bootstrap ROC analysis, and the diagnostic performance of these cut-off values was validated in the test cohort of 1101 subjects.ResultsCTL-S showed the highest performance for diagnosing HS ≥ 5% and HS > 33% (areas under the curve (AUCs) = 0.737 and 0.926, respectively), followed by CTL/S (AUCs = 0.732 and 0.925, respectively) and CTL (AUCs = 0.707 and 0.880, respectively). For CT scans using 120 kVp, the CTL-S cut-off values for highly specific (i.e., − 2.1) and highly sensitive (i.e., 7.6) diagnosis of HS > 33% resulted in a specificity of 96.4% with a sensitivity of 64.0% and a sensitivity of 97.3% with a specificity of 54.9%, respectively, in the test cohort.ConclusionCT indices using liver and spleen attenuations have higher performance for diagnosing HS than indices using liver attenuation alone. The CTL-S cut-off values in this study may have utility for diagnosing HS in clinical practice and research.Key Points• CT indices based on both liver attenuation and spleen attenuation (CTL-Sand CTL/S) have higher diagnostic performance than CTLbased on liver attenuation alone in diagnosing HS using various CT techniques.• The CT index cut-off values determined in this study can be utilized for reliable diagnosis or to rule out subjects with moderate to severe HS in clinical practice and research, including the selection of living liver donors and the development of cohorts with HS or healthy controls.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N82129afaa05745b393ba4cc58c5b5449
29 Ne4fb3aaf870d40dd8154cffc987cb5b9
30 sg:journal.1289120
31 schema:keywords CT
32 CT images
33 CT index cut
34 CT indices
35 CT scan
36 CT technique
37 CTL
38 CTL/S
39 ConclusionCT indices
40 MethodsThree indices
41 ObjectivesTo
42 ROC analysis
43 ResultsCTL
44 analysis
45 attenuation
46 bootstrap ROC analysis
47 candidates
48 characteristic analysis
49 clinical practice
50 cohort
51 control
52 cut
53 development
54 development cohort
55 development of cohorts
56 diagnosis
57 diagnostic cut
58 diagnostic performance
59 donor candidates
60 donors
61 healthy controls
62 hepatic attenuation
63 hepatic steatosis
64 high diagnostic performance
65 high performance
66 images
67 index
68 index cut
69 large cohort
70 liver
71 liver attenuation
72 liver donor candidates
73 liver donors
74 non-enhanced CT images
75 pathologic diagnosis
76 pathological reference standard
77 performance
78 practice
79 receiver
80 reference standard
81 reliable diagnosis
82 research
83 scans
84 selection
85 sensitive diagnosis
86 sensitivity
87 severe hepatic steatosis
88 specificity
89 spleen attenuation
90 splenic attenuation
91 standards
92 steatosis
93 study
94 subjects
95 technique
96 test cohort
97 utility
98 validation
99 values
100 schema:name CT indices for the diagnosis of hepatic steatosis using non-enhanced CT images: development and validation of diagnostic cut-off values in a large cohort with pathological reference standard
101 schema:pagination 4427-4435
102 schema:productId N8c3e77749b1d4ffa8fc6005f6a0c4aa3
103 Nca539cc041af4f2f82049d160e158d13
104 Necda71872241473998407db81127c493
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110758710
106 https://doi.org/10.1007/s00330-018-5905-1
107 schema:sdDatePublished 2021-11-01T18:33
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N01f7c69695a9485d929b0adcade44ab3
110 schema:url https://doi.org/10.1007/s00330-018-5905-1
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N01f7c69695a9485d929b0adcade44ab3 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N0def892d88b54009abde6edf56e62715 rdf:first sg:person.0671111600.05
117 rdf:rest N9afc6db81e8c45eda2e07b2b1efeb8fa
118 N234f171d99bd48ba8af9f51272ffe767 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Liver
120 rdf:type schema:DefinedTerm
121 N246b5b05a1124d53807c40bea7be14d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Adolescent
123 rdf:type schema:DefinedTerm
124 N2bbaccfeae224cbd98d98795b851e036 rdf:first sg:person.01303223164.79
125 rdf:rest N60d3e279f9764a63a4ecb2952f8f6942
126 N35bfb42b433642539faba136cce0ed7c rdf:first sg:person.01073103763.64
127 rdf:rest rdf:nil
128 N362fbf2b8e304f1a8ed8b66477275cf3 rdf:first sg:person.01367656120.32
129 rdf:rest N0def892d88b54009abde6edf56e62715
130 N3fa2959ff5c741e7bedec3849d842c8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Living Donors
132 rdf:type schema:DefinedTerm
133 N4d0d298bbf2647e194126b6e9e5e52c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Young Adult
135 rdf:type schema:DefinedTerm
136 N54633a8f5d234a72b7876f9ba434ea5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Retrospective Studies
138 rdf:type schema:DefinedTerm
139 N5da8bec373734afa8c37b2090245ea10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Liver Transplantation
141 rdf:type schema:DefinedTerm
142 N60d3e279f9764a63a4ecb2952f8f6942 rdf:first sg:person.01366713724.47
143 rdf:rest Nc6c70c1cc054408882c99ce43291dcca
144 N643a2bfb8aef400f8f1194f12e69c47e rdf:first sg:person.07354252267.23
145 rdf:rest N2bbaccfeae224cbd98d98795b851e036
146 N6bc7d41ce8fc4f57961f31d3409ce22a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Male
148 rdf:type schema:DefinedTerm
149 N70c3d2c8c7794ea096e69050886f5f39 rdf:first sg:person.07753416540.97
150 rdf:rest N362fbf2b8e304f1a8ed8b66477275cf3
151 N72176a5ab8cc447aafb8d9cf4d81c31d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Reproducibility of Results
153 rdf:type schema:DefinedTerm
154 N82129afaa05745b393ba4cc58c5b5449 schema:issueNumber 8
155 rdf:type schema:PublicationIssue
156 N8c3e77749b1d4ffa8fc6005f6a0c4aa3 schema:name dimensions_id
157 schema:value pub.1110758710
158 rdf:type schema:PropertyValue
159 N97e5241134934e91bc5fade4409766cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Middle Aged
161 rdf:type schema:DefinedTerm
162 N9afc6db81e8c45eda2e07b2b1efeb8fa rdf:first sg:person.010222413237.11
163 rdf:rest N643a2bfb8aef400f8f1194f12e69c47e
164 Na63ebf3ab0494558997f218e9db471dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name ROC Curve
166 rdf:type schema:DefinedTerm
167 Nb0ff4f8e9144441bb061b0d1a3318be9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Adult
169 rdf:type schema:DefinedTerm
170 Nc2525d3a08984e4293eb8925935234dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Fatty Liver
172 rdf:type schema:DefinedTerm
173 Nc6c70c1cc054408882c99ce43291dcca rdf:first sg:person.01141712025.28
174 rdf:rest N35bfb42b433642539faba136cce0ed7c
175 Nca539cc041af4f2f82049d160e158d13 schema:name pubmed_id
176 schema:value 30569183
177 rdf:type schema:PropertyValue
178 Nd9d8ae3098d74ac5989d3da245710c59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Humans
180 rdf:type schema:DefinedTerm
181 Ne4fb3aaf870d40dd8154cffc987cb5b9 schema:volumeNumber 29
182 rdf:type schema:PublicationVolume
183 Necda71872241473998407db81127c493 schema:name doi
184 schema:value 10.1007/s00330-018-5905-1
185 rdf:type schema:PropertyValue
186 Nf8eaac1ad7734d13b0e244cf816c9fa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Tomography, X-Ray Computed
188 rdf:type schema:DefinedTerm
189 Nfd0ba5ead2d840908e03c350de47e893 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Female
191 rdf:type schema:DefinedTerm
192 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
193 schema:name Medical and Health Sciences
194 rdf:type schema:DefinedTerm
195 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
196 schema:name Clinical Sciences
197 rdf:type schema:DefinedTerm
198 sg:journal.1289120 schema:issn 0938-7994
199 1432-1084
200 schema:name European Radiology
201 schema:publisher Springer Nature
202 rdf:type schema:Periodical
203 sg:person.010222413237.11 schema:affiliation grid-institutes:grid.413967.e
204 schema:familyName Shin
205 schema:givenName Youngbin
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010222413237.11
207 rdf:type schema:Person
208 sg:person.01073103763.64 schema:affiliation grid-institutes:grid.413967.e
209 schema:familyName Lee
210 schema:givenName Moon-gyu
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073103763.64
212 rdf:type schema:Person
213 sg:person.01141712025.28 schema:affiliation grid-institutes:grid.267370.7
214 schema:familyName Lee
215 schema:givenName Sung-Gyu
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141712025.28
217 rdf:type schema:Person
218 sg:person.01303223164.79 schema:affiliation grid-institutes:grid.413967.e
219 schema:familyName Kim
220 schema:givenName Ho Sung
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303223164.79
222 rdf:type schema:Person
223 sg:person.01366713724.47 schema:affiliation grid-institutes:grid.413967.e
224 schema:familyName Yu
225 schema:givenName Eun sil
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366713724.47
227 rdf:type schema:Person
228 sg:person.01367656120.32 schema:affiliation grid-institutes:grid.413967.e
229 schema:familyName Lee
230 schema:givenName Seung Soo
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367656120.32
232 rdf:type schema:Person
233 sg:person.0671111600.05 schema:affiliation grid-institutes:grid.413967.e
234 schema:familyName Sung
235 schema:givenName Yu Sub
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671111600.05
237 rdf:type schema:Person
238 sg:person.07354252267.23 schema:affiliation grid-institutes:grid.413967.e
239 schema:familyName Yun
240 schema:givenName Jessica
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354252267.23
242 rdf:type schema:Person
243 sg:person.07753416540.97 schema:affiliation grid-institutes:grid.413967.e
244 schema:familyName Byun
245 schema:givenName Jieun
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07753416540.97
247 rdf:type schema:Person
248 sg:pub.10.1007/s00330-011-2349-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047959732
249 https://doi.org/10.1007/s00330-011-2349-2
250 rdf:type schema:CreativeWork
251 sg:pub.10.1007/s00330-017-5264-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100720084
252 https://doi.org/10.1007/s00330-017-5264-3
253 rdf:type schema:CreativeWork
254 sg:pub.10.1007/s003300050267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046456145
255 https://doi.org/10.1007/s003300050267
256 rdf:type schema:CreativeWork
257 grid-institutes:grid.267370.7 schema:alternateName Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea
258 schema:name Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea
259 rdf:type schema:Organization
260 grid-institutes:grid.413967.e schema:alternateName Department of Diagnostic Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea
261 Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea
262 schema:name Department of Diagnostic Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea
263 Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, South Korea
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...