CT reconstruction algorithms affect histogram and texture analysis: evidence for liver parenchyma, focal solid liver lesions, and renal cysts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-19

AUTHORS

Su Joa Ahn, Jung Hoon Kim, Sang Min Lee, Sang Joon Park, Joon Koo Han

ABSTRACT

PURPOSE: To determine the effects of different reconstruction algorithms on histogram and texture features in different targets. MATERIALS AND METHODS: Among 3620 patients, 480 had normal liver parenchyma, 494 had focal solid liver lesions (metastases = 259; hepatocellular carcinoma = 99; hemangioma = 78; abscess = 32; and cholangiocarcinoma = 26), and 488 had renal cysts. CT images were reconstructed with filtered back-projection (FBP), hybrid iterative reconstruction (HIR), and iterative model reconstruction (IMR) algorithms. Computerized histogram and texture analyses were performed by extracting 11 features. RESULTS: Different reconstruction algorithms had distinct, significant effects. IMR had a greater effect than HIR. For instance, IMR had a significant effect on five features of liver parenchyma, nine features of focal liver lesions, and four features of renal cysts on portal-phase scans and four, eight, and four features, respectively, on precontrast scans (p < 0.05). Meanwhile, different algorithms had a greater effect on focal liver lesions (six in HIR and nine in IMR on portal-phase, three in HIR, and eight in IMR on precontrast scans) than on liver parenchyma or cysts. The mean attenuation and standard deviation were not affected by the reconstruction algorithm (p > .05). Most parameters showed good or excellent intra- and interobserver agreement, with intraclass correlation coefficients ranging from 0.634 to 0.972. CONCLUSIONS: Different reconstruction algorithms affect histogram and texture features. Reconstruction algorithms showed stronger effects in focal liver lesions than in liver parenchyma or renal cysts. KEY POINTS: • Imaging heterogeneities influenced the quantification of image features. • Different reconstruction algorithms had a significant effect on histogram and texture features. • Solid liver lesions were more affected than liver parenchyma or cysts. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5829-9

DOI

http://dx.doi.org/10.1007/s00330-018-5829-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110029917

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30456584


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Su Joa", 
        "id": "sg:person.01065717421.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065717421.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea", 
            "Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehang-no, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jung Hoon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hallym University Sacred Heart Hospital", 
          "id": "https://www.grid.ac/institutes/grid.488421.3", 
          "name": [
            "Department of Radiology, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, 431-796, Anyang-si, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang Min", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sang Joon", 
        "id": "sg:person.0646222154.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea", 
            "Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehang-no, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.2502071879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000029037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2011.11.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001038268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13121824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006922766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-014-0379-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014728933", 
          "https://doi.org/10.1007/s10554-014-0379-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015150892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018351031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022961172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12111607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024494311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a3339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026037806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185114568909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026416672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185114568909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026416672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2004.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026664475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31824e639e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028908853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31824e639e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028908853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029198599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2013.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032126058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-012-0196-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036528660", 
          "https://doi.org/10.1007/s13244-012-0196-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2964-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039020783", 
          "https://doi.org/10.1007/s00330-013-2964-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2013.0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039340051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.911412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039860052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-015-1631-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042654673", 
          "https://doi.org/10.1007/s00234-015-1631-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045809942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinternmed.2009.440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047591515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/59/21/6637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059030535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/60/2/r1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059031033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20130388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.14.14147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069304160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40644-017-0106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074193810", 
          "https://doi.org/10.1186/s40644-017-0106-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40644-017-0106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074193810", 
          "https://doi.org/10.1186/s40644-017-0106-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.21.4.g01jl16895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074848788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0182883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091151508"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-19", 
    "datePublishedReg": "2018-11-19", 
    "description": "PURPOSE: To determine the effects of different reconstruction algorithms on histogram and texture features in different targets.\nMATERIALS AND METHODS: Among 3620 patients, 480 had normal liver parenchyma, 494 had focal solid liver lesions (metastases\u2009=\u2009259; hepatocellular carcinoma\u2009=\u200999; hemangioma\u2009=\u200978; abscess\u2009=\u200932; and cholangiocarcinoma\u2009=\u200926), and 488 had renal cysts. CT images were reconstructed with filtered back-projection (FBP), hybrid iterative reconstruction (HIR), and iterative model reconstruction (IMR) algorithms. Computerized histogram and texture analyses were performed by extracting 11 features.\nRESULTS: Different reconstruction algorithms had distinct, significant effects. IMR had a greater effect than HIR. For instance, IMR had a significant effect on five features of liver parenchyma, nine features of focal liver lesions, and four features of renal cysts on portal-phase scans and four, eight, and four features, respectively, on precontrast scans (p\u2009<\u20090.05). Meanwhile, different algorithms had a greater effect on focal liver lesions (six in HIR and nine in IMR on portal-phase, three in HIR, and eight in IMR on precontrast scans) than on liver parenchyma or cysts. The mean attenuation and standard deviation were not affected by the reconstruction algorithm (p\u2009>\u2009.05). Most parameters showed good or excellent intra- and interobserver agreement, with intraclass correlation coefficients ranging from 0.634 to 0.972.\nCONCLUSIONS: Different reconstruction algorithms affect histogram and texture features. Reconstruction algorithms showed stronger effects in focal liver lesions than in liver parenchyma or renal cysts.\nKEY POINTS: \u2022 Imaging heterogeneities influenced the quantification of image features. \u2022 Different reconstruction algorithms had a significant effect on histogram and texture features. \u2022 Solid liver lesions were more affected than liver parenchyma or cysts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5829-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "CT reconstruction algorithms affect histogram and texture analysis: evidence for liver parenchyma, focal solid liver lesions, and renal cysts", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d8cdd65adc112e677aac668d4b94591d80825e4d2760db128ece32810467cd0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30456584"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5829-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110029917"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5829-9", 
      "https://app.dimensions.ai/details/publication/pub.1110029917"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000267_0000000267/records_56126_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5829-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5829-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5829-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5829-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5829-9'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      53 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5829-9 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N9780cb14e51446048191a9cab760c615
4 schema:citation sg:pub.10.1007/s00234-015-1631-4
5 sg:pub.10.1007/s00330-013-2964-1
6 sg:pub.10.1007/s10554-014-0379-y
7 sg:pub.10.1007/s13244-012-0196-6
8 sg:pub.10.1186/s40644-017-0106-8
9 https://doi.org/10.1001/archinternmed.2009.440
10 https://doi.org/10.1016/j.acra.2013.10.002
11 https://doi.org/10.1016/j.crad.2004.07.008
12 https://doi.org/10.1016/j.ejrad.2011.11.051
13 https://doi.org/10.1016/j.ejrad.2012.10.023
14 https://doi.org/10.1016/j.ejrad.2016.08.014
15 https://doi.org/10.1088/0031-9155/59/21/6637
16 https://doi.org/10.1088/0031-9155/60/2/r1
17 https://doi.org/10.1097/rct.0b013e31824e639e
18 https://doi.org/10.1102/1470-7330.2013.0015
19 https://doi.org/10.1117/12.911412
20 https://doi.org/10.1148/radiographics.21.4.g01jl16895
21 https://doi.org/10.1148/radiol.11110106
22 https://doi.org/10.1148/radiol.12111607
23 https://doi.org/10.1148/radiol.13121824
24 https://doi.org/10.1148/radiol.2015150892
25 https://doi.org/10.1148/radiol.2502071879
26 https://doi.org/10.1177/0284185114568909
27 https://doi.org/10.1259/bjr.20130388
28 https://doi.org/10.1371/journal.pone.0182883
29 https://doi.org/10.2214/ajr.14.14147
30 https://doi.org/10.3174/ajnr.a3339
31 schema:datePublished 2018-11-19
32 schema:datePublishedReg 2018-11-19
33 schema:description PURPOSE: To determine the effects of different reconstruction algorithms on histogram and texture features in different targets. MATERIALS AND METHODS: Among 3620 patients, 480 had normal liver parenchyma, 494 had focal solid liver lesions (metastases = 259; hepatocellular carcinoma = 99; hemangioma = 78; abscess = 32; and cholangiocarcinoma = 26), and 488 had renal cysts. CT images were reconstructed with filtered back-projection (FBP), hybrid iterative reconstruction (HIR), and iterative model reconstruction (IMR) algorithms. Computerized histogram and texture analyses were performed by extracting 11 features. RESULTS: Different reconstruction algorithms had distinct, significant effects. IMR had a greater effect than HIR. For instance, IMR had a significant effect on five features of liver parenchyma, nine features of focal liver lesions, and four features of renal cysts on portal-phase scans and four, eight, and four features, respectively, on precontrast scans (p < 0.05). Meanwhile, different algorithms had a greater effect on focal liver lesions (six in HIR and nine in IMR on portal-phase, three in HIR, and eight in IMR on precontrast scans) than on liver parenchyma or cysts. The mean attenuation and standard deviation were not affected by the reconstruction algorithm (p > .05). Most parameters showed good or excellent intra- and interobserver agreement, with intraclass correlation coefficients ranging from 0.634 to 0.972. CONCLUSIONS: Different reconstruction algorithms affect histogram and texture features. Reconstruction algorithms showed stronger effects in focal liver lesions than in liver parenchyma or renal cysts. KEY POINTS: • Imaging heterogeneities influenced the quantification of image features. • Different reconstruction algorithms had a significant effect on histogram and texture features. • Solid liver lesions were more affected than liver parenchyma or cysts.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1289120
38 schema:name CT reconstruction algorithms affect histogram and texture analysis: evidence for liver parenchyma, focal solid liver lesions, and renal cysts
39 schema:pagination 1-8
40 schema:productId N01004c9fca974459b14f93f9ffd85749
41 N0f16b741204a420fa0b45df68d503e49
42 N274f8ad1b23840e7931930379a9dda0c
43 N48ed334be8184e849c767f5bd4d08d92
44 N62189b0d2e94490f81f837d7f49f590a
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110029917
46 https://doi.org/10.1007/s00330-018-5829-9
47 schema:sdDatePublished 2019-04-11T08:09
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nda594e0069ad44b0a8c0a32ed2af1b5c
50 schema:url https://link.springer.com/10.1007%2Fs00330-018-5829-9
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N01004c9fca974459b14f93f9ffd85749 schema:name doi
55 schema:value 10.1007/s00330-018-5829-9
56 rdf:type schema:PropertyValue
57 N0f16b741204a420fa0b45df68d503e49 schema:name nlm_unique_id
58 schema:value 9114774
59 rdf:type schema:PropertyValue
60 N1ab445fd58454aa496e20505385bee3e rdf:first Na9bc708207644413b24d03919432e25b
61 rdf:rest N8415a65cc7994168b3d86f5ed6da0f94
62 N1e3f76d9dc7847789ef9c3b924708fd4 rdf:first N7afcb0eadb2d4e13a68747be1ca35c0a
63 rdf:rest N1ab445fd58454aa496e20505385bee3e
64 N274f8ad1b23840e7931930379a9dda0c schema:name pubmed_id
65 schema:value 30456584
66 rdf:type schema:PropertyValue
67 N48ed334be8184e849c767f5bd4d08d92 schema:name dimensions_id
68 schema:value pub.1110029917
69 rdf:type schema:PropertyValue
70 N5c969f6f75794c699d49b121a1913874 rdf:first sg:person.0647723014.95
71 rdf:rest rdf:nil
72 N62189b0d2e94490f81f837d7f49f590a schema:name readcube_id
73 schema:value 3d8cdd65adc112e677aac668d4b94591d80825e4d2760db128ece32810467cd0
74 rdf:type schema:PropertyValue
75 N7afcb0eadb2d4e13a68747be1ca35c0a schema:affiliation https://www.grid.ac/institutes/grid.31501.36
76 schema:familyName Kim
77 schema:givenName Jung Hoon
78 rdf:type schema:Person
79 N8415a65cc7994168b3d86f5ed6da0f94 rdf:first sg:person.0646222154.82
80 rdf:rest N5c969f6f75794c699d49b121a1913874
81 N9780cb14e51446048191a9cab760c615 rdf:first sg:person.01065717421.22
82 rdf:rest N1e3f76d9dc7847789ef9c3b924708fd4
83 Na9bc708207644413b24d03919432e25b schema:affiliation https://www.grid.ac/institutes/grid.488421.3
84 schema:familyName Lee
85 schema:givenName Sang Min
86 rdf:type schema:Person
87 Nda594e0069ad44b0a8c0a32ed2af1b5c schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
90 schema:name Medical and Health Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
93 schema:name Clinical Sciences
94 rdf:type schema:DefinedTerm
95 sg:journal.1289120 schema:issn 0938-7994
96 1432-1084
97 schema:name European Radiology
98 rdf:type schema:Periodical
99 sg:person.01065717421.22 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
100 schema:familyName Ahn
101 schema:givenName Su Joa
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065717421.22
103 rdf:type schema:Person
104 sg:person.0646222154.82 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
105 schema:familyName Park
106 schema:givenName Sang Joon
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82
108 rdf:type schema:Person
109 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
110 schema:familyName Han
111 schema:givenName Joon Koo
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
113 rdf:type schema:Person
114 sg:pub.10.1007/s00234-015-1631-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042654673
115 https://doi.org/10.1007/s00234-015-1631-4
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00330-013-2964-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039020783
118 https://doi.org/10.1007/s00330-013-2964-1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10554-014-0379-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014728933
121 https://doi.org/10.1007/s10554-014-0379-y
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s13244-012-0196-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036528660
124 https://doi.org/10.1007/s13244-012-0196-6
125 rdf:type schema:CreativeWork
126 sg:pub.10.1186/s40644-017-0106-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074193810
127 https://doi.org/10.1186/s40644-017-0106-8
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1001/archinternmed.2009.440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047591515
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.acra.2013.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032126058
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.crad.2004.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026664475
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ejrad.2011.11.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001038268
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ejrad.2012.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045809942
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ejrad.2016.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022961172
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/0031-9155/59/21/6637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059030535
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/0031-9155/60/2/r1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059031033
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1097/rct.0b013e31824e639e schema:sameAs https://app.dimensions.ai/details/publication/pub.1028908853
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1102/1470-7330.2013.0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039340051
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1117/12.911412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039860052
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1148/radiographics.21.4.g01jl16895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074848788
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1148/radiol.11110106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029198599
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1148/radiol.12111607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024494311
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1148/radiol.13121824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006922766
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1148/radiol.2015150892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018351031
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1148/radiol.2502071879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000029037
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1177/0284185114568909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026416672
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1259/bjr.20130388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565149
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1371/journal.pone.0182883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091151508
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2214/ajr.14.14147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069304160
170 rdf:type schema:CreativeWork
171 https://doi.org/10.3174/ajnr.a3339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026037806
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
174 schema:name Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehang-no, Chongno-gu, 110-744, Seoul, Korea
175 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
178 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.488421.3 schema:alternateName Hallym University Sacred Heart Hospital
181 schema:name Department of Radiology, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, 431-796, Anyang-si, Korea
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...