Differentiation of triple-negative breast cancer from other subtypes through whole-tumor histogram analysis on multiparametric MR imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-06

AUTHORS

Tianwen Xie, Qiufeng Zhao, Caixia Fu, Qianming Bai, Xiaoyan Zhou, Lihua Li, Robert Grimm, Li Liu, Yajia Gu, Weijun Peng

ABSTRACT

PurposeTo identify triple-negative (TN) breast cancer imaging biomarkers in comparison to other molecular subtypes using multiparametric MR imaging maps and whole-tumor histogram analysis.Materials and methodsThis retrospective study included 134 patients with invasive ductal carcinoma. Whole-tumor histogram-based texture features were extracted from a quantitative ADC map and DCE semi-quantitative maps (washin and washout). Univariate analysis using the Student’s t test or Mann–Whitney U test was performed to identify significant variables for differentiating TN cancer from other subtypes. The ROC curves were generated based on the significant variables identified from the univariate analysis. The AUC, sensitivity, and specificity for subtype differentiation were reported.ResultsThe significant parameters on the univariate analysis achieved an AUC of 0.710 (95% confidence interval [CI] 0.562, 0.858) with a sensitivity of 63.6% and a specificity of 73.1% at the best cutoff point for differentiating TN cancers from Luminal A cancers. An AUC of 0.763 (95% CI 0.608, 0.917) with a sensitivity of 86.4% and a specificity of 72.2% was achieved for differentiating TN cancers from human epidermal growth factor receptor 2 (HER2) positive cancers. Also, an AUC of 0.683 (95% CI 0.556, 0.809) with a sensitivity of 54.5% and a specificity of 83.9% was achieved for differentiating TN cancers from non-TN cancers. There was no significant feature on the univariate analysis for TN cancers versus Luminal B cancers.ConclusionsWhole-tumor histogram-based imaging features derived from ADC, along with washin and washout maps, provide a non-invasive analytical approach for discriminating TN cancers from other subtypes.Key Points• Whole-tumor histogram-based features on MR multiparametric maps can help to assess biological characterization of breast cancer.• Histogram-based texture analysis may predict the molecular subtypes of breast cancer.• Combined DWI and DCE evaluation helps to identify triple-negative breast cancer. More... »

PAGES

2535-2544

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5804-5

DOI

http://dx.doi.org/10.1007/s00330-018-5804-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1108056658

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30402704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Ductal, Breast", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triple Negative Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong\u2019an Road, 200032, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.452404.3", 
          "name": [
            "Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong\u2019an Road, 200032, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Tianwen", 
        "id": "sg:person.015124477327.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015124477327.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411480.8", 
          "name": [
            "Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Qiufeng", 
        "id": "sg:person.0740012034.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740012034.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Caixia", 
        "id": "sg:person.01113325663.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113325663.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.452404.3", 
          "name": [
            "Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Qianming", 
        "id": "sg:person.01257353151.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257353151.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.452404.3", 
          "name": [
            "Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xiaoyan", 
        "id": "sg:person.01010610662.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010610662.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lihua", 
        "id": "sg:person.016060776274.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016060776274.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR Application Predevelopment, Siemens Healthineers, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.481749.7", 
          "name": [
            "MR Application Predevelopment, Siemens Healthineers, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grimm", 
        "givenName": "Robert", 
        "id": "sg:person.01077322142.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077322142.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong\u2019an Road, 200032, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.452404.3", 
          "name": [
            "Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong\u2019an Road, 200032, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Li", 
        "id": "sg:person.01316134060.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316134060.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong\u2019an Road, 200032, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.452404.3", 
          "name": [
            "Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong\u2019an Road, 200032, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Yajia", 
        "id": "sg:person.0770446530.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770446530.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong\u2019an Road, 200032, Shanghai, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.452404.3", 
          "name": [
            "Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong\u2019an Road, 200032, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Weijun", 
        "id": "sg:person.01243741146.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243741146.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-011-2220-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018175402", 
          "https://doi.org/10.1007/s00330-011-2220-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2403-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052285929", 
          "https://doi.org/10.1007/s00330-012-2403-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-014-3170-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046750250", 
          "https://doi.org/10.1007/s10549-014-3170-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2425-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033448250", 
          "https://doi.org/10.1007/s00330-012-2425-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014097777", 
          "https://doi.org/10.1186/bcr777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3845-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030666279", 
          "https://doi.org/10.1007/s00330-015-3845-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-06", 
    "datePublishedReg": "2018-11-06", 
    "description": "PurposeTo identify triple-negative (TN) breast cancer imaging biomarkers in comparison to other molecular subtypes using multiparametric MR imaging maps and whole-tumor histogram analysis.Materials and methodsThis retrospective study included 134 patients with invasive ductal carcinoma. Whole-tumor histogram-based texture features were extracted from a quantitative ADC map and DCE semi-quantitative maps (washin and washout). Univariate analysis using the Student\u2019s t test or Mann\u2013Whitney U test was performed to identify significant variables for differentiating TN cancer from other subtypes. The ROC curves were generated based on the significant variables identified from the univariate analysis. The AUC, sensitivity, and specificity for subtype differentiation were reported.ResultsThe significant parameters on the univariate analysis achieved an AUC of 0.710 (95% confidence interval [CI] 0.562, 0.858) with a sensitivity of 63.6% and a specificity of 73.1% at the best cutoff point for differentiating TN cancers from Luminal A cancers. An AUC of 0.763 (95% CI 0.608, 0.917) with a sensitivity of 86.4% and a specificity of 72.2% was achieved for differentiating TN cancers from human epidermal growth factor receptor 2 (HER2) positive cancers. Also, an AUC of 0.683 (95% CI 0.556, 0.809) with a sensitivity of 54.5% and a specificity of 83.9% was achieved for differentiating TN cancers from non-TN cancers. There was no significant feature on the univariate analysis for TN cancers versus Luminal B cancers.ConclusionsWhole-tumor histogram-based imaging features derived from ADC, along with washin and washout maps, provide a non-invasive analytical approach for discriminating TN cancers from other subtypes.Key Points\u2022 Whole-tumor histogram-based features on MR multiparametric maps can help to assess biological characterization of breast cancer.\u2022 Histogram-based texture analysis may predict the molecular subtypes of breast cancer.\u2022 Combined DWI and DCE evaluation helps to identify triple-negative breast cancer.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-018-5804-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8309733", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "triple-negative breast cancer", 
      "whole-tumor histogram analysis", 
      "TN cancers", 
      "breast cancer", 
      "univariate analysis", 
      "human epidermal growth factor receptor 2 (HER2) positive cancer", 
      "molecular subtypes", 
      "non-TN cancers", 
      "t test", 
      "multiparametric MR", 
      "invasive ductal carcinoma", 
      "best cutoff point", 
      "Mann-Whitney U test", 
      "Student's t test", 
      "Quantitative ADC maps", 
      "retrospective study", 
      "ductal carcinoma", 
      "imaging features", 
      "positive cancers", 
      "cutoff point", 
      "cancer", 
      "ADC maps", 
      "subtype differentiation", 
      "subtypes", 
      "significant variables", 
      "AUC", 
      "multiparametric maps", 
      "ROC curve", 
      "histogram analysis", 
      "specificity", 
      "semi-quantitative maps", 
      "MR", 
      "patients", 
      "biological characterization", 
      "carcinoma", 
      "PurposeTo", 
      "sensitivity", 
      "biomarkers", 
      "DWI", 
      "differentiation", 
      "washin", 
      "test", 
      "histogram-based features", 
      "features", 
      "analysis", 
      "study", 
      "variables", 
      "evaluation", 
      "comparison", 
      "significant parameters", 
      "curves", 
      "texture analysis", 
      "significant features", 
      "point", 
      "histogram", 
      "materials", 
      "approach", 
      "parameters", 
      "characterization", 
      "maps", 
      "texture features", 
      "ADC", 
      "analytical approach", 
      "Whole-tumor histogram-based texture features", 
      "histogram-based texture features", 
      "DCE semi-quantitative maps", 
      "U test", 
      "Luminal A cancers", 
      "A cancers", 
      "epidermal growth factor receptor 2 (HER2) positive cancers", 
      "growth factor receptor 2 (HER2) positive cancers", 
      "factor receptor 2 (HER2) positive cancers", 
      "receptor 2 (HER2) positive cancers", 
      "Luminal B cancers", 
      "B cancers", 
      "ConclusionsWhole-tumor histogram-based imaging features", 
      "histogram-based imaging features", 
      "washout maps", 
      "non-invasive analytical approach", 
      "Whole-tumor histogram-based features", 
      "MR multiparametric maps", 
      "Combined DWI", 
      "DCE evaluation"
    ], 
    "name": "Differentiation of triple-negative breast cancer from other subtypes through whole-tumor histogram analysis on multiparametric MR imaging", 
    "pagination": "2535-2544", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1108056658"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5804-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30402704"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5804-5", 
      "https://app.dimensions.ai/details/publication/pub.1108056658"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_766.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-018-5804-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5804-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5804-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5804-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5804-5'


 

This table displays all metadata directly associated to this object as RDF triples.

296 TRIPLES      22 PREDICATES      127 URIs      113 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5804-5 schema:about N0ef2e71f94d4417886c52f626ce1a955
2 N12b1220a688c4dd3ad7414c122eff28f
3 N22e32ea3cd5f41f3a4f4587845b2e19b
4 N31e7cb54cafa40db9606ba06da27f05d
5 N3568077cb0284139a2bfb90ed2e99a3c
6 N4bb440c6f56f49f1938e8399ed2a8cc4
7 N50d947aa89e24ec3ab232ced36ecfbc4
8 N676bafced52c4aebbbd2289dcbf8102b
9 N9bad253e9db64f119a8af4f5438a7095
10 Nba397cd6c92243a99071fc366db8918a
11 Ncf057d001c4646309648abbe4392987f
12 Nd6c6e96cb25141bf87ece413a971129f
13 anzsrc-for:11
14 anzsrc-for:1112
15 schema:author N62af6ef9276749f68895f574347fddc5
16 schema:citation sg:pub.10.1007/s00330-011-2220-5
17 sg:pub.10.1007/s00330-012-2403-8
18 sg:pub.10.1007/s00330-012-2425-2
19 sg:pub.10.1007/s00330-015-3845-6
20 sg:pub.10.1007/s10549-014-3170-9
21 sg:pub.10.1186/bcr777
22 schema:datePublished 2018-11-06
23 schema:datePublishedReg 2018-11-06
24 schema:description PurposeTo identify triple-negative (TN) breast cancer imaging biomarkers in comparison to other molecular subtypes using multiparametric MR imaging maps and whole-tumor histogram analysis.Materials and methodsThis retrospective study included 134 patients with invasive ductal carcinoma. Whole-tumor histogram-based texture features were extracted from a quantitative ADC map and DCE semi-quantitative maps (washin and washout). Univariate analysis using the Student’s t test or Mann–Whitney U test was performed to identify significant variables for differentiating TN cancer from other subtypes. The ROC curves were generated based on the significant variables identified from the univariate analysis. The AUC, sensitivity, and specificity for subtype differentiation were reported.ResultsThe significant parameters on the univariate analysis achieved an AUC of 0.710 (95% confidence interval [CI] 0.562, 0.858) with a sensitivity of 63.6% and a specificity of 73.1% at the best cutoff point for differentiating TN cancers from Luminal A cancers. An AUC of 0.763 (95% CI 0.608, 0.917) with a sensitivity of 86.4% and a specificity of 72.2% was achieved for differentiating TN cancers from human epidermal growth factor receptor 2 (HER2) positive cancers. Also, an AUC of 0.683 (95% CI 0.556, 0.809) with a sensitivity of 54.5% and a specificity of 83.9% was achieved for differentiating TN cancers from non-TN cancers. There was no significant feature on the univariate analysis for TN cancers versus Luminal B cancers.ConclusionsWhole-tumor histogram-based imaging features derived from ADC, along with washin and washout maps, provide a non-invasive analytical approach for discriminating TN cancers from other subtypes.Key Points• Whole-tumor histogram-based features on MR multiparametric maps can help to assess biological characterization of breast cancer.• Histogram-based texture analysis may predict the molecular subtypes of breast cancer.• Combined DWI and DCE evaluation helps to identify triple-negative breast cancer.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N3515b71bbb304cac8a19bfdef7cb23e3
29 N71835a47ab2747cb9df51e7e763d12ac
30 sg:journal.1289120
31 schema:keywords A cancers
32 ADC
33 ADC maps
34 AUC
35 B cancers
36 Combined DWI
37 ConclusionsWhole-tumor histogram-based imaging features
38 DCE evaluation
39 DCE semi-quantitative maps
40 DWI
41 Luminal A cancers
42 Luminal B cancers
43 MR
44 MR multiparametric maps
45 Mann-Whitney U test
46 PurposeTo
47 Quantitative ADC maps
48 ROC curve
49 Student's t test
50 TN cancers
51 U test
52 Whole-tumor histogram-based features
53 Whole-tumor histogram-based texture features
54 analysis
55 analytical approach
56 approach
57 best cutoff point
58 biological characterization
59 biomarkers
60 breast cancer
61 cancer
62 carcinoma
63 characterization
64 comparison
65 curves
66 cutoff point
67 differentiation
68 ductal carcinoma
69 epidermal growth factor receptor 2 (HER2) positive cancers
70 evaluation
71 factor receptor 2 (HER2) positive cancers
72 features
73 growth factor receptor 2 (HER2) positive cancers
74 histogram
75 histogram analysis
76 histogram-based features
77 histogram-based imaging features
78 histogram-based texture features
79 human epidermal growth factor receptor 2 (HER2) positive cancer
80 imaging features
81 invasive ductal carcinoma
82 maps
83 materials
84 molecular subtypes
85 multiparametric MR
86 multiparametric maps
87 non-TN cancers
88 non-invasive analytical approach
89 parameters
90 patients
91 point
92 positive cancers
93 receptor 2 (HER2) positive cancers
94 retrospective study
95 semi-quantitative maps
96 sensitivity
97 significant features
98 significant parameters
99 significant variables
100 specificity
101 study
102 subtype differentiation
103 subtypes
104 t test
105 test
106 texture analysis
107 texture features
108 triple-negative breast cancer
109 univariate analysis
110 variables
111 washin
112 washout maps
113 whole-tumor histogram analysis
114 schema:name Differentiation of triple-negative breast cancer from other subtypes through whole-tumor histogram analysis on multiparametric MR imaging
115 schema:pagination 2535-2544
116 schema:productId N4597743071f447e6b85a3cffcaa1d764
117 N4b9d8a6971ec46f989539033ed42e60b
118 Nec66334b8984445badca20eb08deb6d1
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108056658
120 https://doi.org/10.1007/s00330-018-5804-5
121 schema:sdDatePublished 2022-01-01T18:47
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher N3669b60ec27e45088e50002cbc1d5659
124 schema:url https://doi.org/10.1007/s00330-018-5804-5
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N0ef2e71f94d4417886c52f626ce1a955 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name ROC Curve
130 rdf:type schema:DefinedTerm
131 N12b1220a688c4dd3ad7414c122eff28f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Aged, 80 and over
133 rdf:type schema:DefinedTerm
134 N1a222f5d1d824f8aa23680c44c645c0d rdf:first sg:person.01077322142.08
135 rdf:rest N441d989f0cba490fa6b279eba6123896
136 N22e32ea3cd5f41f3a4f4587845b2e19b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Middle Aged
138 rdf:type schema:DefinedTerm
139 N31e7cb54cafa40db9606ba06da27f05d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Magnetic Resonance Imaging
141 rdf:type schema:DefinedTerm
142 N3515b71bbb304cac8a19bfdef7cb23e3 schema:issueNumber 5
143 rdf:type schema:PublicationIssue
144 N3568077cb0284139a2bfb90ed2e99a3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Young Adult
146 rdf:type schema:DefinedTerm
147 N3669b60ec27e45088e50002cbc1d5659 schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 N3b64539066084ee4afaa68496edb8efa rdf:first sg:person.016060776274.47
150 rdf:rest N1a222f5d1d824f8aa23680c44c645c0d
151 N441d989f0cba490fa6b279eba6123896 rdf:first sg:person.01316134060.32
152 rdf:rest Na9e06391117c4e2f85e8c07da17274e2
153 N4597743071f447e6b85a3cffcaa1d764 schema:name dimensions_id
154 schema:value pub.1108056658
155 rdf:type schema:PropertyValue
156 N4b9d8a6971ec46f989539033ed42e60b schema:name doi
157 schema:value 10.1007/s00330-018-5804-5
158 rdf:type schema:PropertyValue
159 N4bb440c6f56f49f1938e8399ed2a8cc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Retrospective Studies
161 rdf:type schema:DefinedTerm
162 N50d947aa89e24ec3ab232ced36ecfbc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Carcinoma, Ductal, Breast
164 rdf:type schema:DefinedTerm
165 N610c39c983de45ccb95e1df3e6dc2c63 rdf:first sg:person.01113325663.07
166 rdf:rest Nd7d036ff28e7488ba5b802d5b7444e8a
167 N62af6ef9276749f68895f574347fddc5 rdf:first sg:person.015124477327.54
168 rdf:rest Nb228969def5240fc9ab6f4bb4f3d6b93
169 N676bafced52c4aebbbd2289dcbf8102b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Adult
171 rdf:type schema:DefinedTerm
172 N71835a47ab2747cb9df51e7e763d12ac schema:volumeNumber 29
173 rdf:type schema:PublicationVolume
174 N7ec3011eab9943e3962c2a9ff8f53731 rdf:first sg:person.01010610662.09
175 rdf:rest N3b64539066084ee4afaa68496edb8efa
176 N9bad253e9db64f119a8af4f5438a7095 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Aged
178 rdf:type schema:DefinedTerm
179 Na9e06391117c4e2f85e8c07da17274e2 rdf:first sg:person.0770446530.14
180 rdf:rest Ne7cc77ce014244d4859bc7e64079e0bd
181 Nb228969def5240fc9ab6f4bb4f3d6b93 rdf:first sg:person.0740012034.59
182 rdf:rest N610c39c983de45ccb95e1df3e6dc2c63
183 Nba397cd6c92243a99071fc366db8918a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Triple Negative Breast Neoplasms
185 rdf:type schema:DefinedTerm
186 Ncf057d001c4646309648abbe4392987f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Humans
188 rdf:type schema:DefinedTerm
189 Nd6c6e96cb25141bf87ece413a971129f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Female
191 rdf:type schema:DefinedTerm
192 Nd7d036ff28e7488ba5b802d5b7444e8a rdf:first sg:person.01257353151.80
193 rdf:rest N7ec3011eab9943e3962c2a9ff8f53731
194 Ne7cc77ce014244d4859bc7e64079e0bd rdf:first sg:person.01243741146.21
195 rdf:rest rdf:nil
196 Nec66334b8984445badca20eb08deb6d1 schema:name pubmed_id
197 schema:value 30402704
198 rdf:type schema:PropertyValue
199 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
200 schema:name Medical and Health Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
203 schema:name Oncology and Carcinogenesis
204 rdf:type schema:DefinedTerm
205 sg:grant.8309733 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-018-5804-5
206 rdf:type schema:MonetaryGrant
207 sg:journal.1289120 schema:issn 0938-7994
208 1432-1084
209 schema:name European Radiology
210 schema:publisher Springer Nature
211 rdf:type schema:Periodical
212 sg:person.01010610662.09 schema:affiliation grid-institutes:grid.452404.3
213 schema:familyName Zhou
214 schema:givenName Xiaoyan
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010610662.09
216 rdf:type schema:Person
217 sg:person.01077322142.08 schema:affiliation grid-institutes:grid.481749.7
218 schema:familyName Grimm
219 schema:givenName Robert
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077322142.08
221 rdf:type schema:Person
222 sg:person.01113325663.07 schema:affiliation grid-institutes:None
223 schema:familyName Fu
224 schema:givenName Caixia
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113325663.07
226 rdf:type schema:Person
227 sg:person.01243741146.21 schema:affiliation grid-institutes:grid.452404.3
228 schema:familyName Peng
229 schema:givenName Weijun
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243741146.21
231 rdf:type schema:Person
232 sg:person.01257353151.80 schema:affiliation grid-institutes:grid.452404.3
233 schema:familyName Bai
234 schema:givenName Qianming
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257353151.80
236 rdf:type schema:Person
237 sg:person.01316134060.32 schema:affiliation grid-institutes:grid.452404.3
238 schema:familyName Liu
239 schema:givenName Li
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316134060.32
241 rdf:type schema:Person
242 sg:person.015124477327.54 schema:affiliation grid-institutes:grid.452404.3
243 schema:familyName Xie
244 schema:givenName Tianwen
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015124477327.54
246 rdf:type schema:Person
247 sg:person.016060776274.47 schema:affiliation grid-institutes:grid.411963.8
248 schema:familyName Li
249 schema:givenName Lihua
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016060776274.47
251 rdf:type schema:Person
252 sg:person.0740012034.59 schema:affiliation grid-institutes:grid.411480.8
253 schema:familyName Zhao
254 schema:givenName Qiufeng
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740012034.59
256 rdf:type schema:Person
257 sg:person.0770446530.14 schema:affiliation grid-institutes:grid.452404.3
258 schema:familyName Gu
259 schema:givenName Yajia
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770446530.14
261 rdf:type schema:Person
262 sg:pub.10.1007/s00330-011-2220-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018175402
263 https://doi.org/10.1007/s00330-011-2220-5
264 rdf:type schema:CreativeWork
265 sg:pub.10.1007/s00330-012-2403-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052285929
266 https://doi.org/10.1007/s00330-012-2403-8
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s00330-012-2425-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033448250
269 https://doi.org/10.1007/s00330-012-2425-2
270 rdf:type schema:CreativeWork
271 sg:pub.10.1007/s00330-015-3845-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030666279
272 https://doi.org/10.1007/s00330-015-3845-6
273 rdf:type schema:CreativeWork
274 sg:pub.10.1007/s10549-014-3170-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046750250
275 https://doi.org/10.1007/s10549-014-3170-9
276 rdf:type schema:CreativeWork
277 sg:pub.10.1186/bcr777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014097777
278 https://doi.org/10.1186/bcr777
279 rdf:type schema:CreativeWork
280 grid-institutes:None schema:alternateName MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, People’s Republic of China
281 schema:name MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, People’s Republic of China
282 rdf:type schema:Organization
283 grid-institutes:grid.411480.8 schema:alternateName Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
284 schema:name Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
285 rdf:type schema:Organization
286 grid-institutes:grid.411963.8 schema:alternateName Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, People’s Republic of China
287 schema:name Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, People’s Republic of China
288 rdf:type schema:Organization
289 grid-institutes:grid.452404.3 schema:alternateName Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
290 Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, 200032, Shanghai, People’s Republic of China
291 schema:name Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
292 Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, 200032, Shanghai, People’s Republic of China
293 rdf:type schema:Organization
294 grid-institutes:grid.481749.7 schema:alternateName MR Application Predevelopment, Siemens Healthineers, Erlangen, Germany
295 schema:name MR Application Predevelopment, Siemens Healthineers, Erlangen, Germany
296 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...