A comparative study of color Doppler imaging and contrast-enhanced ultrasound for the detection of ulceration in patients with carotid atherosclerotic ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Vasileios Rafailidis, Ioannis Chryssogonidis, Chrysostomos Xerras, Irini Nikolaou, Thomas Tegos, Konstantinos Kouskouras, Dimitrios Rafailidis, Afroditi Charitanti-Kouridou

ABSTRACT

OBJECTIVES: To evaluate the diagnostic accuracy of color Doppler imaging (CDI) and contrast-enhanced ultrasound (CEUS) for diagnosing carotid ulceration, having multi-detector computed tomography angiography (MDCTA) as the reference method. METHODS: Patients with carotid disease referred for ultrasound (US), either due to the occurrence of neurovascular symptoms or for screening purposes, were included in this study if at least one plaque causing moderate (50-69%) or severe (70-99%) internal carotid artery stenosis was detected. Carotid US with CDI technique, CEUS, and MDCTA were performed in all patients, investigating the presence of ulceration. The agreement between modalities was evaluated using kappa statistics. RESULTS: The study population included 54 patients (median age 62 years, inter-quartile range 16.2) and 66 carotid arteries. The mean degree of stenosis was 68.5% (SD 12.2%) while 47.1% of plaques were symptomatic. MDCTA characterized 28.8% of plaques as smooth, 45.5% irregular, and 24.3% ulcerated. Flow reversal was detected with CDI in 65.5% of ulcerations, while swirling of the microbubbles and neovessels adjacent to the ulcer were detected with CEUS in 17.64%. The agreement for ulceration diagnosis was moderate between CDI and CEUS (kappa 0.473) and between CDI and MDCTA (kappa 0.473) and very good between CEUS and MDCTA (kappa 0.921). The sensitivity, specificity, and positive and negative predictive values of CDI for the diagnosis of ulceration were 41.2%, 97.95%, 87.5%, 82.8% respectively, while CEUS respective measures were 94.1%, 97.95%, 94.1%, and 97.95%. CONCLUSION: CEUS outperformed CDI in terms of agreement with MDCTA and diagnostic accuracy for the diagnosis of ulcerated carotid plaque. KEY POINTS: • Superficial ulceration is a significant feature of carotid plaque vulnerability. • Color Doppler imaging has the potential to demonstrate carotid plaque ulceration but is characterized by limited sensitivity and moderate agreement with the reference method of multi-detector computed tomography angiography. • Contrast-enhanced ultrasound outperforms color Doppler imaging in terms of sensitivity for the detection of carotid plaque ulceration and in agreement with the reference method of multi-detector computed tomography angiography. More... »

PAGES

2137-2145

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5773-8

DOI

http://dx.doi.org/10.1007/s00330-018-5773-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107767721

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30350162


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aristotle University of Thessaloniki", 
          "id": "https://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rafailidis", 
        "givenName": "Vasileios", 
        "id": "sg:person.01076516220.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076516220.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aristotle University of Thessaloniki", 
          "id": "https://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chryssogonidis", 
        "givenName": "Ioannis", 
        "id": "sg:person.01027243614.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027243614.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aristotle University of Thessaloniki", 
          "id": "https://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "1st Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xerras", 
        "givenName": "Chrysostomos", 
        "id": "sg:person.013425072120.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425072120.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aristotle University of Thessaloniki", 
          "id": "https://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaou", 
        "givenName": "Irini", 
        "id": "sg:person.016166650310.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016166650310.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aristotle University of Thessaloniki", 
          "id": "https://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "1st Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tegos", 
        "givenName": "Thomas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aristotle University of Thessaloniki", 
          "id": "https://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kouskouras", 
        "givenName": "Konstantinos", 
        "id": "sg:person.010470022205.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010470022205.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, \u201cG. Gennimatas\u201d General Hospital of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rafailidis", 
        "givenName": "Dimitrios", 
        "id": "sg:person.0605223060.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605223060.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aristotle University of Thessaloniki", 
          "id": "https://www.grid.ac/institutes/grid.4793.9", 
          "name": [
            "Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charitanti-Kouridou", 
        "givenName": "Afroditi", 
        "id": "sg:person.012752305463.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752305463.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejrad.2003.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004502206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2003.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004502206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.256045013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006247073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a0486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011062848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.220.1.r01jl35179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011324917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(97)09292-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018207465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/159101999900500102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019854986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/159101999900500102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019854986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0741-5214(90)90294-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020661743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2012.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020763780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2292030516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021798165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2302020318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024978442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.107.487918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026783449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.107.487918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026783449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1076-6332(01)90133-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032687917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11547-011-0651-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035793133", 
          "https://doi.org/10.1007/s11547-011-0651-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1100/tsw.2009.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036603627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100720050029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037116943", 
          "https://doi.org/10.1007/s100720050029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2013.03.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038177592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040584115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00270-013-0711-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041122577", 
          "https://doi.org/10.1007/s00270-013-0711-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000108415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042614852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/0028-3886.32782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042698669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000144307.82502.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044403337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.25.2.304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045900880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-015-0402-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047687629", 
          "https://doi.org/10.1007/s13244-015-0402-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000439179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049268164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jeu127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052541759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0031-1281676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057242753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.26.10.1781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063341396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1747493016641964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064073238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1747493016641964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064073238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1747493016641964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064073238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.16.16700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069304845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/ch-16200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071127037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076509271", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077052034", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077418678", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-017-0543-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083535130", 
          "https://doi.org/10.1007/s13244-017-0543-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-017-0543-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083535130", 
          "https://doi.org/10.1007/s13244-017-0543-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40477-017-0239-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083745577", 
          "https://doi.org/10.1007/s40477-017-0239-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40477-017-0239-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083745577", 
          "https://doi.org/10.1007/s40477-017-0239-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a5488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100341807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/a-0586-1107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101355911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/a-0586-1107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101355911"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "OBJECTIVES: To evaluate the diagnostic accuracy of color Doppler imaging (CDI) and contrast-enhanced ultrasound (CEUS) for diagnosing carotid ulceration, having multi-detector computed tomography angiography (MDCTA) as the reference method.\nMETHODS: Patients with carotid disease referred for ultrasound (US), either due to the occurrence of neurovascular symptoms or for screening purposes, were included in this study if at least one plaque causing moderate (50-69%) or severe (70-99%) internal carotid artery stenosis was detected. Carotid US with CDI technique, CEUS, and MDCTA were performed in all patients, investigating the presence of ulceration. The agreement between modalities was evaluated using kappa statistics.\nRESULTS: The study population included 54 patients (median age 62\u00a0years, inter-quartile range 16.2) and 66 carotid arteries. The mean degree of stenosis was 68.5% (SD 12.2%) while 47.1% of plaques were symptomatic. MDCTA characterized 28.8% of plaques as smooth, 45.5% irregular, and 24.3% ulcerated. Flow reversal was detected with CDI in 65.5% of ulcerations, while swirling of the microbubbles and neovessels adjacent to the ulcer were detected with CEUS in 17.64%. The agreement for ulceration diagnosis was moderate between CDI and CEUS (kappa 0.473) and between CDI and MDCTA (kappa 0.473) and very good between CEUS and MDCTA (kappa 0.921). The sensitivity, specificity, and positive and negative predictive values of CDI for the diagnosis of ulceration were 41.2%, 97.95%, 87.5%, 82.8% respectively, while CEUS respective measures were 94.1%, 97.95%, 94.1%, and 97.95%.\nCONCLUSION: CEUS outperformed CDI in terms of agreement with MDCTA and diagnostic accuracy for the diagnosis of ulcerated carotid plaque.\nKEY POINTS: \u2022 Superficial ulceration is a significant feature of carotid plaque vulnerability. \u2022 Color Doppler imaging has the potential to demonstrate carotid plaque ulceration but is characterized by limited sensitivity and moderate agreement with the reference method of multi-detector computed tomography angiography. \u2022 Contrast-enhanced ultrasound outperforms color Doppler imaging in terms of sensitivity for the detection of carotid plaque ulceration and in agreement with the reference method of multi-detector computed tomography angiography.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5773-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "A comparative study of color Doppler imaging and contrast-enhanced ultrasound for the detection of ulceration in patients with carotid atherosclerotic disease", 
    "pagination": "2137-2145", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3889c9b723be9b79a3f514b65f2c64a47274c60fd0c8e1289ae5b220700d2f6e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30350162"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5773-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107767721"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5773-8", 
      "https://app.dimensions.ai/details/publication/pub.1107767721"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78950_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5773-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5773-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5773-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5773-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5773-8'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5773-8 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author Nf1ecd23bf98649328f9984b1c8e72d90
4 schema:citation sg:pub.10.1007/s00270-013-0711-2
5 sg:pub.10.1007/s100720050029
6 sg:pub.10.1007/s11547-011-0651-3
7 sg:pub.10.1007/s13244-015-0402-4
8 sg:pub.10.1007/s13244-017-0543-8
9 sg:pub.10.1007/s40477-017-0239-4
10 https://app.dimensions.ai/details/publication/pub.1076509271
11 https://app.dimensions.ai/details/publication/pub.1077052034
12 https://app.dimensions.ai/details/publication/pub.1077418678
13 https://doi.org/10.1016/0741-5214(90)90294-k
14 https://doi.org/10.1016/j.amjcard.2013.03.028
15 https://doi.org/10.1016/j.ejrad.2003.08.003
16 https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.06.015
17 https://doi.org/10.1016/j.ultrasmedbio.2012.10.015
18 https://doi.org/10.1016/s0140-6736(97)09292-1
19 https://doi.org/10.1016/s1076-6332(01)90133-3
20 https://doi.org/10.1055/a-0586-1107
21 https://doi.org/10.1055/s-0031-1281676
22 https://doi.org/10.1093/ehjci/jeu127
23 https://doi.org/10.1100/tsw.2009.74
24 https://doi.org/10.1148/radiol.2292030516
25 https://doi.org/10.1148/radiol.2302020318
26 https://doi.org/10.1148/radiology.220.1.r01jl35179
27 https://doi.org/10.1148/rg.256045013
28 https://doi.org/10.1159/000108415
29 https://doi.org/10.1159/000439179
30 https://doi.org/10.1161/01.cir.0000144307.82502.32
31 https://doi.org/10.1161/01.str.25.2.304
32 https://doi.org/10.1161/01.str.26.10.1781
33 https://doi.org/10.1161/strokeaha.107.487918
34 https://doi.org/10.1177/159101999900500102
35 https://doi.org/10.1177/1747493016641964
36 https://doi.org/10.2214/ajr.16.16700
37 https://doi.org/10.3174/ajnr.a0486
38 https://doi.org/10.3174/ajnr.a5488
39 https://doi.org/10.3233/ch-16200
40 https://doi.org/10.4103/0028-3886.32782
41 schema:datePublished 2019-04
42 schema:datePublishedReg 2019-04-01
43 schema:description OBJECTIVES: To evaluate the diagnostic accuracy of color Doppler imaging (CDI) and contrast-enhanced ultrasound (CEUS) for diagnosing carotid ulceration, having multi-detector computed tomography angiography (MDCTA) as the reference method. METHODS: Patients with carotid disease referred for ultrasound (US), either due to the occurrence of neurovascular symptoms or for screening purposes, were included in this study if at least one plaque causing moderate (50-69%) or severe (70-99%) internal carotid artery stenosis was detected. Carotid US with CDI technique, CEUS, and MDCTA were performed in all patients, investigating the presence of ulceration. The agreement between modalities was evaluated using kappa statistics. RESULTS: The study population included 54 patients (median age 62 years, inter-quartile range 16.2) and 66 carotid arteries. The mean degree of stenosis was 68.5% (SD 12.2%) while 47.1% of plaques were symptomatic. MDCTA characterized 28.8% of plaques as smooth, 45.5% irregular, and 24.3% ulcerated. Flow reversal was detected with CDI in 65.5% of ulcerations, while swirling of the microbubbles and neovessels adjacent to the ulcer were detected with CEUS in 17.64%. The agreement for ulceration diagnosis was moderate between CDI and CEUS (kappa 0.473) and between CDI and MDCTA (kappa 0.473) and very good between CEUS and MDCTA (kappa 0.921). The sensitivity, specificity, and positive and negative predictive values of CDI for the diagnosis of ulceration were 41.2%, 97.95%, 87.5%, 82.8% respectively, while CEUS respective measures were 94.1%, 97.95%, 94.1%, and 97.95%. CONCLUSION: CEUS outperformed CDI in terms of agreement with MDCTA and diagnostic accuracy for the diagnosis of ulcerated carotid plaque. KEY POINTS: • Superficial ulceration is a significant feature of carotid plaque vulnerability. • Color Doppler imaging has the potential to demonstrate carotid plaque ulceration but is characterized by limited sensitivity and moderate agreement with the reference method of multi-detector computed tomography angiography. • Contrast-enhanced ultrasound outperforms color Doppler imaging in terms of sensitivity for the detection of carotid plaque ulceration and in agreement with the reference method of multi-detector computed tomography angiography.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N1ff9be3a85ed45639658aea6a5289106
48 Nd25d72f5d2fb490392330b96ddb86953
49 sg:journal.1289120
50 schema:name A comparative study of color Doppler imaging and contrast-enhanced ultrasound for the detection of ulceration in patients with carotid atherosclerotic disease
51 schema:pagination 2137-2145
52 schema:productId N59b9fc28d8954ea9a2d78f2400d0232b
53 N60f16b0dd61543808529a04104f4959e
54 N79d14120569e4ff1a1cc0201061ab54d
55 N7bd15e5ea9ad4dc5a2c87273387175a5
56 Nfc2d27fefb2749dd8768e8acf579ea7a
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107767721
58 https://doi.org/10.1007/s00330-018-5773-8
59 schema:sdDatePublished 2019-04-11T13:19
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nb79e95e5b9e64fd08e6ba4b87e780501
62 schema:url https://link.springer.com/10.1007%2Fs00330-018-5773-8
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N164c35cc5c74467f8de54d2c2cb2b8b0 schema:affiliation https://www.grid.ac/institutes/grid.4793.9
67 schema:familyName Tegos
68 schema:givenName Thomas
69 rdf:type schema:Person
70 N1c492f23483d4cc78b75e8d32960b832 rdf:first sg:person.016166650310.22
71 rdf:rest Na21e002ad98c474fa56ffe5b65d6faa9
72 N1ff9be3a85ed45639658aea6a5289106 schema:issueNumber 4
73 rdf:type schema:PublicationIssue
74 N2551744c2d8d4352bc81938d052f56b8 rdf:first sg:person.013425072120.20
75 rdf:rest N1c492f23483d4cc78b75e8d32960b832
76 N589ad92066544bcaa56fe72b9432df2b rdf:first sg:person.012752305463.57
77 rdf:rest rdf:nil
78 N59b9fc28d8954ea9a2d78f2400d0232b schema:name doi
79 schema:value 10.1007/s00330-018-5773-8
80 rdf:type schema:PropertyValue
81 N60f16b0dd61543808529a04104f4959e schema:name readcube_id
82 schema:value 3889c9b723be9b79a3f514b65f2c64a47274c60fd0c8e1289ae5b220700d2f6e
83 rdf:type schema:PropertyValue
84 N79d14120569e4ff1a1cc0201061ab54d schema:name dimensions_id
85 schema:value pub.1107767721
86 rdf:type schema:PropertyValue
87 N7bbe3f4c25b442b79835a1a9efffccd0 rdf:first sg:person.01027243614.44
88 rdf:rest N2551744c2d8d4352bc81938d052f56b8
89 N7bd15e5ea9ad4dc5a2c87273387175a5 schema:name pubmed_id
90 schema:value 30350162
91 rdf:type schema:PropertyValue
92 N7dfe1f8613a3487aa16bf3614d1caa59 schema:name Department of Radiology, “G. Gennimatas” General Hospital of Thessaloniki, Thessaloniki, Greece
93 rdf:type schema:Organization
94 Na21e002ad98c474fa56ffe5b65d6faa9 rdf:first N164c35cc5c74467f8de54d2c2cb2b8b0
95 rdf:rest Nef4ecce0fab647f9a27b452a7e9e4136
96 Nb79e95e5b9e64fd08e6ba4b87e780501 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nd25d72f5d2fb490392330b96ddb86953 schema:volumeNumber 29
99 rdf:type schema:PublicationVolume
100 Nef4ecce0fab647f9a27b452a7e9e4136 rdf:first sg:person.010470022205.01
101 rdf:rest Nfd51a3c4438742eda050ff0b94c27e36
102 Nf1ecd23bf98649328f9984b1c8e72d90 rdf:first sg:person.01076516220.31
103 rdf:rest N7bbe3f4c25b442b79835a1a9efffccd0
104 Nfc2d27fefb2749dd8768e8acf579ea7a schema:name nlm_unique_id
105 schema:value 9114774
106 rdf:type schema:PropertyValue
107 Nfd51a3c4438742eda050ff0b94c27e36 rdf:first sg:person.0605223060.96
108 rdf:rest N589ad92066544bcaa56fe72b9432df2b
109 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
110 schema:name Medical and Health Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
113 schema:name Cardiorespiratory Medicine and Haematology
114 rdf:type schema:DefinedTerm
115 sg:journal.1289120 schema:issn 0938-7994
116 1432-1084
117 schema:name European Radiology
118 rdf:type schema:Periodical
119 sg:person.01027243614.44 schema:affiliation https://www.grid.ac/institutes/grid.4793.9
120 schema:familyName Chryssogonidis
121 schema:givenName Ioannis
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027243614.44
123 rdf:type schema:Person
124 sg:person.010470022205.01 schema:affiliation https://www.grid.ac/institutes/grid.4793.9
125 schema:familyName Kouskouras
126 schema:givenName Konstantinos
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010470022205.01
128 rdf:type schema:Person
129 sg:person.01076516220.31 schema:affiliation https://www.grid.ac/institutes/grid.4793.9
130 schema:familyName Rafailidis
131 schema:givenName Vasileios
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076516220.31
133 rdf:type schema:Person
134 sg:person.012752305463.57 schema:affiliation https://www.grid.ac/institutes/grid.4793.9
135 schema:familyName Charitanti-Kouridou
136 schema:givenName Afroditi
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012752305463.57
138 rdf:type schema:Person
139 sg:person.013425072120.20 schema:affiliation https://www.grid.ac/institutes/grid.4793.9
140 schema:familyName Xerras
141 schema:givenName Chrysostomos
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425072120.20
143 rdf:type schema:Person
144 sg:person.016166650310.22 schema:affiliation https://www.grid.ac/institutes/grid.4793.9
145 schema:familyName Nikolaou
146 schema:givenName Irini
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016166650310.22
148 rdf:type schema:Person
149 sg:person.0605223060.96 schema:affiliation N7dfe1f8613a3487aa16bf3614d1caa59
150 schema:familyName Rafailidis
151 schema:givenName Dimitrios
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605223060.96
153 rdf:type schema:Person
154 sg:pub.10.1007/s00270-013-0711-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041122577
155 https://doi.org/10.1007/s00270-013-0711-2
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s100720050029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037116943
158 https://doi.org/10.1007/s100720050029
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s11547-011-0651-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035793133
161 https://doi.org/10.1007/s11547-011-0651-3
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s13244-015-0402-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047687629
164 https://doi.org/10.1007/s13244-015-0402-4
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s13244-017-0543-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083535130
167 https://doi.org/10.1007/s13244-017-0543-8
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s40477-017-0239-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083745577
170 https://doi.org/10.1007/s40477-017-0239-4
171 rdf:type schema:CreativeWork
172 https://app.dimensions.ai/details/publication/pub.1076509271 schema:CreativeWork
173 https://app.dimensions.ai/details/publication/pub.1077052034 schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1077418678 schema:CreativeWork
175 https://doi.org/10.1016/0741-5214(90)90294-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1020661743
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.amjcard.2013.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038177592
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ejrad.2003.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004502206
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040584115
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.ultrasmedbio.2012.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020763780
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0140-6736(97)09292-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018207465
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s1076-6332(01)90133-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032687917
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1055/a-0586-1107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101355911
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1055/s-0031-1281676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057242753
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/ehjci/jeu127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052541759
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1100/tsw.2009.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036603627
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1148/radiol.2292030516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021798165
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1148/radiol.2302020318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024978442
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1148/radiology.220.1.r01jl35179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011324917
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1148/rg.256045013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006247073
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1159/000108415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042614852
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1159/000439179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049268164
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1161/01.cir.0000144307.82502.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044403337
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1161/01.str.25.2.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045900880
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1161/01.str.26.10.1781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063341396
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1161/strokeaha.107.487918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026783449
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1177/159101999900500102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019854986
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1177/1747493016641964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064073238
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2214/ajr.16.16700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069304845
222 rdf:type schema:CreativeWork
223 https://doi.org/10.3174/ajnr.a0486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011062848
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3174/ajnr.a5488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100341807
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3233/ch-16200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071127037
228 rdf:type schema:CreativeWork
229 https://doi.org/10.4103/0028-3886.32782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042698669
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.4793.9 schema:alternateName Aristotle University of Thessaloniki
232 schema:name 1st Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
233 Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...