Comparison of the diagnostic performance of CT Hounsfield unit histogram analysis and dual-energy X-ray absorptiometry in predicting osteoporosis of the ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Hyun Kyung Lim, Hong Il Ha, Sun-Young Park, Kwanseop Lee

ABSTRACT

PURPOSE: To evaluate the diagnostic performance of Hounsfield unit histogram analysis (HUHA) of precontrast abdominal-pelvic CT scans for predicting osteoporosis. MATERIALS AND METHODS: The study included 271 patients who had undergone dual X-ray absorptiometry (DXA) and abdominal-pelvic CT within 1 month. HUHA was measured using commercial 3D analysis software (Aquarius iNtuition v4.4.12Ⓡ, TeraRecon) and expressed as a percentage of seven HU range categories related to the ROI: A < 0, 0 ≤ B < 25, 25 ≤ C < 50, 50 ≤ D < 75, 75 ≤ E < 100, 100 ≤ F < 130, and 130 ≤ G. A coronal reformatted precontrast CT image containing the largest Ward's triangle was selected and then the ROI was drawn over the femoral neck. Correlation (r) and ROC curve analyses were used to assess diagnostic performance in predicting osteoporosis using the femur T-score as the reference standard. RESULTS: When the femur T-score was used as the reference, the rs of HUHA-A and HUHA-G were 0.74 and -0.57, respectively. Other HUHA values had moderate to weak correlations (r = -0.33 to 0.27). The correlation of HUHA-A was significantly higher than that of HUHA-G (p = 0.03). The area under the curve (0.95) of HUHA-A differed significantly from that of HUHA-G (0.90; p < 0.01). A HUHA-A threshold ≥ 27.7% was shown to predict osteoporosis based on a sensitivity and specificity of 95.6% and 81.7%, respectively. CONCLUSION: The HUHA-A value of the femoral neck is closely related to osteoporosis and may help predict osteoporosis. KEY POINTS: • HUHA correlated strongly with the DXA femur T-score (HUHA-A, r = 0.74). • The diagnostic performance of HUHA for predicting osteoporosis (AUC = 0.95) was better than that of the average CT HU value (AUC = 0.91; p < 0.05). • HUHA may help predict osteoporosis and enable semi-quantitative measurement of changes in bone mineral density. More... »

PAGES

1831-1840

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5728-0

DOI

http://dx.doi.org/10.1007/s00330-018-5728-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107224714

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30255256


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Soonchunhyang University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412678.e", 
          "name": [
            "Department of Radiology, Soonchunhyang University Seoul Hospital, 59, Daesagwan-ro, Yongsan-gu, 04401, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Hyun Kyung", 
        "id": "sg:person.01242201574.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242201574.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hallym University Sacred Heart Hospital", 
          "id": "https://www.grid.ac/institutes/grid.488421.3", 
          "name": [
            "Department of Radiology, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, 14068, Anyang-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ha", 
        "givenName": "Hong Il", 
        "id": "sg:person.0731135120.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731135120.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hallym University Sacred Heart Hospital", 
          "id": "https://www.grid.ac/institutes/grid.488421.3", 
          "name": [
            "Department of Radiology, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, 14068, Anyang-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sun-Young", 
        "id": "sg:person.07642275055.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07642275055.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hallym University Sacred Heart Hospital", 
          "id": "https://www.grid.ac/institutes/grid.488421.3", 
          "name": [
            "Department of Radiology, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, 14068, Anyang-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kwanseop", 
        "id": "sg:person.0634422731.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634422731.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-014-3529-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000787308", 
          "https://doi.org/10.1007/s00330-014-3529-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11606-015-3349-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002431226", 
          "https://doi.org/10.1007/s11606-015-3349-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.2174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004556601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2010.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005747997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00310253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008251070", 
          "https://doi.org/10.1007/bf00310253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00310253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008251070", 
          "https://doi.org/10.1007/bf00310253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(02)08761-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008292619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2009.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009337208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013380533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bone.2016.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017113717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12110462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018207948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-003-1490-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018648150", 
          "https://doi.org/10.1007/s00198-003-1490-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.2747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019675902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2629-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020679401", 
          "https://doi.org/10.1007/s00330-012-2629-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(06)68891-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021699768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bone.2008.08.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028154521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02652563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034087089", 
          "https://doi.org/10.1007/bf02652563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02652563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034087089", 
          "https://doi.org/10.1007/bf02652563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-4145-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034287897", 
          "https://doi.org/10.1007/s00330-015-4145-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-4145-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034287897", 
          "https://doi.org/10.1007/s00330-015-4145-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/213234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036123233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.86.2.420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038345864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1359/jbmr.050304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042450609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3408-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042975864", 
          "https://doi.org/10.1007/s00330-014-3408-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13131952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045843021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/8756-3282(95)00258-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046143091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2012.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046187517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2151458514525042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046351289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2151458514525042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046351289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3584-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046567383", 
          "https://doi.org/10.1007/s00330-014-3584-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-007-0543-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048434929", 
          "https://doi.org/10.1007/s00198-007-0543-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-007-0543-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048434929", 
          "https://doi.org/10.1007/s00198-007-0543-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2462062166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050381757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069975393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-153-2-201007200-00262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073711673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-154-5-201103010-00307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073712115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079286540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.3079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083859604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4801-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084510753", 
          "https://doi.org/10.1007/s00330-017-4801-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4801-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084510753", 
          "https://doi.org/10.1007/s00330-017-4801-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4904-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086098809", 
          "https://doi.org/10.1007/s00330-017-4904-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4904-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086098809", 
          "https://doi.org/10.1007/s00330-017-4904-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s41747-017-0017-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091894794", 
          "https://doi.org/10.1186/s41747-017-0017-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "PURPOSE: To evaluate the diagnostic performance of Hounsfield unit histogram analysis (HUHA) of precontrast abdominal-pelvic CT scans for predicting osteoporosis.\nMATERIALS AND METHODS: The study included 271 patients who had undergone dual X-ray absorptiometry (DXA) and abdominal-pelvic CT within 1 month. HUHA was measured using commercial 3D analysis software (Aquarius iNtuition v4.4.12\u24c7, TeraRecon) and expressed as a percentage of seven HU range categories related to the ROI: A < 0, 0 \u2264 B < 25, 25 \u2264 C < 50, 50 \u2264 D < 75, 75 \u2264 E < 100, 100 \u2264 F < 130, and 130 \u2264 G. A coronal reformatted precontrast CT image containing the largest Ward's triangle was selected and then the ROI was drawn over the femoral neck. Correlation (r) and ROC curve analyses were used to assess diagnostic performance in predicting osteoporosis using the femur T-score as the reference standard.\nRESULTS: When the femur T-score was used as the reference, the rs of HUHA-A and HUHA-G were 0.74 and -0.57, respectively. Other HUHA values had moderate to weak correlations (r = -0.33 to 0.27). The correlation of HUHA-A was significantly higher than that of HUHA-G (p = 0.03). The area under the curve (0.95) of HUHA-A differed significantly from that of HUHA-G (0.90; p < 0.01). A HUHA-A threshold \u2265 27.7% was shown to predict osteoporosis based on a sensitivity and specificity of 95.6% and 81.7%, respectively.\nCONCLUSION: The HUHA-A value of the femoral neck is closely related to osteoporosis and may help predict osteoporosis.\nKEY POINTS: \u2022 HUHA correlated strongly with the DXA femur T-score (HUHA-A, r = 0.74). \u2022 The diagnostic performance of HUHA for predicting osteoporosis (AUC = 0.95) was better than that of the average CT HU value (AUC = 0.91; p < 0.05). \u2022 HUHA may help predict osteoporosis and enable semi-quantitative measurement of changes in bone mineral density.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5728-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Comparison of the diagnostic performance of CT Hounsfield unit histogram analysis and dual-energy X-ray absorptiometry in predicting osteoporosis of the femur", 
    "pagination": "1831-1840", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55c6f711c203a8b888dc8318577d9ffa46f2a47cc485fe9c8eb19524b3cc04c0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30255256"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5728-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107224714"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5728-0", 
      "https://app.dimensions.ai/details/publication/pub.1107224714"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78956_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5728-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5728-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5728-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5728-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5728-0'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5728-0 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N817c2b68c66b45f3a5bfaf554b9daf0a
4 schema:citation sg:pub.10.1007/bf00310253
5 sg:pub.10.1007/bf02652563
6 sg:pub.10.1007/s00198-003-1490-4
7 sg:pub.10.1007/s00198-007-0543-5
8 sg:pub.10.1007/s00330-012-2629-5
9 sg:pub.10.1007/s00330-014-3408-2
10 sg:pub.10.1007/s00330-014-3529-7
11 sg:pub.10.1007/s00330-014-3584-0
12 sg:pub.10.1007/s00330-015-4145-x
13 sg:pub.10.1007/s00330-017-4801-4
14 sg:pub.10.1007/s00330-017-4904-y
15 sg:pub.10.1007/s11606-015-3349-8
16 sg:pub.10.1186/s41747-017-0017-2
17 https://doi.org/10.1002/jbmr.2174
18 https://doi.org/10.1002/jbmr.2747
19 https://doi.org/10.1002/jbmr.3079
20 https://doi.org/10.1002/jbmr.428
21 https://doi.org/10.1016/8756-3282(95)00258-4
22 https://doi.org/10.1016/j.acra.2012.05.017
23 https://doi.org/10.1016/j.amepre.2009.01.013
24 https://doi.org/10.1016/j.bone.2008.08.106
25 https://doi.org/10.1016/j.bone.2016.10.020
26 https://doi.org/10.1016/j.ejrad.2010.02.008
27 https://doi.org/10.1016/s0140-6736(02)08761-5
28 https://doi.org/10.1016/s0140-6736(06)68891-0
29 https://doi.org/10.1037/0033-2909.86.2.420
30 https://doi.org/10.1148/radiol.12110462
31 https://doi.org/10.1148/radiol.13131952
32 https://doi.org/10.1148/radiol.2016151657
33 https://doi.org/10.1148/radiol.2462062166
34 https://doi.org/10.1155/2013/213234
35 https://doi.org/10.1177/2151458514525042
36 https://doi.org/10.1359/jbmr.050304
37 https://doi.org/10.2307/2529786
38 https://doi.org/10.7326/0003-4819-153-2-201007200-00262
39 https://doi.org/10.7326/0003-4819-154-5-201103010-00307
40 schema:datePublished 2019-04
41 schema:datePublishedReg 2019-04-01
42 schema:description PURPOSE: To evaluate the diagnostic performance of Hounsfield unit histogram analysis (HUHA) of precontrast abdominal-pelvic CT scans for predicting osteoporosis. MATERIALS AND METHODS: The study included 271 patients who had undergone dual X-ray absorptiometry (DXA) and abdominal-pelvic CT within 1 month. HUHA was measured using commercial 3D analysis software (Aquarius iNtuition v4.4.12Ⓡ, TeraRecon) and expressed as a percentage of seven HU range categories related to the ROI: A < 0, 0 ≤ B < 25, 25 ≤ C < 50, 50 ≤ D < 75, 75 ≤ E < 100, 100 ≤ F < 130, and 130 ≤ G. A coronal reformatted precontrast CT image containing the largest Ward's triangle was selected and then the ROI was drawn over the femoral neck. Correlation (r) and ROC curve analyses were used to assess diagnostic performance in predicting osteoporosis using the femur T-score as the reference standard. RESULTS: When the femur T-score was used as the reference, the rs of HUHA-A and HUHA-G were 0.74 and -0.57, respectively. Other HUHA values had moderate to weak correlations (r = -0.33 to 0.27). The correlation of HUHA-A was significantly higher than that of HUHA-G (p = 0.03). The area under the curve (0.95) of HUHA-A differed significantly from that of HUHA-G (0.90; p < 0.01). A HUHA-A threshold ≥ 27.7% was shown to predict osteoporosis based on a sensitivity and specificity of 95.6% and 81.7%, respectively. CONCLUSION: The HUHA-A value of the femoral neck is closely related to osteoporosis and may help predict osteoporosis. KEY POINTS: • HUHA correlated strongly with the DXA femur T-score (HUHA-A, r = 0.74). • The diagnostic performance of HUHA for predicting osteoporosis (AUC = 0.95) was better than that of the average CT HU value (AUC = 0.91; p < 0.05). • HUHA may help predict osteoporosis and enable semi-quantitative measurement of changes in bone mineral density.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N3bd7786dcb8b4b099444a6fe61fc252c
47 Na4df21fb12394cdea957af6bb79ab407
48 sg:journal.1289120
49 schema:name Comparison of the diagnostic performance of CT Hounsfield unit histogram analysis and dual-energy X-ray absorptiometry in predicting osteoporosis of the femur
50 schema:pagination 1831-1840
51 schema:productId N11682b98def042f5884bbb4d89e2c8ec
52 N2e08795c58c04577a9f1b65b21818636
53 N3a95a125f8a541afab3d9758b3fa35a5
54 Nae76dcfdaf5a4034b37798aa3ee8353a
55 Nc445f2eb5d0243468ace1c23bcf6ee52
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107224714
57 https://doi.org/10.1007/s00330-018-5728-0
58 schema:sdDatePublished 2019-04-11T13:19
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Ndf42010b78e54f939c2bf0ef145168e0
61 schema:url https://link.springer.com/10.1007%2Fs00330-018-5728-0
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N11682b98def042f5884bbb4d89e2c8ec schema:name nlm_unique_id
66 schema:value 9114774
67 rdf:type schema:PropertyValue
68 N2e08795c58c04577a9f1b65b21818636 schema:name doi
69 schema:value 10.1007/s00330-018-5728-0
70 rdf:type schema:PropertyValue
71 N3a95a125f8a541afab3d9758b3fa35a5 schema:name pubmed_id
72 schema:value 30255256
73 rdf:type schema:PropertyValue
74 N3bd7786dcb8b4b099444a6fe61fc252c schema:issueNumber 4
75 rdf:type schema:PublicationIssue
76 N817c2b68c66b45f3a5bfaf554b9daf0a rdf:first sg:person.01242201574.31
77 rdf:rest N870248e9c7d2491e9f90a2cd7f28cc61
78 N870248e9c7d2491e9f90a2cd7f28cc61 rdf:first sg:person.0731135120.71
79 rdf:rest Nc6e6f383033b4ec097b20afe4345b746
80 N89e90c3378924d25b060192b1d38db32 rdf:first sg:person.0634422731.84
81 rdf:rest rdf:nil
82 Na4df21fb12394cdea957af6bb79ab407 schema:volumeNumber 29
83 rdf:type schema:PublicationVolume
84 Nae76dcfdaf5a4034b37798aa3ee8353a schema:name dimensions_id
85 schema:value pub.1107224714
86 rdf:type schema:PropertyValue
87 Nc445f2eb5d0243468ace1c23bcf6ee52 schema:name readcube_id
88 schema:value 55c6f711c203a8b888dc8318577d9ffa46f2a47cc485fe9c8eb19524b3cc04c0
89 rdf:type schema:PropertyValue
90 Nc6e6f383033b4ec097b20afe4345b746 rdf:first sg:person.07642275055.43
91 rdf:rest N89e90c3378924d25b060192b1d38db32
92 Ndf42010b78e54f939c2bf0ef145168e0 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
95 schema:name Medical and Health Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
98 schema:name Clinical Sciences
99 rdf:type schema:DefinedTerm
100 sg:journal.1289120 schema:issn 0938-7994
101 1432-1084
102 schema:name European Radiology
103 rdf:type schema:Periodical
104 sg:person.01242201574.31 schema:affiliation https://www.grid.ac/institutes/grid.412678.e
105 schema:familyName Lim
106 schema:givenName Hyun Kyung
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242201574.31
108 rdf:type schema:Person
109 sg:person.0634422731.84 schema:affiliation https://www.grid.ac/institutes/grid.488421.3
110 schema:familyName Lee
111 schema:givenName Kwanseop
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634422731.84
113 rdf:type schema:Person
114 sg:person.0731135120.71 schema:affiliation https://www.grid.ac/institutes/grid.488421.3
115 schema:familyName Ha
116 schema:givenName Hong Il
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731135120.71
118 rdf:type schema:Person
119 sg:person.07642275055.43 schema:affiliation https://www.grid.ac/institutes/grid.488421.3
120 schema:familyName Park
121 schema:givenName Sun-Young
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07642275055.43
123 rdf:type schema:Person
124 sg:pub.10.1007/bf00310253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008251070
125 https://doi.org/10.1007/bf00310253
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf02652563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034087089
128 https://doi.org/10.1007/bf02652563
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s00198-003-1490-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018648150
131 https://doi.org/10.1007/s00198-003-1490-4
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s00198-007-0543-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048434929
134 https://doi.org/10.1007/s00198-007-0543-5
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00330-012-2629-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020679401
137 https://doi.org/10.1007/s00330-012-2629-5
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00330-014-3408-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042975864
140 https://doi.org/10.1007/s00330-014-3408-2
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00330-014-3529-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000787308
143 https://doi.org/10.1007/s00330-014-3529-7
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00330-014-3584-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046567383
146 https://doi.org/10.1007/s00330-014-3584-0
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00330-015-4145-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034287897
149 https://doi.org/10.1007/s00330-015-4145-x
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00330-017-4801-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084510753
152 https://doi.org/10.1007/s00330-017-4801-4
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00330-017-4904-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1086098809
155 https://doi.org/10.1007/s00330-017-4904-y
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s11606-015-3349-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002431226
158 https://doi.org/10.1007/s11606-015-3349-8
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/s41747-017-0017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091894794
161 https://doi.org/10.1186/s41747-017-0017-2
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/jbmr.2174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556601
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/jbmr.2747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019675902
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/jbmr.3079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083859604
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/jbmr.428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013380533
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/8756-3282(95)00258-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046143091
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.acra.2012.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046187517
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.amepre.2009.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009337208
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.bone.2008.08.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028154521
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.bone.2016.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017113717
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.ejrad.2010.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005747997
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0140-6736(02)08761-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008292619
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0140-6736(06)68891-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021699768
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1037/0033-2909.86.2.420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038345864
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1148/radiol.12110462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018207948
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1148/radiol.13131952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045843021
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1148/radiol.2016151657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079286540
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1148/radiol.2462062166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050381757
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1155/2013/213234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036123233
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1177/2151458514525042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046351289
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1359/jbmr.050304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042450609
202 rdf:type schema:CreativeWork
203 https://doi.org/10.2307/2529786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975393
204 rdf:type schema:CreativeWork
205 https://doi.org/10.7326/0003-4819-153-2-201007200-00262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073711673
206 rdf:type schema:CreativeWork
207 https://doi.org/10.7326/0003-4819-154-5-201103010-00307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073712115
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.412678.e schema:alternateName Soonchunhyang University Hospital
210 schema:name Department of Radiology, Soonchunhyang University Seoul Hospital, 59, Daesagwan-ro, Yongsan-gu, 04401, Seoul, Republic of Korea
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.488421.3 schema:alternateName Hallym University Sacred Heart Hospital
213 schema:name Department of Radiology, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, 14068, Anyang-si, Gyeonggi-do, Republic of Korea
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...