Retrospective validation of a new diagnostic criterion for hepatocellular carcinoma on gadoxetic acid-enhanced MRI: can hypointensity on the hepatobiliary phase ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ijin Joo, Jeong Min Lee, Dong Ho Lee, Ju Hyeon Jeon, Joon Koo Han

ABSTRACT

OBJECTIVES: To validate new diagnostic criteria for hepatocellular carcinoma (HCC) on gadoxetic acid-enhanced MR imaging (Gd-EOB-MRI) using hypointensity on the hepatobiliary phase (HBP) as an alternative to washout in combination with ancillary features. METHODS: This retrospective study included 288 patients at high risk for HCC with 387 nodules (HCCs, n=292; non-HCCs, n=95) showing arterial phase hyper-enhancement (APHE) ≥1 cm on Gd-EOB-MRI. Imaging diagnoses of HCCs were made using different criteria: APHE plus hypointensity on the portal venous phase (PVP) (criterion 1), APHE plus hypointensity on the PVP and/or transitional phase (TP) (criterion 2), APHE plus hypointensity on the PVP and/or TP and/or HBP (criterion 3), and criterion 3 plus non-LR-1/2/M according to the Liver Imaging Reporting and Data System (LI-RADS) v2017 considering ancillary features (criterion 4). Sensitivities and specificities of those criteria were compared using McNemar's test. RESULTS: Among diagnostic criteria for HCCs, criteria 3 and 4 showed significantly higher sensitivities (93.8% and 92.5%, respectively) than criteria 1 and 2 (70.9% and 86.6%, respectively) (p values <0.001). The specificity of criterion 4 (87.4%) was shown to be significantly higher than that of criterion 3 (48.4%, p<0.001), albeit comparable to criterion 2 (86.3%, p>0.999) and significantly lower than criterion 1 (97.9%, p=0.002). CONCLUSIONS: In the non-invasive diagnosis of HCCs on Gd-EOB-MRI, HBP hypointensity may be used as an alternative to washout enabling a highly sensitive diagnosis with little loss in specificity if it is used after excluding nodules considered to be benignities or non-HCC malignancies based on characteristic imaging features. KEY POINTS: • Gd-EOB-MRI enhancement and ancillary features can be used to diagnose HCC. • Exclusion of LR-1/2/M improves specificity when HBP hypointensity is used. More... »

PAGES

1724-1732

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5727-1

DOI

http://dx.doi.org/10.1007/s00330-018-5727-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107223329

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30255250


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Republic of Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joo", 
        "givenName": "Ijin", 
        "id": "sg:person.01301443145.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Republic of Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jeong Min", 
        "id": "sg:person.01266602714.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Republic of Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Ho", 
        "id": "sg:person.0662301041.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662301041.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Mediplex Sejong Hospital, Incheon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeon", 
        "givenName": "Ju Hyeon", 
        "id": "sg:person.01126454545.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126454545.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Republic of Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-015-3686-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002189628", 
          "https://doi.org/10.1007/s00330-015-3686-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005052505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005052505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/jhc.s61146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005649601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000343875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009071331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.27304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009492069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017355848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2463/mrms.2014-0149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017722091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000367750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023804997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000001157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027024398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000001157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027024398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0144247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033684188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14132362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034015286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2015.16.3.465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038468286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2014.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041461068", 
          "https://doi.org/10.1038/ajg.2014.145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2015.02.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043719222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000327577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046800793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.215.3.r00jn03746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048522964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2685-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050203246", 
          "https://doi.org/10.1007/s00330-012-2685-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-015-0592-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050511411", 
          "https://doi.org/10.1007/s00261-015-0592-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/m14-2509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073742546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.29086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074239526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14140690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079024270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016160639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079348641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2017.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084088510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2017.18.3.427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084775246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12072-017-9799-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086045643", 
          "https://doi.org/10.1007/s12072-017-9799-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12072-017-9799-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086045643", 
          "https://doi.org/10.1007/s12072-017-9799-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185117728534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091296738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185117728534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091296738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1292-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091341011", 
          "https://doi.org/10.1007/s00261-017-1292-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1292-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091341011", 
          "https://doi.org/10.1007/s00261-017-1292-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.29487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091404952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.2017170098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092685377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-5188-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099692949", 
          "https://doi.org/10.1007/s00330-017-5188-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2017.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099729198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2017.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099729198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2017.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099729198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2017.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099729198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21037/hbsn.2017.11.01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100070459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2018.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103170407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.26027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103188119"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "OBJECTIVES: To validate new diagnostic criteria for hepatocellular carcinoma (HCC) on gadoxetic acid-enhanced MR imaging (Gd-EOB-MRI) using hypointensity on the hepatobiliary phase (HBP) as an alternative to washout in combination with ancillary features.\nMETHODS: This retrospective study included 288 patients at high risk for HCC with 387 nodules (HCCs, n=292; non-HCCs, n=95) showing arterial phase hyper-enhancement (APHE) \u22651 cm on Gd-EOB-MRI. Imaging diagnoses of HCCs were made using different criteria: APHE plus hypointensity on the portal venous phase (PVP) (criterion 1), APHE plus hypointensity on the PVP and/or transitional phase (TP) (criterion 2), APHE plus hypointensity on the PVP and/or TP and/or HBP (criterion 3), and criterion 3 plus non-LR-1/2/M according to the Liver Imaging Reporting and Data System (LI-RADS) v2017 considering ancillary features (criterion 4). Sensitivities and specificities of those criteria were compared using McNemar's test.\nRESULTS: Among diagnostic criteria for HCCs, criteria 3 and 4 showed significantly higher sensitivities (93.8% and 92.5%, respectively) than criteria 1 and 2 (70.9% and 86.6%, respectively) (p values <0.001). The specificity of criterion 4 (87.4%) was shown to be significantly higher than that of criterion 3 (48.4%, p<0.001), albeit comparable to criterion 2 (86.3%, p>0.999) and significantly lower than criterion 1 (97.9%, p=0.002).\nCONCLUSIONS: In the non-invasive diagnosis of HCCs on Gd-EOB-MRI, HBP hypointensity may be used as an alternative to washout enabling a highly sensitive diagnosis with little loss in specificity if it is used after excluding nodules considered to be benignities or non-HCC malignancies based on characteristic imaging features.\nKEY POINTS: \u2022 Gd-EOB-MRI enhancement and ancillary features can be used to diagnose HCC. \u2022 Exclusion of LR-1/2/M improves specificity when HBP hypointensity is used.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5727-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Retrospective validation of a new diagnostic criterion for hepatocellular carcinoma on gadoxetic acid-enhanced MRI: can hypointensity on the hepatobiliary phase be used as an alternative to washout with the aid of ancillary features?", 
    "pagination": "1724-1732", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "390f48dd6ebbe8508704417ce7f6e26782b4b98f18e371e25e844abf8791078d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30255250"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5727-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107223329"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5727-1", 
      "https://app.dimensions.ai/details/publication/pub.1107223329"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78970_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5727-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5727-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5727-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5727-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5727-1'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5727-1 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N064cf0d3cf9e46a8a7cf757dec82788f
4 schema:citation sg:pub.10.1007/s00261-015-0592-8
5 sg:pub.10.1007/s00261-017-1292-3
6 sg:pub.10.1007/s00330-012-2685-x
7 sg:pub.10.1007/s00330-015-3686-3
8 sg:pub.10.1007/s00330-017-5188-y
9 sg:pub.10.1007/s12072-017-9799-9
10 sg:pub.10.1038/ajg.2014.145
11 https://doi.org/10.1002/hep.27304
12 https://doi.org/10.1002/hep.29086
13 https://doi.org/10.1002/hep.29487
14 https://doi.org/10.1002/jmri.25406
15 https://doi.org/10.1002/jmri.26027
16 https://doi.org/10.1016/j.jhep.2017.03.011
17 https://doi.org/10.1016/j.jhep.2017.12.014
18 https://doi.org/10.1016/j.jhep.2018.03.019
19 https://doi.org/10.1053/j.gastro.2015.02.051
20 https://doi.org/10.1097/md.0000000000001157
21 https://doi.org/10.1097/rli.0000000000000258
22 https://doi.org/10.1148/radiol.14132362
23 https://doi.org/10.1148/radiol.14140690
24 https://doi.org/10.1148/radiol.2016160639
25 https://doi.org/10.1148/radiology.215.3.r00jn03746
26 https://doi.org/10.1148/rg.2017170098
27 https://doi.org/10.1159/000327577
28 https://doi.org/10.1159/000343875
29 https://doi.org/10.1159/000367750
30 https://doi.org/10.1177/0284185117728534
31 https://doi.org/10.1371/journal.pone.0144247
32 https://doi.org/10.21037/hbsn.2017.11.01
33 https://doi.org/10.2147/jhc.s61146
34 https://doi.org/10.2463/mrms.2014-0149
35 https://doi.org/10.3348/kjr.2015.16.3.465
36 https://doi.org/10.3348/kjr.2017.18.3.427
37 https://doi.org/10.7326/m14-2509
38 schema:datePublished 2019-04
39 schema:datePublishedReg 2019-04-01
40 schema:description OBJECTIVES: To validate new diagnostic criteria for hepatocellular carcinoma (HCC) on gadoxetic acid-enhanced MR imaging (Gd-EOB-MRI) using hypointensity on the hepatobiliary phase (HBP) as an alternative to washout in combination with ancillary features. METHODS: This retrospective study included 288 patients at high risk for HCC with 387 nodules (HCCs, n=292; non-HCCs, n=95) showing arterial phase hyper-enhancement (APHE) ≥1 cm on Gd-EOB-MRI. Imaging diagnoses of HCCs were made using different criteria: APHE plus hypointensity on the portal venous phase (PVP) (criterion 1), APHE plus hypointensity on the PVP and/or transitional phase (TP) (criterion 2), APHE plus hypointensity on the PVP and/or TP and/or HBP (criterion 3), and criterion 3 plus non-LR-1/2/M according to the Liver Imaging Reporting and Data System (LI-RADS) v2017 considering ancillary features (criterion 4). Sensitivities and specificities of those criteria were compared using McNemar's test. RESULTS: Among diagnostic criteria for HCCs, criteria 3 and 4 showed significantly higher sensitivities (93.8% and 92.5%, respectively) than criteria 1 and 2 (70.9% and 86.6%, respectively) (p values <0.001). The specificity of criterion 4 (87.4%) was shown to be significantly higher than that of criterion 3 (48.4%, p<0.001), albeit comparable to criterion 2 (86.3%, p>0.999) and significantly lower than criterion 1 (97.9%, p=0.002). CONCLUSIONS: In the non-invasive diagnosis of HCCs on Gd-EOB-MRI, HBP hypointensity may be used as an alternative to washout enabling a highly sensitive diagnosis with little loss in specificity if it is used after excluding nodules considered to be benignities or non-HCC malignancies based on characteristic imaging features. KEY POINTS: • Gd-EOB-MRI enhancement and ancillary features can be used to diagnose HCC. • Exclusion of LR-1/2/M improves specificity when HBP hypointensity is used.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N1f6704b9108d46f59a8c5e0cde407786
45 N4b19102e28274590aa69be939b94fd25
46 sg:journal.1289120
47 schema:name Retrospective validation of a new diagnostic criterion for hepatocellular carcinoma on gadoxetic acid-enhanced MRI: can hypointensity on the hepatobiliary phase be used as an alternative to washout with the aid of ancillary features?
48 schema:pagination 1724-1732
49 schema:productId N0817cf9dc0ff4b40a8babbfe92be554b
50 N637a3e7d44a741eea5c5c2e11cc708b5
51 N751f17a0b1c247d38b37f9e4c6affd06
52 N76da8e9b90d540d79a23e1191023f85b
53 N8851a2b53e214f0eafe173b079097773
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107223329
55 https://doi.org/10.1007/s00330-018-5727-1
56 schema:sdDatePublished 2019-04-11T13:20
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N586bf641587a4fe3a1e3001747f49ad0
59 schema:url https://link.springer.com/10.1007%2Fs00330-018-5727-1
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N064cf0d3cf9e46a8a7cf757dec82788f rdf:first sg:person.01301443145.43
64 rdf:rest N32da8d5c3eb242e8bf0e33198cf0a346
65 N0817cf9dc0ff4b40a8babbfe92be554b schema:name nlm_unique_id
66 schema:value 9114774
67 rdf:type schema:PropertyValue
68 N18f8b8f64ba5421c96755501dd9e960c rdf:first sg:person.0662301041.59
69 rdf:rest N559da011588045eaa69409656aff7b3f
70 N1f6704b9108d46f59a8c5e0cde407786 schema:issueNumber 4
71 rdf:type schema:PublicationIssue
72 N32da8d5c3eb242e8bf0e33198cf0a346 rdf:first sg:person.01266602714.81
73 rdf:rest N18f8b8f64ba5421c96755501dd9e960c
74 N4b19102e28274590aa69be939b94fd25 schema:volumeNumber 29
75 rdf:type schema:PublicationVolume
76 N559da011588045eaa69409656aff7b3f rdf:first sg:person.01126454545.55
77 rdf:rest Nc0511a683195462fa03949f7951b2ee9
78 N586bf641587a4fe3a1e3001747f49ad0 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N637a3e7d44a741eea5c5c2e11cc708b5 schema:name doi
81 schema:value 10.1007/s00330-018-5727-1
82 rdf:type schema:PropertyValue
83 N751f17a0b1c247d38b37f9e4c6affd06 schema:name readcube_id
84 schema:value 390f48dd6ebbe8508704417ce7f6e26782b4b98f18e371e25e844abf8791078d
85 rdf:type schema:PropertyValue
86 N76da8e9b90d540d79a23e1191023f85b schema:name pubmed_id
87 schema:value 30255250
88 rdf:type schema:PropertyValue
89 N8851a2b53e214f0eafe173b079097773 schema:name dimensions_id
90 schema:value pub.1107223329
91 rdf:type schema:PropertyValue
92 Nb9144ef143664359bfa370308b831cf4 schema:name Department of Radiology, Mediplex Sejong Hospital, Incheon, Republic of Korea
93 rdf:type schema:Organization
94 Nc0511a683195462fa03949f7951b2ee9 rdf:first sg:person.0647723014.95
95 rdf:rest rdf:nil
96 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
97 schema:name Medical and Health Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
100 schema:name Clinical Sciences
101 rdf:type schema:DefinedTerm
102 sg:journal.1289120 schema:issn 0938-7994
103 1432-1084
104 schema:name European Radiology
105 rdf:type schema:Periodical
106 sg:person.01126454545.55 schema:affiliation Nb9144ef143664359bfa370308b831cf4
107 schema:familyName Jeon
108 schema:givenName Ju Hyeon
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126454545.55
110 rdf:type schema:Person
111 sg:person.01266602714.81 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
112 schema:familyName Lee
113 schema:givenName Jeong Min
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81
115 rdf:type schema:Person
116 sg:person.01301443145.43 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
117 schema:familyName Joo
118 schema:givenName Ijin
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43
120 rdf:type schema:Person
121 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
122 schema:familyName Han
123 schema:givenName Joon Koo
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
125 rdf:type schema:Person
126 sg:person.0662301041.59 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
127 schema:familyName Lee
128 schema:givenName Dong Ho
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662301041.59
130 rdf:type schema:Person
131 sg:pub.10.1007/s00261-015-0592-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050511411
132 https://doi.org/10.1007/s00261-015-0592-8
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00261-017-1292-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091341011
135 https://doi.org/10.1007/s00261-017-1292-3
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00330-012-2685-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050203246
138 https://doi.org/10.1007/s00330-012-2685-x
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00330-015-3686-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002189628
141 https://doi.org/10.1007/s00330-015-3686-3
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00330-017-5188-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1099692949
144 https://doi.org/10.1007/s00330-017-5188-y
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s12072-017-9799-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086045643
147 https://doi.org/10.1007/s12072-017-9799-9
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/ajg.2014.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041461068
150 https://doi.org/10.1038/ajg.2014.145
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/hep.27304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009492069
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/hep.29086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074239526
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/hep.29487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091404952
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/jmri.25406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017355848
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/jmri.26027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103188119
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jhep.2017.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084088510
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jhep.2017.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099729198
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jhep.2018.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103170407
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1053/j.gastro.2015.02.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043719222
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1097/md.0000000000001157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027024398
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1097/rli.0000000000000258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005052505
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1148/radiol.14132362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034015286
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1148/radiol.14140690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079024270
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1148/radiol.2016160639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079348641
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1148/radiology.215.3.r00jn03746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048522964
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1148/rg.2017170098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092685377
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1159/000327577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046800793
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1159/000343875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009071331
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1159/000367750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023804997
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1177/0284185117728534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091296738
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1371/journal.pone.0144247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033684188
193 rdf:type schema:CreativeWork
194 https://doi.org/10.21037/hbsn.2017.11.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100070459
195 rdf:type schema:CreativeWork
196 https://doi.org/10.2147/jhc.s61146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005649601
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2463/mrms.2014-0149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017722091
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3348/kjr.2015.16.3.465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038468286
201 rdf:type schema:CreativeWork
202 https://doi.org/10.3348/kjr.2017.18.3.427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084775246
203 rdf:type schema:CreativeWork
204 https://doi.org/10.7326/m14-2509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073742546
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
207 schema:name Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
208 Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Republic of Korea
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
211 schema:name Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
212 Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 110-744, Seoul, Republic of Korea
213 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...