Evaluation of liver parenchyma stiffness in patients with liver tumours: optimal strategy for shear wave elastography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Wei Zheng, Zhong-guo Zhou, Chong-hei Wong, Xiao-qing Pei, Shu-lian Zhuang, Qing Li, Min-Shan Chen, An-hua Li, Fu-jun Zhang

ABSTRACT

OBJECTIVES: To determine the methodology of non-invasive test for evaluation of liver stiffness (LS) with tumours using two-dimensional (2D) shear wave elastography (SWE). METHODS: One hundred and twenty-seven patients with liver tumours underwent 2D-SWE before surgery to measure liver and spleen stiffness (SS). Two-dimensional SWE values were obtained in the liver at 0-1 cm, 1-2 cm and >2 cm from the tumour edge (PLS-1, PLS-2 and RLS, respectively). The influence of tumour-associated factors was evaluated. The area under the receiver operating characteristic curve (AUC) for each value was analysed to diagnose cirrhosis. RESULTS: PLS-1 was higher than PLS-2, which was even higher than RLS (p < 0.001). The AUCs of PLS-1, PLS-2, RLS and SS for diagnosing cirrhosis were 0.760, 0.833, 0.940 and 0.676, with the specificity of 75.7%, 67.6%, 90.3% and 77.4%, respectively. Tumour sizes, locations or types showed no apparent influence on 2D-SWE values except for RLS, which was higher in patients with primary hepatic carcinomas (p < 0.05). CONCLUSIONS: LS with tumours is best measured at >2 cm away from the tumour edge. SS measurement could be used as an alternative to LS measurement in the event of no available liver for detection. KEY POINTS: • Tumour-associated factors impact background liver stiffness assessment. • Background liver stiffness is best measured at >2 cm from tumour edge. • Spleen stiffness can be an alternative to assess background liver stiffness. More... »

PAGES

1479-1488

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5676-8

DOI

http://dx.doi.org/10.1007/s00330-018-5676-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106131263

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30105408


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Cirrhosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spleen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Ultrasound, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Wei", 
        "id": "sg:person.015710345304.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015710345304.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Zhong-guo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People\u2019s Republic of China", 
            "Department of Oncology, Centro Hospitalar Conde de S. Januario (CHCSJ), Macao, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wong", 
        "givenName": "Chong-hei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Ultrasound, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pei", 
        "givenName": "Xiao-qing", 
        "id": "sg:person.011375615504.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375615504.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong Provincial Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413402.0", 
          "name": [
            "Department of Ultrasonography, the Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, 510120, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhuang", 
        "givenName": "Shu-lian", 
        "id": "sg:person.016505725704.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505725704.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Ultrasound, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Min-Shan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Ultrasound, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "An-hua", 
        "id": "sg:person.010600235104.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010600235104.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Minimally Invasive Interventional Centre, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fu-jun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/00000658-198707000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000280856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-198707000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000280856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-198707000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000280856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14140839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001646828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1440-1746.2010.06325.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002376447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1440-1746.2010.06325.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002376447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2013.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007864295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2014.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008785477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2008.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012156588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0804525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013129482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.25936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016635335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3292-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018903638", 
          "https://doi.org/10.1007/s00330-014-3292-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2012.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020630462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1872-034x.2011.00928.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023554437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024543583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2010.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024764237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra065156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024894126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1091-255x(02)00370-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027253131", 
          "https://doi.org/10.1016/s1091-255x(02)00370-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1091-255x(02)00370-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027253131", 
          "https://doi.org/10.1016/s1091-255x(02)00370-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.1800820935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028918302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1091-255x(01)80054-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029094015", 
          "https://doi.org/10.1016/s1091-255x(01)80054-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.05.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029638901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2013.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030512589", 
          "https://doi.org/10.1038/ajg.2013.119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surg.2015.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033175980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-8278(91)90084-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034246656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2015.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035784341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039913937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3728-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040361344", 
          "https://doi.org/10.1007/s00330-015-3728-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2015.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042611358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.23425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046135502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.23425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046135502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000335713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046999601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2016.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047486766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13130128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047659563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/hepr.12476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053081857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0042-108431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057378591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2531595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v20.i28.9578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078948009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14141210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079009336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14131164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079037776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0043-103952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084821758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0043-103955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084821759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4900-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091051849", 
          "https://doi.org/10.1007/s00330-017-4900-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4900-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091051849", 
          "https://doi.org/10.1007/s00330-017-4900-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2017.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091213956"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "OBJECTIVES: To determine the methodology of non-invasive test for evaluation of liver stiffness (LS) with tumours using two-dimensional (2D) shear wave elastography (SWE).\nMETHODS: One hundred and twenty-seven patients with liver tumours underwent 2D-SWE before surgery to measure liver and spleen stiffness (SS). Two-dimensional SWE values were obtained in the liver at 0-1 cm, 1-2 cm and >2 cm from the tumour edge (PLS-1, PLS-2 and RLS, respectively). The influence of tumour-associated factors was evaluated. The area under the receiver operating characteristic curve (AUC) for each value was analysed to diagnose cirrhosis.\nRESULTS: PLS-1 was higher than PLS-2, which was even higher than RLS (p < 0.001). The AUCs of PLS-1, PLS-2, RLS and SS for diagnosing cirrhosis were 0.760, 0.833, 0.940 and 0.676, with the specificity of 75.7%, 67.6%, 90.3% and 77.4%, respectively. Tumour sizes, locations or types showed no apparent influence on 2D-SWE values except for RLS, which was higher in patients with primary hepatic carcinomas (p < 0.05).\nCONCLUSIONS: LS with tumours is best measured at >2 cm away from the tumour edge. SS measurement could be used as an alternative to LS measurement in the event of no available liver for detection.\nKEY POINTS: \u2022 Tumour-associated factors impact background liver stiffness assessment. \u2022 Background liver stiffness is best measured at >2 cm from tumour edge. \u2022 Spleen stiffness can be an alternative to assess background liver stiffness.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5676-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Evaluation of liver parenchyma stiffness in patients with liver tumours: optimal strategy for shear wave elastography", 
    "pagination": "1479-1488", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e833233f2de8be5fb40b0c287c9df082c019b68de8de9212a2520023de619766"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30105408"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5676-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106131263"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5676-8", 
      "https://app.dimensions.ai/details/publication/pub.1106131263"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112042_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5676-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5676-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5676-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5676-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5676-8'


 

This table displays all metadata directly associated to this object as RDF triples.

324 TRIPLES      21 PREDICATES      84 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5676-8 schema:about N083fb882ccca4c0a9da1a37eefa6fa49
2 N0fbc5449cbd448138666109452dd1d7b
3 N1c5d5e20bd944034b879043801a1f297
4 N2229807202c8418899d46714c09984cd
5 N2eedd803cb614588b2e751cd8ee6b2c3
6 N3646f84619b54df485b881b0db50cb8b
7 N45b1fc94d449499e9bb6b12124f83929
8 N574c3328cb4c42f68d26ffe0166f46f0
9 N665c49c0542d4fe3ae8be28500ff3639
10 N6ed404e8cfe844d68ae457426e020abb
11 N8528d0d8e47841aeb322f544beb54308
12 N8ebb92226d3b45e3a4653e69cd0163ef
13 Nb771668585954339a85b24c016ecced2
14 Nbe4a2dca0b0e4efdae36a19c43af91a1
15 Nd35415cc3d6b40e09ec9d6ed795ff894
16 Nda0579aeeb8249bb9c9b2dc6854769a4
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author N7fd549cd1d4f451392fe893cce09dff6
20 schema:citation sg:pub.10.1007/s00330-014-3292-9
21 sg:pub.10.1007/s00330-015-3728-x
22 sg:pub.10.1007/s00330-017-4900-2
23 sg:pub.10.1016/s1091-255x(01)80054-8
24 sg:pub.10.1016/s1091-255x(02)00370-0
25 sg:pub.10.1038/ajg.2013.119
26 https://doi.org/10.1002/bjs.1800820935
27 https://doi.org/10.1002/hep.23425
28 https://doi.org/10.1002/hep.25936
29 https://doi.org/10.1016/0168-8278(91)90084-o
30 https://doi.org/10.1016/j.ejrad.2012.05.030
31 https://doi.org/10.1016/j.ejrad.2012.10.004
32 https://doi.org/10.1016/j.ejrad.2016.11.006
33 https://doi.org/10.1016/j.jhep.2010.07.033
34 https://doi.org/10.1016/j.jhep.2012.02.010
35 https://doi.org/10.1016/j.surg.2015.06.024
36 https://doi.org/10.1016/j.ultrasmedbio.2008.08.018
37 https://doi.org/10.1016/j.ultrasmedbio.2013.10.021
38 https://doi.org/10.1016/j.ultrasmedbio.2014.05.008
39 https://doi.org/10.1016/j.ultrasmedbio.2015.03.007
40 https://doi.org/10.1016/j.ultrasmedbio.2015.03.009
41 https://doi.org/10.1016/j.ultrasmedbio.2016.05.002
42 https://doi.org/10.1016/j.ultrasmedbio.2017.07.003
43 https://doi.org/10.1055/s-0042-108431
44 https://doi.org/10.1055/s-0043-103952
45 https://doi.org/10.1055/s-0043-103955
46 https://doi.org/10.1056/nejmoa0804525
47 https://doi.org/10.1056/nejmra065156
48 https://doi.org/10.1097/00000658-198707000-00005
49 https://doi.org/10.1111/hepr.12476
50 https://doi.org/10.1111/j.1440-1746.2010.06325.x
51 https://doi.org/10.1111/j.1872-034x.2011.00928.x
52 https://doi.org/10.1148/radiol.13130128
53 https://doi.org/10.1148/radiol.14131164
54 https://doi.org/10.1148/radiol.14140839
55 https://doi.org/10.1148/radiol.14141210
56 https://doi.org/10.1159/000335713
57 https://doi.org/10.2307/2531595
58 https://doi.org/10.3748/wjg.v20.i28.9578
59 schema:datePublished 2019-03
60 schema:datePublishedReg 2019-03-01
61 schema:description OBJECTIVES: To determine the methodology of non-invasive test for evaluation of liver stiffness (LS) with tumours using two-dimensional (2D) shear wave elastography (SWE). METHODS: One hundred and twenty-seven patients with liver tumours underwent 2D-SWE before surgery to measure liver and spleen stiffness (SS). Two-dimensional SWE values were obtained in the liver at 0-1 cm, 1-2 cm and >2 cm from the tumour edge (PLS-1, PLS-2 and RLS, respectively). The influence of tumour-associated factors was evaluated. The area under the receiver operating characteristic curve (AUC) for each value was analysed to diagnose cirrhosis. RESULTS: PLS-1 was higher than PLS-2, which was even higher than RLS (p < 0.001). The AUCs of PLS-1, PLS-2, RLS and SS for diagnosing cirrhosis were 0.760, 0.833, 0.940 and 0.676, with the specificity of 75.7%, 67.6%, 90.3% and 77.4%, respectively. Tumour sizes, locations or types showed no apparent influence on 2D-SWE values except for RLS, which was higher in patients with primary hepatic carcinomas (p < 0.05). CONCLUSIONS: LS with tumours is best measured at >2 cm away from the tumour edge. SS measurement could be used as an alternative to LS measurement in the event of no available liver for detection. KEY POINTS: • Tumour-associated factors impact background liver stiffness assessment. • Background liver stiffness is best measured at >2 cm from tumour edge. • Spleen stiffness can be an alternative to assess background liver stiffness.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf N11528ab4418a4d0b8505b11b22c93423
66 N5e3eaa0730d5405cb5a66cfd5a0370bf
67 sg:journal.1289120
68 schema:name Evaluation of liver parenchyma stiffness in patients with liver tumours: optimal strategy for shear wave elastography
69 schema:pagination 1479-1488
70 schema:productId N25d54f36a8364aa388dbe6631a9473f2
71 N685c9cbdbfb142d5b63c6ca8b3a15961
72 N78bc7edf89414742848315c4527ce0b7
73 Nca14f776bdc74b2d97fc0d0fea2e9d53
74 Ne2c2c3ccf7dc4f17aedb75902c1725cb
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106131263
76 https://doi.org/10.1007/s00330-018-5676-8
77 schema:sdDatePublished 2019-04-11T13:04
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Nb72df4d9a5234774b982b7ece4a851b9
80 schema:url https://link.springer.com/10.1007%2Fs00330-018-5676-8
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N083fb882ccca4c0a9da1a37eefa6fa49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Tumor Burden
86 rdf:type schema:DefinedTerm
87 N0a75df2c7d1a40df8c8708f9a8552b0a rdf:first sg:person.016505725704.69
88 rdf:rest N2b5a35f1a4ff4485b153a02417d5c1d8
89 N0e54e74f9bc44c7d960c58cc6daf7fe7 schema:affiliation N55cce4c4a2744d7985e66b31ea8c5dd2
90 schema:familyName Zhang
91 schema:givenName Fu-jun
92 rdf:type schema:Person
93 N0fbc5449cbd448138666109452dd1d7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Liver
95 rdf:type schema:DefinedTerm
96 N11528ab4418a4d0b8505b11b22c93423 schema:volumeNumber 29
97 rdf:type schema:PublicationVolume
98 N1aab92ef8d3a4dd3909c0bc561720f2e schema:name Department of Ultrasound, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People’s Republic of China
99 rdf:type schema:Organization
100 N1c5d5e20bd944034b879043801a1f297 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Aged
102 rdf:type schema:DefinedTerm
103 N219121f3e99b4b158e1acbcfe84c9637 rdf:first N0e54e74f9bc44c7d960c58cc6daf7fe7
104 rdf:rest rdf:nil
105 N21ab69b0824e43f2a02db47c5c4002c8 rdf:first N8d89137ce9d743e9a8ef95d4b385cb09
106 rdf:rest Nfd89051b432f4709b0325f609238dd9c
107 N21bb7bbc38fb47439e9d041d4b2618cc schema:name Department of Ultrasound, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People’s Republic of China
108 rdf:type schema:Organization
109 N2229807202c8418899d46714c09984cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Liver Cirrhosis
111 rdf:type schema:DefinedTerm
112 N25d54f36a8364aa388dbe6631a9473f2 schema:name nlm_unique_id
113 schema:value 9114774
114 rdf:type schema:PropertyValue
115 N2b5a35f1a4ff4485b153a02417d5c1d8 rdf:first N3ae31a577cda465d9af27d90b74349bf
116 rdf:rest N3d70f59a2cdb42898a3e253603e68233
117 N2eedd803cb614588b2e751cd8ee6b2c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Spleen
119 rdf:type schema:DefinedTerm
120 N3646f84619b54df485b881b0db50cb8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Sensitivity and Specificity
122 rdf:type schema:DefinedTerm
123 N3ae31a577cda465d9af27d90b74349bf schema:affiliation N5f4031b881ca4692a7d03a6d4e25cb3b
124 schema:familyName Li
125 schema:givenName Qing
126 rdf:type schema:Person
127 N3d45bcc672eb47e8a697da97039085f0 schema:name Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People’s Republic of China
128 rdf:type schema:Organization
129 N3d70f59a2cdb42898a3e253603e68233 rdf:first Nd3f1c9ba41234f6a879c5f5a6dbc8e85
130 rdf:rest Nf2ad78c26ddc4624a36ab0abc3da78f8
131 N45b1fc94d449499e9bb6b12124f83929 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Liver Neoplasms
133 rdf:type schema:DefinedTerm
134 N55cce4c4a2744d7985e66b31ea8c5dd2 schema:name Minimally Invasive Interventional Centre, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People’s Republic of China
135 rdf:type schema:Organization
136 N574c3328cb4c42f68d26ffe0166f46f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Humans
138 rdf:type schema:DefinedTerm
139 N5e3eaa0730d5405cb5a66cfd5a0370bf schema:issueNumber 3
140 rdf:type schema:PublicationIssue
141 N5f4031b881ca4692a7d03a6d4e25cb3b schema:name Department of Ultrasound, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People’s Republic of China
142 rdf:type schema:Organization
143 N665c49c0542d4fe3ae8be28500ff3639 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Female
145 rdf:type schema:DefinedTerm
146 N685c9cbdbfb142d5b63c6ca8b3a15961 schema:name doi
147 schema:value 10.1007/s00330-018-5676-8
148 rdf:type schema:PropertyValue
149 N6ed404e8cfe844d68ae457426e020abb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Elasticity Imaging Techniques
151 rdf:type schema:DefinedTerm
152 N78bc7edf89414742848315c4527ce0b7 schema:name dimensions_id
153 schema:value pub.1106131263
154 rdf:type schema:PropertyValue
155 N7fd549cd1d4f451392fe893cce09dff6 rdf:first sg:person.015710345304.29
156 rdf:rest Neddfe16b4de440b68e55c1c349062c00
157 N8528d0d8e47841aeb322f544beb54308 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name ROC Curve
159 rdf:type schema:DefinedTerm
160 N8d89137ce9d743e9a8ef95d4b385cb09 schema:affiliation Nbc3db8db547d4a57bf91ab820f82120a
161 schema:familyName Wong
162 schema:givenName Chong-hei
163 rdf:type schema:Person
164 N8ebb92226d3b45e3a4653e69cd0163ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Middle Aged
166 rdf:type schema:DefinedTerm
167 Nad0df34f2ac148409f9158e595821360 schema:name Department of Ultrasound, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People’s Republic of China
168 rdf:type schema:Organization
169 Nb72df4d9a5234774b982b7ece4a851b9 schema:name Springer Nature - SN SciGraph project
170 rdf:type schema:Organization
171 Nb771668585954339a85b24c016ecced2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Area Under Curve
173 rdf:type schema:DefinedTerm
174 Nbc3db8db547d4a57bf91ab820f82120a schema:name Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People’s Republic of China
175 Department of Oncology, Centro Hospitalar Conde de S. Januario (CHCSJ), Macao, People’s Republic of China
176 rdf:type schema:Organization
177 Nbe4a2dca0b0e4efdae36a19c43af91a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Male
179 rdf:type schema:DefinedTerm
180 Nc9a45ed98fa2455e92de7cede96db27f schema:name Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in South China; Collaborative Innovation Centre for Cancer Medicine, 510060, Guangzhou, Guangdong, People’s Republic of China
181 rdf:type schema:Organization
182 Nca14f776bdc74b2d97fc0d0fea2e9d53 schema:name readcube_id
183 schema:value e833233f2de8be5fb40b0c287c9df082c019b68de8de9212a2520023de619766
184 rdf:type schema:PropertyValue
185 Nd35415cc3d6b40e09ec9d6ed795ff894 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Prospective Studies
187 rdf:type schema:DefinedTerm
188 Nd3f1c9ba41234f6a879c5f5a6dbc8e85 schema:affiliation N3d45bcc672eb47e8a697da97039085f0
189 schema:familyName Chen
190 schema:givenName Min-Shan
191 rdf:type schema:Person
192 Nd6af8bea41c5436489c5f8315ae09be5 schema:affiliation Nc9a45ed98fa2455e92de7cede96db27f
193 schema:familyName Zhou
194 schema:givenName Zhong-guo
195 rdf:type schema:Person
196 Nda0579aeeb8249bb9c9b2dc6854769a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Adult
198 rdf:type schema:DefinedTerm
199 Ne2c2c3ccf7dc4f17aedb75902c1725cb schema:name pubmed_id
200 schema:value 30105408
201 rdf:type schema:PropertyValue
202 Neddfe16b4de440b68e55c1c349062c00 rdf:first Nd6af8bea41c5436489c5f8315ae09be5
203 rdf:rest N21ab69b0824e43f2a02db47c5c4002c8
204 Nf2ad78c26ddc4624a36ab0abc3da78f8 rdf:first sg:person.010600235104.54
205 rdf:rest N219121f3e99b4b158e1acbcfe84c9637
206 Nfd89051b432f4709b0325f609238dd9c rdf:first sg:person.011375615504.50
207 rdf:rest N0a75df2c7d1a40df8c8708f9a8552b0a
208 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
209 schema:name Medical and Health Sciences
210 rdf:type schema:DefinedTerm
211 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
212 schema:name Clinical Sciences
213 rdf:type schema:DefinedTerm
214 sg:journal.1289120 schema:issn 0938-7994
215 1432-1084
216 schema:name European Radiology
217 rdf:type schema:Periodical
218 sg:person.010600235104.54 schema:affiliation N21bb7bbc38fb47439e9d041d4b2618cc
219 schema:familyName Li
220 schema:givenName An-hua
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010600235104.54
222 rdf:type schema:Person
223 sg:person.011375615504.50 schema:affiliation N1aab92ef8d3a4dd3909c0bc561720f2e
224 schema:familyName Pei
225 schema:givenName Xiao-qing
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375615504.50
227 rdf:type schema:Person
228 sg:person.015710345304.29 schema:affiliation Nad0df34f2ac148409f9158e595821360
229 schema:familyName Zheng
230 schema:givenName Wei
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015710345304.29
232 rdf:type schema:Person
233 sg:person.016505725704.69 schema:affiliation https://www.grid.ac/institutes/grid.413402.0
234 schema:familyName Zhuang
235 schema:givenName Shu-lian
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505725704.69
237 rdf:type schema:Person
238 sg:pub.10.1007/s00330-014-3292-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018903638
239 https://doi.org/10.1007/s00330-014-3292-9
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/s00330-015-3728-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040361344
242 https://doi.org/10.1007/s00330-015-3728-x
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s00330-017-4900-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091051849
245 https://doi.org/10.1007/s00330-017-4900-2
246 rdf:type schema:CreativeWork
247 sg:pub.10.1016/s1091-255x(01)80054-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029094015
248 https://doi.org/10.1016/s1091-255x(01)80054-8
249 rdf:type schema:CreativeWork
250 sg:pub.10.1016/s1091-255x(02)00370-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027253131
251 https://doi.org/10.1016/s1091-255x(02)00370-0
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/ajg.2013.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030512589
254 https://doi.org/10.1038/ajg.2013.119
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1002/bjs.1800820935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918302
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1002/hep.23425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046135502
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1002/hep.25936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016635335
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/0168-8278(91)90084-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1034246656
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/j.ejrad.2012.05.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029638901
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/j.ejrad.2012.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024543583
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.ejrad.2016.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039913937
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.jhep.2010.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024764237
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.jhep.2012.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020630462
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.surg.2015.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033175980
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.ultrasmedbio.2008.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012156588
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.ultrasmedbio.2013.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007864295
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.ultrasmedbio.2014.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008785477
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.ultrasmedbio.2015.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035784341
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/j.ultrasmedbio.2015.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042611358
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/j.ultrasmedbio.2016.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047486766
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1016/j.ultrasmedbio.2017.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091213956
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1055/s-0042-108431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057378591
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1055/s-0043-103952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084821758
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1055/s-0043-103955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084821759
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1056/nejmoa0804525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013129482
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1056/nejmra065156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024894126
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1097/00000658-198707000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000280856
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1111/hepr.12476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053081857
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1111/j.1440-1746.2010.06325.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002376447
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1111/j.1872-034x.2011.00928.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023554437
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1148/radiol.13130128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047659563
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1148/radiol.14131164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079037776
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1148/radiol.14140839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001646828
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1148/radiol.14141210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079009336
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1159/000335713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046999601
317 rdf:type schema:CreativeWork
318 https://doi.org/10.2307/2531595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977037
319 rdf:type schema:CreativeWork
320 https://doi.org/10.3748/wjg.v20.i28.9578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078948009
321 rdf:type schema:CreativeWork
322 https://www.grid.ac/institutes/grid.413402.0 schema:alternateName Guangdong Provincial Hospital
323 schema:name Department of Ultrasonography, the Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, 510120, Guangzhou, Guangdong, People’s Republic of China
324 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...