Automated MR-based lung volume segmentation in population-based whole-body MR imaging: correlation with clinical characteristics, pulmonary function testing and obstructive lung ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-27

AUTHORS

Jan Mueller, Stefan Karrasch, Roberto Lorbeer, Tatyana Ivanovska, Andreas Pomschar, Wolfgang G. Kunz, Ricarda von Krüchten, Annette Peters, Fabian Bamberg, Holger Schulz, Christopher L. Schlett

ABSTRACT

ObjectivesWhole-body MR imaging is increasingly utilised; although for lung dedicated sequences are often not included, the chest is typically imaged. Our objective was to determine the clinical utility of lung volumes derived from non-dedicated MRI sequences in the population-based KORA-FF4 cohort study.Methods400 subjects (56.4 ± 9.2 years, 57.6% males) underwent whole-body MRI including a coronal T1-DIXON-VIBE sequence in inspiration breath-hold, originally acquired for fat quantification. Based on MRI, lung volumes were derived using an automated framework and related to common predictors, pulmonary function tests (PFT; spirometry and pulmonary gas exchange, n = 214) and obstructive lung disease.ResultsMRI-based lung volume was 4.0 ± 1.1 L, which was 64.8 ± 14.9% of predicted total lung capacity (TLC) and 124.4 ± 27.9% of functional residual capacity. In multivariate analysis, it was positively associated with age, male, current smoking and height. Among PFT indices, MRI-based lung volume correlated best with TLC, alveolar volume and residual volume (RV; r = 0.57 each), while it was negatively correlated to FEV1/FVC (r = 0.36) and transfer factor for carbon monoxide (r = 0.16). Combining the strongest PFT parameters, RV and FEV1/FVC remained independently and incrementally associated with MRI-based lung volume (β = 0.50, p = 0.04 and β = – 0.02, p = 0.02, respectively) explaining 32% of the variability. For the identification of subjects with obstructive lung disease, height-indexed MRI-based lung volume yielded an AUC of 0.673–0.654.ConclusionLung volume derived from non-dedicated whole-body MRI is independently associated with RV and FEV1/FVC. Furthermore, its moderate accuracy for obstructive lung disease indicates that it may be a promising tool to assess pulmonary health in whole-body imaging when PFT is not available.Key Points• Although whole-body MRI often does not include dedicated lung sequences, lung volume can be automatically derived using dedicated segmentation algorithms• Lung volume derived from whole-body MRI correlates with typical predictors and risk factors of respiratory function including smoking and represents about 65% of total lung capacity and 125% of the functional residual capacity• Lung volume derived from whole-body MRI is independently associated with residual volume and the ratio of forced expiratory volume in 1 s to forced vital capacity and may allow detection of obstructive lung disease More... »

PAGES

1595-1606

Journal

TITLE

European Radiology

ISSUE

3

VOLUME

29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5659-9

DOI

http://dx.doi.org/10.1007/s00330-018-5659-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106365989

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30151641


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forced Expiratory Volume", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Volume Measurements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Disease, Chronic Obstructive", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Residual Volume", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Function Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spirometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Total Lung Capacity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vital Capacity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mueller", 
        "givenName": "Jan", 
        "id": "sg:person.01360651607.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360651607.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universit\u00e4t, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Institute of Epidemiology, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Neuherberg, Germany", 
            "Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany", 
            "Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universit\u00e4t, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karrasch", 
        "givenName": "Stefan", 
        "id": "sg:person.0721677441.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721677441.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, University Hospital, LMU Munich, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.411095.8", 
          "name": [
            "Department of Radiology, University Hospital, LMU Munich, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorbeer", 
        "givenName": "Roberto", 
        "id": "sg:person.01345170100.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345170100.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computational Neuroscience, Computer Vision, Georg-August-University, Gottingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Department of Computational Neuroscience, Computer Vision, Georg-August-University, Gottingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanovska", 
        "givenName": "Tatyana", 
        "id": "sg:person.011573250007.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011573250007.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, University Hospital, LMU Munich, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.411095.8", 
          "name": [
            "Department of Radiology, University Hospital, LMU Munich, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pomschar", 
        "givenName": "Andreas", 
        "id": "sg:person.01342717164.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342717164.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, University Hospital, LMU Munich, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.411095.8", 
          "name": [
            "Department of Radiology, University Hospital, LMU Munich, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kunz", 
        "givenName": "Wolfgang G.", 
        "id": "sg:person.012071604401.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071604401.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany", 
            "Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Kr\u00fcchten", 
        "givenName": "Ricarda", 
        "id": "sg:person.013612572324.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013612572324.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Center for Cardiovascular Disease Research (DZHK e.V.), Partnersite Munich, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Epidemiology, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Neuherberg, Germany", 
            "Institute for Cardiovascular Prevention, Ludwig-Maximilian-University-Hospital, Munich, Germany", 
            "German Center for Cardiovascular Disease Research (DZHK e.V.), Partnersite Munich, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peters", 
        "givenName": "Annette", 
        "id": "sg:person.01117072553.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117072553.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bamberg", 
        "givenName": "Fabian", 
        "id": "sg:person.016655046437.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016655046437.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.452624.3", 
          "name": [
            "Institute of Epidemiology, Helmholtz Zentrum M\u00fcnchen, German Research Center for Environmental Health, Neuherberg, Germany", 
            "Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulz", 
        "givenName": "Holger", 
        "id": "sg:person.0637527306.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637527306.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany", 
            "Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlett", 
        "givenName": "Christopher L.", 
        "id": "sg:person.01310221613.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310221613.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03164942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007320920", 
          "https://doi.org/10.1007/bf03164942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.4104/pcrj.2012.00046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020777980", 
          "https://doi.org/10.4104/pcrj.2012.00046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep36896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049176422", 
          "https://doi.org/10.1038/srep36896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40644-017-0107-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083759892", 
          "https://doi.org/10.1186/s40644-017-0107-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-012-0176-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006486010", 
          "https://doi.org/10.1007/s13244-012-0176-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2835-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016823739", 
          "https://doi.org/10.1007/s00330-013-2835-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2013.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013015201", 
          "https://doi.org/10.1038/leu.2013.244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-011-0146-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044114135", 
          "https://doi.org/10.1007/s13244-011-0146-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-27", 
    "datePublishedReg": "2018-08-27", 
    "description": "ObjectivesWhole-body MR imaging is increasingly utilised; although for lung dedicated sequences are often not included, the chest is typically imaged. Our objective was to determine the clinical utility of lung volumes derived from non-dedicated MRI sequences in the population-based KORA-FF4 cohort study.Methods400 subjects (56.4 \u00b1 9.2 years, 57.6% males) underwent whole-body MRI including a coronal T1-DIXON-VIBE sequence in inspiration breath-hold, originally acquired for fat quantification. Based on MRI, lung volumes were derived using an automated framework and related to common predictors, pulmonary function tests (PFT; spirometry and pulmonary gas exchange, n = 214) and obstructive lung disease.ResultsMRI-based lung volume was 4.0 \u00b1 1.1 L, which was 64.8 \u00b1 14.9% of predicted total lung capacity (TLC) and 124.4 \u00b1 27.9% of functional residual capacity. In multivariate analysis, it was positively associated with age, male, current smoking and height. Among PFT indices, MRI-based lung volume correlated best with TLC, alveolar volume and residual volume (RV; r = 0.57 each), while it was negatively correlated to FEV1/FVC (r = 0.36) and transfer factor for carbon monoxide (r = 0.16). Combining the strongest PFT parameters, RV and FEV1/FVC remained independently and incrementally associated with MRI-based lung volume (\u03b2 = 0.50, p = 0.04 and \u03b2 = \u2013 0.02, p = 0.02, respectively) explaining 32% of the variability. For the identification of subjects with obstructive lung disease, height-indexed MRI-based lung volume yielded an AUC of 0.673\u20130.654.ConclusionLung volume derived from non-dedicated whole-body MRI is independently associated with RV and FEV1/FVC. Furthermore, its moderate accuracy for obstructive lung disease indicates that it may be a promising tool to assess pulmonary health in whole-body imaging when PFT is not available.Key Points\u2022 Although whole-body MRI often does not include dedicated lung sequences, lung volume can be automatically derived using dedicated segmentation algorithms\u2022 Lung volume derived from whole-body MRI correlates with typical predictors and risk factors of respiratory function including smoking and represents about 65% of total lung capacity and 125% of the functional residual capacity\u2022 Lung volume derived from whole-body MRI is independently associated with residual volume and the ratio of forced expiratory volume in 1 s to forced vital capacity and may allow detection of obstructive lung disease", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-018-5659-9", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "obstructive lung disease", 
      "total lung capacity", 
      "FEV1/FVC", 
      "whole-body MRI", 
      "lung volume", 
      "lung disease", 
      "lung capacity", 
      "residual volume", 
      "MR imaging", 
      "pulmonary function tests", 
      "whole-body MR imaging", 
      "pulmonary function testing", 
      "functional residual capacity", 
      "identification of subjects", 
      "cohort study", 
      "current smoking", 
      "expiratory volume", 
      "clinical characteristics", 
      "pulmonary health", 
      "function tests", 
      "PFT indices", 
      "vital capacity", 
      "function testing", 
      "PFT parameters", 
      "risk factors", 
      "whole-body imaging", 
      "respiratory function", 
      "clinical utility", 
      "multivariate analysis", 
      "alveolar volume", 
      "FVC", 
      "residual capacity", 
      "MRI", 
      "disease", 
      "MRI sequences", 
      "smoking", 
      "common predictors", 
      "fat quantification", 
      "RV", 
      "imaging", 
      "predictors", 
      "subjects", 
      "moderate accuracy", 
      "lung volume segmentation", 
      "dedicated sequences", 
      "ResultsMRI", 
      "chest", 
      "functional residual", 
      "AUC", 
      "age", 
      "volume", 
      "factors", 
      "promising tool", 
      "health", 
      "PFT", 
      "MR", 
      "volume segmentation", 
      "index", 
      "testing", 
      "study", 
      "typical predictors", 
      "capacity", 
      "correlation", 
      "test", 
      "utility", 
      "objective", 
      "carbon monoxide", 
      "function", 
      "identification", 
      "detection", 
      "quantification", 
      "ratio", 
      "variability", 
      "analysis", 
      "sequence", 
      "characteristics", 
      "tool", 
      "height", 
      "inspiration", 
      "monoxide", 
      "parameters", 
      "accuracy", 
      "segmentation", 
      "residuals", 
      "framework"
    ], 
    "name": "Automated MR-based lung volume segmentation in population-based whole-body MR imaging: correlation with clinical characteristics, pulmonary function testing and obstructive lung disease", 
    "pagination": "1595-1606", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106365989"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5659-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30151641"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5659-9", 
      "https://app.dimensions.ai/details/publication/pub.1106365989"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_787.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-018-5659-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5659-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5659-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5659-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5659-9'


 

This table displays all metadata directly associated to this object as RDF triples.

354 TRIPLES      21 PREDICATES      138 URIs      122 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5659-9 schema:about N01868b72bc6543f1b21575ae807fd0d2
2 N085e4f36440142deb97f8f3fa911f829
3 N1b32869b74754f2aa01fe5bbd01c63f7
4 N1f5882dce59c499996ef4f55e0b10567
5 N3448e4f915e64b5696cc367bbe4695e9
6 N4181a6f963a64adab246eaf2422eace7
7 N4cc4dcb46a8b4610a4efbfcb7daee26f
8 N66c5eb4f3a814fe4a2fda427bff26a70
9 N681baa3c552e42b897cd0cc93afd55c4
10 N779b99449e8b4dbca7e498202e9d9453
11 N7d076ff32ba041939518914045b01df2
12 N9289ce54801f4e7c855c0af8b0261182
13 Na836abb863bf425bb50faf1104916b19
14 Nbb00897e3c7c4486a143fdaafb698674
15 Nc145b1dd58634040aa5bf7e254ee167b
16 Nc43db15130b8418e9103eb12e3ab42f3
17 Ncb58aaafcbd54b8090a01378bca6d3ff
18 Nd298d80fb89443cfa11740bece22daa4
19 Ndb12c0cf9a41474b856f300c6d2e5440
20 Nfd085022dfa844c7bf0bd9c6b6b1ffab
21 anzsrc-for:11
22 anzsrc-for:1102
23 schema:author N91d971ef87c54e87aeb97417b37808e2
24 schema:citation sg:pub.10.1007/bf03164942
25 sg:pub.10.1007/s00330-013-2835-9
26 sg:pub.10.1007/s13244-011-0146-8
27 sg:pub.10.1007/s13244-012-0176-x
28 sg:pub.10.1038/leu.2013.244
29 sg:pub.10.1038/srep36896
30 sg:pub.10.1186/s40644-017-0107-7
31 sg:pub.10.4104/pcrj.2012.00046
32 schema:datePublished 2018-08-27
33 schema:datePublishedReg 2018-08-27
34 schema:description ObjectivesWhole-body MR imaging is increasingly utilised; although for lung dedicated sequences are often not included, the chest is typically imaged. Our objective was to determine the clinical utility of lung volumes derived from non-dedicated MRI sequences in the population-based KORA-FF4 cohort study.Methods400 subjects (56.4 ± 9.2 years, 57.6% males) underwent whole-body MRI including a coronal T1-DIXON-VIBE sequence in inspiration breath-hold, originally acquired for fat quantification. Based on MRI, lung volumes were derived using an automated framework and related to common predictors, pulmonary function tests (PFT; spirometry and pulmonary gas exchange, n = 214) and obstructive lung disease.ResultsMRI-based lung volume was 4.0 ± 1.1 L, which was 64.8 ± 14.9% of predicted total lung capacity (TLC) and 124.4 ± 27.9% of functional residual capacity. In multivariate analysis, it was positively associated with age, male, current smoking and height. Among PFT indices, MRI-based lung volume correlated best with TLC, alveolar volume and residual volume (RV; r = 0.57 each), while it was negatively correlated to FEV1/FVC (r = 0.36) and transfer factor for carbon monoxide (r = 0.16). Combining the strongest PFT parameters, RV and FEV1/FVC remained independently and incrementally associated with MRI-based lung volume (β = 0.50, p = 0.04 and β = – 0.02, p = 0.02, respectively) explaining 32% of the variability. For the identification of subjects with obstructive lung disease, height-indexed MRI-based lung volume yielded an AUC of 0.673–0.654.ConclusionLung volume derived from non-dedicated whole-body MRI is independently associated with RV and FEV1/FVC. Furthermore, its moderate accuracy for obstructive lung disease indicates that it may be a promising tool to assess pulmonary health in whole-body imaging when PFT is not available.Key Points• Although whole-body MRI often does not include dedicated lung sequences, lung volume can be automatically derived using dedicated segmentation algorithms• Lung volume derived from whole-body MRI correlates with typical predictors and risk factors of respiratory function including smoking and represents about 65% of total lung capacity and 125% of the functional residual capacity• Lung volume derived from whole-body MRI is independently associated with residual volume and the ratio of forced expiratory volume in 1 s to forced vital capacity and may allow detection of obstructive lung disease
35 schema:genre article
36 schema:isAccessibleForFree false
37 schema:isPartOf N4b4326c2e142498d9c66da61d75dd606
38 Na95df56f392b42a9bcf00910e76d6f8f
39 sg:journal.1289120
40 schema:keywords AUC
41 FEV1/FVC
42 FVC
43 MR
44 MR imaging
45 MRI
46 MRI sequences
47 PFT
48 PFT indices
49 PFT parameters
50 RV
51 ResultsMRI
52 accuracy
53 age
54 alveolar volume
55 analysis
56 capacity
57 carbon monoxide
58 characteristics
59 chest
60 clinical characteristics
61 clinical utility
62 cohort study
63 common predictors
64 correlation
65 current smoking
66 dedicated sequences
67 detection
68 disease
69 expiratory volume
70 factors
71 fat quantification
72 framework
73 function
74 function testing
75 function tests
76 functional residual
77 functional residual capacity
78 health
79 height
80 identification
81 identification of subjects
82 imaging
83 index
84 inspiration
85 lung capacity
86 lung disease
87 lung volume
88 lung volume segmentation
89 moderate accuracy
90 monoxide
91 multivariate analysis
92 objective
93 obstructive lung disease
94 parameters
95 predictors
96 promising tool
97 pulmonary function testing
98 pulmonary function tests
99 pulmonary health
100 quantification
101 ratio
102 residual capacity
103 residual volume
104 residuals
105 respiratory function
106 risk factors
107 segmentation
108 sequence
109 smoking
110 study
111 subjects
112 test
113 testing
114 tool
115 total lung capacity
116 typical predictors
117 utility
118 variability
119 vital capacity
120 volume
121 volume segmentation
122 whole-body MR imaging
123 whole-body MRI
124 whole-body imaging
125 schema:name Automated MR-based lung volume segmentation in population-based whole-body MR imaging: correlation with clinical characteristics, pulmonary function testing and obstructive lung disease
126 schema:pagination 1595-1606
127 schema:productId N2ad61840a51642c893f2f901f2091088
128 N7ffe6d00fdc540f4aff03343f409de28
129 Nde8f35517e0948e6a90315f5175771f7
130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106365989
131 https://doi.org/10.1007/s00330-018-5659-9
132 schema:sdDatePublished 2022-09-02T16:02
133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
134 schema:sdPublisher N8cc4626190a5486a8364acb925baaeed
135 schema:url https://doi.org/10.1007/s00330-018-5659-9
136 sgo:license sg:explorer/license/
137 sgo:sdDataset articles
138 rdf:type schema:ScholarlyArticle
139 N01868b72bc6543f1b21575ae807fd0d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Total Lung Capacity
141 rdf:type schema:DefinedTerm
142 N085e4f36440142deb97f8f3fa911f829 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Smoking
144 rdf:type schema:DefinedTerm
145 N1b32869b74754f2aa01fe5bbd01c63f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Female
147 rdf:type schema:DefinedTerm
148 N1f5882dce59c499996ef4f55e0b10567 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Pulmonary Disease, Chronic Obstructive
150 rdf:type schema:DefinedTerm
151 N2ad61840a51642c893f2f901f2091088 schema:name pubmed_id
152 schema:value 30151641
153 rdf:type schema:PropertyValue
154 N2d75b8f23ef5449d9c49b5b008b749a5 rdf:first sg:person.01117072553.44
155 rdf:rest Nde511ab6c9dd4188ba637f8a2c1c04db
156 N3448e4f915e64b5696cc367bbe4695e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Spirometry
158 rdf:type schema:DefinedTerm
159 N4181a6f963a64adab246eaf2422eace7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Case-Control Studies
161 rdf:type schema:DefinedTerm
162 N42c72a1394684bec8e428c8effd51548 rdf:first sg:person.0637527306.80
163 rdf:rest Nd29f84623fcb4b27b89827e55cc56a8e
164 N4b4326c2e142498d9c66da61d75dd606 schema:volumeNumber 29
165 rdf:type schema:PublicationVolume
166 N4cc4dcb46a8b4610a4efbfcb7daee26f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Humans
168 rdf:type schema:DefinedTerm
169 N66c5eb4f3a814fe4a2fda427bff26a70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Lung Volume Measurements
171 rdf:type schema:DefinedTerm
172 N681baa3c552e42b897cd0cc93afd55c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Algorithms
174 rdf:type schema:DefinedTerm
175 N720be40e5e9e46448b99d9799fa653a7 rdf:first sg:person.0721677441.98
176 rdf:rest N7aa57356275e4a9b9f5445c7764ba8fb
177 N741fe2e6e0f24de4a7a2a03bdc93777c rdf:first sg:person.012071604401.06
178 rdf:rest N874881d8bbd64956aaad85b102021a42
179 N779b99449e8b4dbca7e498202e9d9453 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Prospective Studies
181 rdf:type schema:DefinedTerm
182 N7aa57356275e4a9b9f5445c7764ba8fb rdf:first sg:person.01345170100.56
183 rdf:rest Nbea0e1dab01343cf9539e436ab614555
184 N7d076ff32ba041939518914045b01df2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Respiratory Function Tests
186 rdf:type schema:DefinedTerm
187 N7ffe6d00fdc540f4aff03343f409de28 schema:name doi
188 schema:value 10.1007/s00330-018-5659-9
189 rdf:type schema:PropertyValue
190 N874881d8bbd64956aaad85b102021a42 rdf:first sg:person.013612572324.22
191 rdf:rest N2d75b8f23ef5449d9c49b5b008b749a5
192 N8cc4626190a5486a8364acb925baaeed schema:name Springer Nature - SN SciGraph project
193 rdf:type schema:Organization
194 N91d971ef87c54e87aeb97417b37808e2 rdf:first sg:person.01360651607.54
195 rdf:rest N720be40e5e9e46448b99d9799fa653a7
196 N9289ce54801f4e7c855c0af8b0261182 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Forced Expiratory Volume
198 rdf:type schema:DefinedTerm
199 Na836abb863bf425bb50faf1104916b19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Residual Volume
201 rdf:type schema:DefinedTerm
202 Na95df56f392b42a9bcf00910e76d6f8f schema:issueNumber 3
203 rdf:type schema:PublicationIssue
204 Nbb00897e3c7c4486a143fdaafb698674 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Aged
206 rdf:type schema:DefinedTerm
207 Nbea0e1dab01343cf9539e436ab614555 rdf:first sg:person.011573250007.29
208 rdf:rest Nf510259345d74c528ebd50e9ebb65fd5
209 Nc145b1dd58634040aa5bf7e254ee167b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Vital Capacity
211 rdf:type schema:DefinedTerm
212 Nc43db15130b8418e9103eb12e3ab42f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Lung
214 rdf:type schema:DefinedTerm
215 Ncb58aaafcbd54b8090a01378bca6d3ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Image Processing, Computer-Assisted
217 rdf:type schema:DefinedTerm
218 Nd298d80fb89443cfa11740bece22daa4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Magnetic Resonance Imaging
220 rdf:type schema:DefinedTerm
221 Nd29f84623fcb4b27b89827e55cc56a8e rdf:first sg:person.01310221613.07
222 rdf:rest rdf:nil
223 Ndb12c0cf9a41474b856f300c6d2e5440 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
224 schema:name Middle Aged
225 rdf:type schema:DefinedTerm
226 Nde511ab6c9dd4188ba637f8a2c1c04db rdf:first sg:person.016655046437.33
227 rdf:rest N42c72a1394684bec8e428c8effd51548
228 Nde8f35517e0948e6a90315f5175771f7 schema:name dimensions_id
229 schema:value pub.1106365989
230 rdf:type schema:PropertyValue
231 Nf510259345d74c528ebd50e9ebb65fd5 rdf:first sg:person.01342717164.86
232 rdf:rest N741fe2e6e0f24de4a7a2a03bdc93777c
233 Nfd085022dfa844c7bf0bd9c6b6b1ffab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
234 schema:name Male
235 rdf:type schema:DefinedTerm
236 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
237 schema:name Medical and Health Sciences
238 rdf:type schema:DefinedTerm
239 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
240 schema:name Cardiorespiratory Medicine and Haematology
241 rdf:type schema:DefinedTerm
242 sg:journal.1289120 schema:issn 0938-7994
243 1432-1084
244 schema:name European Radiology
245 schema:publisher Springer Nature
246 rdf:type schema:Periodical
247 sg:person.01117072553.44 schema:affiliation grid-institutes:None
248 schema:familyName Peters
249 schema:givenName Annette
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117072553.44
251 rdf:type schema:Person
252 sg:person.011573250007.29 schema:affiliation grid-institutes:grid.7450.6
253 schema:familyName Ivanovska
254 schema:givenName Tatyana
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011573250007.29
256 rdf:type schema:Person
257 sg:person.012071604401.06 schema:affiliation grid-institutes:grid.411095.8
258 schema:familyName Kunz
259 schema:givenName Wolfgang G.
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071604401.06
261 rdf:type schema:Person
262 sg:person.01310221613.07 schema:affiliation grid-institutes:None
263 schema:familyName Schlett
264 schema:givenName Christopher L.
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310221613.07
266 rdf:type schema:Person
267 sg:person.01342717164.86 schema:affiliation grid-institutes:grid.411095.8
268 schema:familyName Pomschar
269 schema:givenName Andreas
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342717164.86
271 rdf:type schema:Person
272 sg:person.01345170100.56 schema:affiliation grid-institutes:grid.411095.8
273 schema:familyName Lorbeer
274 schema:givenName Roberto
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345170100.56
276 rdf:type schema:Person
277 sg:person.01360651607.54 schema:affiliation grid-institutes:grid.5253.1
278 schema:familyName Mueller
279 schema:givenName Jan
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360651607.54
281 rdf:type schema:Person
282 sg:person.013612572324.22 schema:affiliation grid-institutes:None
283 schema:familyName von Krüchten
284 schema:givenName Ricarda
285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013612572324.22
286 rdf:type schema:Person
287 sg:person.016655046437.33 schema:affiliation grid-institutes:grid.10392.39
288 schema:familyName Bamberg
289 schema:givenName Fabian
290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016655046437.33
291 rdf:type schema:Person
292 sg:person.0637527306.80 schema:affiliation grid-institutes:grid.452624.3
293 schema:familyName Schulz
294 schema:givenName Holger
295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637527306.80
296 rdf:type schema:Person
297 sg:person.0721677441.98 schema:affiliation grid-institutes:grid.5252.0
298 schema:familyName Karrasch
299 schema:givenName Stefan
300 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721677441.98
301 rdf:type schema:Person
302 sg:pub.10.1007/bf03164942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007320920
303 https://doi.org/10.1007/bf03164942
304 rdf:type schema:CreativeWork
305 sg:pub.10.1007/s00330-013-2835-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016823739
306 https://doi.org/10.1007/s00330-013-2835-9
307 rdf:type schema:CreativeWork
308 sg:pub.10.1007/s13244-011-0146-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044114135
309 https://doi.org/10.1007/s13244-011-0146-8
310 rdf:type schema:CreativeWork
311 sg:pub.10.1007/s13244-012-0176-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006486010
312 https://doi.org/10.1007/s13244-012-0176-x
313 rdf:type schema:CreativeWork
314 sg:pub.10.1038/leu.2013.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013015201
315 https://doi.org/10.1038/leu.2013.244
316 rdf:type schema:CreativeWork
317 sg:pub.10.1038/srep36896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049176422
318 https://doi.org/10.1038/srep36896
319 rdf:type schema:CreativeWork
320 sg:pub.10.1186/s40644-017-0107-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083759892
321 https://doi.org/10.1186/s40644-017-0107-7
322 rdf:type schema:CreativeWork
323 sg:pub.10.4104/pcrj.2012.00046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020777980
324 https://doi.org/10.4104/pcrj.2012.00046
325 rdf:type schema:CreativeWork
326 grid-institutes:None schema:alternateName German Center for Cardiovascular Disease Research (DZHK e.V.), Partnersite Munich, Munich, Germany
327 Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
328 schema:name Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
329 German Center for Cardiovascular Disease Research (DZHK e.V.), Partnersite Munich, Munich, Germany
330 Institute for Cardiovascular Prevention, Ludwig-Maximilian-University-Hospital, Munich, Germany
331 Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
332 Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
333 rdf:type schema:Organization
334 grid-institutes:grid.10392.39 schema:alternateName Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
335 schema:name Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
336 rdf:type schema:Organization
337 grid-institutes:grid.411095.8 schema:alternateName Department of Radiology, University Hospital, LMU Munich, Munich, Germany
338 schema:name Department of Radiology, University Hospital, LMU Munich, Munich, Germany
339 rdf:type schema:Organization
340 grid-institutes:grid.452624.3 schema:alternateName Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
341 schema:name Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
342 Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
343 rdf:type schema:Organization
344 grid-institutes:grid.5252.0 schema:alternateName Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
345 schema:name Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
346 Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
347 Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
348 rdf:type schema:Organization
349 grid-institutes:grid.5253.1 schema:alternateName Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
350 schema:name Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
351 rdf:type schema:Organization
352 grid-institutes:grid.7450.6 schema:alternateName Department of Computational Neuroscience, Computer Vision, Georg-August-University, Gottingen, Germany
353 schema:name Department of Computational Neuroscience, Computer Vision, Georg-August-University, Gottingen, Germany
354 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...