High-grade soft-tissue sarcoma: optimizing injection improves MRI evaluation of tumor response View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Amandine Crombé, François Le Loarer, François Cornelis, Eberhardt Stoeckle, Xavier Buy, Sophie Cousin, Antoine Italiano, Michèle Kind

ABSTRACT

OBJECTIVES: To determine the acquisition delay after gadolinium-chelate injection that optimizes the prediction of the histological response during anthracycline-based neoadjuvant chemotherapy (NAC) for locally advanced high-grade soft-tissue sarcomas (STS). METHODS: Thirty patients (mean age 62 years) were included in this IRB-approved study. All patients received 5-6 cycles of NAC followed by surgery. A good response was defined as ≤ 10% viable cells on histological analysis of the surgical specimen. DCE-MRI was performed before treatment (MRI0) and after two cycles (MRI1). Images were obtained every 8 s. Change in contrast enhancement (CE) between MRI0 and MRI1 was calculated for each acquisition delay 't' on the whole tumor volume. Area under the receiver-operating characteristics curves (AUROC) for change in CE was calculated at each acquisition delay, as well as the accuracy of the Choi criteria. RESULTS: There were 22 (73.3%) poor responders. Acquisition delay had a significant effect on change in CE and on the response status according to Choi (p = 0.0014 and 0.0270, respectively). The highest AUROC was obtained at t = 58 s (0.792) with an optimal threshold of a -30.5% decrease in CE. At t = 58 s, accuracy to predict a poor response was 82.8% above this threshold, while it was 72.4% and 70% with no objective response according to the Choi criteria and RECIST1.1, respectively. CONCLUSION: Optimization of acquisition delay after injection to estimate change in CE improves the prediction of histological response. For STS undergoing NAC, a 60-s delay can be recommended with MRI. KEY POINTS: • Accuracy of response criteria based on contrast enhancement, like the Choi criteria, is dependent on the acquisition delay after gadolinium-chelate injection. • DCE-MRI helps determine the optimal acquisition delay after gadolinium-chelate injection for improving evaluation of tumor response. • In soft tissue sarcoma, an acquisition delay at 60 s optimizes the evaluation of the response and accuracy of the Choi criteria. More... »

PAGES

545-555

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5635-4

DOI

http://dx.doi.org/10.1007/s00330-018-5635-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105771314

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30039222


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anthracyclines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Area Under Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemotherapy, Adjuvant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoadjuvant Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sarcoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soft Tissue Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, Institut Bergonie, Comprehensive Cancer Center, 229 cours de l\u2019Argonne, F-33000, Bordeaux, France", 
            "Modelisation in Oncology (MOnc) Team, INRIA Bordeaux-Sud-Ouest, CNRS UMR 5251 & Universit\u00e9 de Bordeaux, F-33405, Talence, France", 
            "University of Bordeaux, F-33000, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cromb\u00e9", 
        "givenName": "Amandine", 
        "id": "sg:person.01356540530.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356540530.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Bergoni\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.476460.7", 
          "name": [
            "University of Bordeaux, F-33000, Bordeaux, France", 
            "Department of Pathology, Institut Bergonie, F-33000, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Loarer", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.01136751455.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136751455.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology, Tenon Hospital, Sorbonne University, APHP, F-75020, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cornelis", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.0723500424.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723500424.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Bergoni\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.476460.7", 
          "name": [
            "Department of Surgery, Institut Bergonie, F-33000, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoeckle", 
        "givenName": "Eberhardt", 
        "id": "sg:person.0623513135.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623513135.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Bergoni\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.476460.7", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, Institut Bergonie, Comprehensive Cancer Center, 229 cours de l\u2019Argonne, F-33000, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buy", 
        "givenName": "Xavier", 
        "id": "sg:person.0653744427.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653744427.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Bergoni\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.476460.7", 
          "name": [
            "Department of Medical Oncology, Institut Bergonie, F-33000, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cousin", 
        "givenName": "Sophie", 
        "id": "sg:person.010127326431.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127326431.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Bergoni\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.476460.7", 
          "name": [
            "University of Bordeaux, F-33000, Bordeaux, France", 
            "Department of Medical Oncology, Institut Bergonie, F-33000, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Italiano", 
        "givenName": "Antoine", 
        "id": "sg:person.01076406503.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076406503.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Bergoni\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.476460.7", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, Institut Bergonie, Comprehensive Cancer Center, 229 cours de l\u2019Argonne, F-33000, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kind", 
        "givenName": "Mich\u00e8le", 
        "id": "sg:person.01006431155.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006431155.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jmri.21358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002167254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4300-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013027959", 
          "https://doi.org/10.1007/s00330-016-4300-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013437690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-08-2537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020222505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2008.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026558254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(10)70071-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026630195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.2910330108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027344113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181d54507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029019950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181d54507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029019950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181d54507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029019950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2512081403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031436692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2016.09.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037275084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-13-1594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039288568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2015.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040098560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwj063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041262324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-002-1785-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044327258", 
          "https://doi.org/10.1007/s00330-002-1785-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910210210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046240766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2014.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052574960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.27624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053495697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18383/j.tom.2016.00202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068635243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015142463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079152743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1758834017705588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084859570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1758834017705588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084859570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(17)30334-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085380791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4912-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086112263", 
          "https://doi.org/10.1007/s00330-017-4912-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-4912-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086112263", 
          "https://doi.org/10.1007/s00330-017-4912-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2017.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091403775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-5036-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091977869", 
          "https://doi.org/10.1007/s00330-017-5036-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2017.75.1610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099625712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2017.35.15_suppl.11014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106845797"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "OBJECTIVES: To determine the acquisition delay after gadolinium-chelate injection that optimizes the prediction of the histological response during anthracycline-based neoadjuvant chemotherapy (NAC) for locally advanced high-grade soft-tissue sarcomas (STS).\nMETHODS: Thirty patients (mean age 62 years) were included in this IRB-approved study. All patients received 5-6 cycles of NAC followed by surgery. A good response was defined as \u2264 10% viable cells on histological analysis of the surgical specimen. DCE-MRI was performed before treatment (MRI0) and after two cycles (MRI1). Images were obtained every 8 s. Change in contrast enhancement (CE) between MRI0 and MRI1 was calculated for each acquisition delay 't' on the whole tumor volume. Area under the receiver-operating characteristics curves (AUROC) for change in CE was calculated at each acquisition delay, as well as the accuracy of the Choi criteria.\nRESULTS: There were 22 (73.3%) poor responders. Acquisition delay had a significant effect on change in CE and on the response status according to Choi (p = 0.0014 and 0.0270, respectively). The highest AUROC was obtained at t = 58 s (0.792) with an optimal threshold of a -30.5% decrease in CE. At t = 58 s, accuracy to predict a poor response was 82.8% above this threshold, while it was 72.4% and 70% with no objective response according to the Choi criteria and RECIST1.1, respectively.\nCONCLUSION: Optimization of acquisition delay after injection to estimate change in CE improves the prediction of histological response. For STS undergoing NAC, a 60-s delay can be recommended with MRI.\nKEY POINTS: \u2022 Accuracy of response criteria based on contrast enhancement, like the Choi criteria, is dependent on the acquisition delay after gadolinium-chelate injection. \u2022 DCE-MRI helps determine the optimal acquisition delay after gadolinium-chelate injection for improving evaluation of tumor response. \u2022 In soft tissue sarcoma, an acquisition delay at 60 s optimizes the evaluation of the response and accuracy of the Choi criteria.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5635-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "High-grade soft-tissue sarcoma: optimizing injection improves MRI evaluation of tumor response", 
    "pagination": "545-555", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "01a2b4b16d866601cdb4b8f95d7ec9a0ae485eb015ca5a13d976d41f5a3181ad"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30039222"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5635-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105771314"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5635-4", 
      "https://app.dimensions.ai/details/publication/pub.1105771314"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89785_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5635-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5635-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5635-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5635-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5635-4'


 

This table displays all metadata directly associated to this object as RDF triples.

291 TRIPLES      21 PREDICATES      75 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5635-4 schema:about N02802948a6a84d929713a2ebde047cc9
2 N0b2703a5b05e49df84023a5b99e0afca
3 N0cb4271049b3472da69be8e9afdcb69e
4 N129c65d63c7449fba3c98b8a09faedf7
5 N31d0fda0312d4789aa544dd1eea93f3c
6 N39465789a0e840918bed18d71fa51815
7 N42fa6cc410c44f0d84b1314fd38d9d09
8 N4c642a7bc11a42ffbef080e4201dfb77
9 N577d8120c1134868be828629a8a78261
10 N688425cb7922482eb80e47e1675d9b32
11 N84c6f068d01a45fe9c113a1f6d6ec87c
12 N8ad6b81405a343df99c9920dee319381
13 Na87eff08bf0d41ddb3265442e20296c7
14 Na958025f470841a6a4447d214b067594
15 Nb6ad196cfeea4366b4ef5a54c3b0c5bf
16 Nbe45f87722504e6ea7e57dad6cd449fa
17 Ne2a91b7b89204e9ca22314bdc47aa626
18 Necf059a02fc84c6e9d66a4c504941185
19 Neec4cf486cc3401cb3b62f7349ac5c33
20 Nefaa93d6501743de85a1d525e41fe42a
21 anzsrc-for:11
22 anzsrc-for:1112
23 schema:author Neb5150dc838d445db9864a2b272a5051
24 schema:citation sg:pub.10.1007/s00330-002-1785-4
25 sg:pub.10.1007/s00330-016-4300-z
26 sg:pub.10.1007/s00330-017-4912-y
27 sg:pub.10.1007/s00330-017-5036-0
28 https://doi.org/10.1002/cncr.27624
29 https://doi.org/10.1002/ijc.2910330108
30 https://doi.org/10.1002/jmri.21358
31 https://doi.org/10.1002/jmri.23742
32 https://doi.org/10.1002/mrm.1910210210
33 https://doi.org/10.1016/j.ejca.2008.10.026
34 https://doi.org/10.1016/j.ejca.2014.11.008
35 https://doi.org/10.1016/j.ejca.2015.09.021
36 https://doi.org/10.1016/j.ejca.2016.09.030
37 https://doi.org/10.1016/j.ejrad.2017.08.021
38 https://doi.org/10.1016/s1470-2045(10)70071-1
39 https://doi.org/10.1016/s1470-2045(17)30334-0
40 https://doi.org/10.1093/aje/kwj063
41 https://doi.org/10.1097/rli.0b013e3181d54507
42 https://doi.org/10.1148/radiol.2015142463
43 https://doi.org/10.1148/radiol.2512081403
44 https://doi.org/10.1158/1078-0432.ccr-08-2537
45 https://doi.org/10.1158/1078-0432.ccr-13-1594
46 https://doi.org/10.1177/1758834017705588
47 https://doi.org/10.1200/jco.2017.35.15_suppl.11014
48 https://doi.org/10.1200/jco.2017.75.1610
49 https://doi.org/10.18383/j.tom.2016.00202
50 schema:datePublished 2019-02
51 schema:datePublishedReg 2019-02-01
52 schema:description OBJECTIVES: To determine the acquisition delay after gadolinium-chelate injection that optimizes the prediction of the histological response during anthracycline-based neoadjuvant chemotherapy (NAC) for locally advanced high-grade soft-tissue sarcomas (STS). METHODS: Thirty patients (mean age 62 years) were included in this IRB-approved study. All patients received 5-6 cycles of NAC followed by surgery. A good response was defined as ≤ 10% viable cells on histological analysis of the surgical specimen. DCE-MRI was performed before treatment (MRI0) and after two cycles (MRI1). Images were obtained every 8 s. Change in contrast enhancement (CE) between MRI0 and MRI1 was calculated for each acquisition delay 't' on the whole tumor volume. Area under the receiver-operating characteristics curves (AUROC) for change in CE was calculated at each acquisition delay, as well as the accuracy of the Choi criteria. RESULTS: There were 22 (73.3%) poor responders. Acquisition delay had a significant effect on change in CE and on the response status according to Choi (p = 0.0014 and 0.0270, respectively). The highest AUROC was obtained at t = 58 s (0.792) with an optimal threshold of a -30.5% decrease in CE. At t = 58 s, accuracy to predict a poor response was 82.8% above this threshold, while it was 72.4% and 70% with no objective response according to the Choi criteria and RECIST1.1, respectively. CONCLUSION: Optimization of acquisition delay after injection to estimate change in CE improves the prediction of histological response. For STS undergoing NAC, a 60-s delay can be recommended with MRI. KEY POINTS: • Accuracy of response criteria based on contrast enhancement, like the Choi criteria, is dependent on the acquisition delay after gadolinium-chelate injection. • DCE-MRI helps determine the optimal acquisition delay after gadolinium-chelate injection for improving evaluation of tumor response. • In soft tissue sarcoma, an acquisition delay at 60 s optimizes the evaluation of the response and accuracy of the Choi criteria.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf N912c987528634ce5b56ebe535ee27827
57 Nfa31ac70887b423b8b413435e5b4e805
58 sg:journal.1289120
59 schema:name High-grade soft-tissue sarcoma: optimizing injection improves MRI evaluation of tumor response
60 schema:pagination 545-555
61 schema:productId N3d5aba5956584de8b7c2c5e88e4eb139
62 N941dbbe34c544347a46d3ad3ae1bc37f
63 Nce2c4f02c26045118233c4a618f3b93c
64 Ncfc7d3eeda08474580f70a3ca481c44d
65 Nffe0227fd8ee46c181f7e71a7c9790a4
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105771314
67 https://doi.org/10.1007/s00330-018-5635-4
68 schema:sdDatePublished 2019-04-11T09:49
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N23601573e2c844898e53110464e3f394
71 schema:url https://link.springer.com/10.1007%2Fs00330-018-5635-4
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N02802948a6a84d929713a2ebde047cc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Female
77 rdf:type schema:DefinedTerm
78 N0b2703a5b05e49df84023a5b99e0afca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Aged
80 rdf:type schema:DefinedTerm
81 N0cb4271049b3472da69be8e9afdcb69e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Retrospective Studies
83 rdf:type schema:DefinedTerm
84 N129c65d63c7449fba3c98b8a09faedf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Treatment Outcome
86 rdf:type schema:DefinedTerm
87 N23601573e2c844898e53110464e3f394 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N2b129b9ffe834e55b406317adf2f87dd rdf:first sg:person.0653744427.45
90 rdf:rest Nbb44bd09d68f4f5880d4f3f38eb43b8f
91 N31d0fda0312d4789aa544dd1eea93f3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Male
93 rdf:type schema:DefinedTerm
94 N39465789a0e840918bed18d71fa51815 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Neoadjuvant Therapy
96 rdf:type schema:DefinedTerm
97 N3d5aba5956584de8b7c2c5e88e4eb139 schema:name readcube_id
98 schema:value 01a2b4b16d866601cdb4b8f95d7ec9a0ae485eb015ca5a13d976d41f5a3181ad
99 rdf:type schema:PropertyValue
100 N42fa6cc410c44f0d84b1314fd38d9d09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Humans
102 rdf:type schema:DefinedTerm
103 N4c642a7bc11a42ffbef080e4201dfb77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Chemotherapy, Adjuvant
105 rdf:type schema:DefinedTerm
106 N577d8120c1134868be828629a8a78261 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Magnetic Resonance Imaging
108 rdf:type schema:DefinedTerm
109 N5dce5582dae74c9e87ee1e78b8e5a554 rdf:first sg:person.0623513135.80
110 rdf:rest N2b129b9ffe834e55b406317adf2f87dd
111 N62243a1149b04e4fba56bb252414ddb2 rdf:first sg:person.01136751455.54
112 rdf:rest N691e64fedc384b6eac4aa8aecb2c1d2f
113 N67661d1d3bc5494c8c5ac1bf00f9b106 rdf:first sg:person.01006431155.00
114 rdf:rest rdf:nil
115 N688425cb7922482eb80e47e1675d9b32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Anthracyclines
117 rdf:type schema:DefinedTerm
118 N691e64fedc384b6eac4aa8aecb2c1d2f rdf:first sg:person.0723500424.99
119 rdf:rest N5dce5582dae74c9e87ee1e78b8e5a554
120 N84c6f068d01a45fe9c113a1f6d6ec87c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Middle Aged
122 rdf:type schema:DefinedTerm
123 N8ad6b81405a343df99c9920dee319381 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Contrast Media
125 rdf:type schema:DefinedTerm
126 N912c987528634ce5b56ebe535ee27827 schema:issueNumber 2
127 rdf:type schema:PublicationIssue
128 N941dbbe34c544347a46d3ad3ae1bc37f schema:name dimensions_id
129 schema:value pub.1105771314
130 rdf:type schema:PropertyValue
131 Na87eff08bf0d41ddb3265442e20296c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Adult
133 rdf:type schema:DefinedTerm
134 Na958025f470841a6a4447d214b067594 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Gadolinium
136 rdf:type schema:DefinedTerm
137 Nb6ad196cfeea4366b4ef5a54c3b0c5bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Time Factors
139 rdf:type schema:DefinedTerm
140 Nbb44bd09d68f4f5880d4f3f38eb43b8f rdf:first sg:person.010127326431.00
141 rdf:rest Nefe31ae89b174ed499bf7553ff76e7a7
142 Nbe45f87722504e6ea7e57dad6cd449fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Image Interpretation, Computer-Assisted
144 rdf:type schema:DefinedTerm
145 Nce2c4f02c26045118233c4a618f3b93c schema:name doi
146 schema:value 10.1007/s00330-018-5635-4
147 rdf:type schema:PropertyValue
148 Ncfc7d3eeda08474580f70a3ca481c44d schema:name pubmed_id
149 schema:value 30039222
150 rdf:type schema:PropertyValue
151 Ne2a91b7b89204e9ca22314bdc47aa626 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Soft Tissue Neoplasms
153 rdf:type schema:DefinedTerm
154 Neb5150dc838d445db9864a2b272a5051 rdf:first sg:person.01356540530.37
155 rdf:rest N62243a1149b04e4fba56bb252414ddb2
156 Necf059a02fc84c6e9d66a4c504941185 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name ROC Curve
158 rdf:type schema:DefinedTerm
159 Neec4cf486cc3401cb3b62f7349ac5c33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Sarcoma
161 rdf:type schema:DefinedTerm
162 Nefaa93d6501743de85a1d525e41fe42a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Area Under Curve
164 rdf:type schema:DefinedTerm
165 Nefe31ae89b174ed499bf7553ff76e7a7 rdf:first sg:person.01076406503.14
166 rdf:rest N67661d1d3bc5494c8c5ac1bf00f9b106
167 Nf1218b2b00d943d9840fcc45c28500ce schema:name Department of Radiology, Tenon Hospital, Sorbonne University, APHP, F-75020, Paris, France
168 rdf:type schema:Organization
169 Nfa31ac70887b423b8b413435e5b4e805 schema:volumeNumber 29
170 rdf:type schema:PublicationVolume
171 Nffe0227fd8ee46c181f7e71a7c9790a4 schema:name nlm_unique_id
172 schema:value 9114774
173 rdf:type schema:PropertyValue
174 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
175 schema:name Medical and Health Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
178 schema:name Oncology and Carcinogenesis
179 rdf:type schema:DefinedTerm
180 sg:journal.1289120 schema:issn 0938-7994
181 1432-1084
182 schema:name European Radiology
183 rdf:type schema:Periodical
184 sg:person.01006431155.00 schema:affiliation https://www.grid.ac/institutes/grid.476460.7
185 schema:familyName Kind
186 schema:givenName Michèle
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006431155.00
188 rdf:type schema:Person
189 sg:person.010127326431.00 schema:affiliation https://www.grid.ac/institutes/grid.476460.7
190 schema:familyName Cousin
191 schema:givenName Sophie
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127326431.00
193 rdf:type schema:Person
194 sg:person.01076406503.14 schema:affiliation https://www.grid.ac/institutes/grid.476460.7
195 schema:familyName Italiano
196 schema:givenName Antoine
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076406503.14
198 rdf:type schema:Person
199 sg:person.01136751455.54 schema:affiliation https://www.grid.ac/institutes/grid.476460.7
200 schema:familyName Le Loarer
201 schema:givenName François
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136751455.54
203 rdf:type schema:Person
204 sg:person.01356540530.37 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
205 schema:familyName Crombé
206 schema:givenName Amandine
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356540530.37
208 rdf:type schema:Person
209 sg:person.0623513135.80 schema:affiliation https://www.grid.ac/institutes/grid.476460.7
210 schema:familyName Stoeckle
211 schema:givenName Eberhardt
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623513135.80
213 rdf:type schema:Person
214 sg:person.0653744427.45 schema:affiliation https://www.grid.ac/institutes/grid.476460.7
215 schema:familyName Buy
216 schema:givenName Xavier
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653744427.45
218 rdf:type schema:Person
219 sg:person.0723500424.99 schema:affiliation Nf1218b2b00d943d9840fcc45c28500ce
220 schema:familyName Cornelis
221 schema:givenName François
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723500424.99
223 rdf:type schema:Person
224 sg:pub.10.1007/s00330-002-1785-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044327258
225 https://doi.org/10.1007/s00330-002-1785-4
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s00330-016-4300-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013027959
228 https://doi.org/10.1007/s00330-016-4300-z
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s00330-017-4912-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1086112263
231 https://doi.org/10.1007/s00330-017-4912-y
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s00330-017-5036-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091977869
234 https://doi.org/10.1007/s00330-017-5036-0
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1002/cncr.27624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053495697
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1002/ijc.2910330108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027344113
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1002/jmri.21358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002167254
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/jmri.23742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013437690
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1002/mrm.1910210210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046240766
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.ejca.2008.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026558254
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.ejca.2014.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052574960
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.ejca.2015.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040098560
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.ejca.2016.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037275084
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.ejrad.2017.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091403775
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/s1470-2045(10)70071-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026630195
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s1470-2045(17)30334-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085380791
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1093/aje/kwj063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041262324
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1097/rli.0b013e3181d54507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029019950
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1148/radiol.2015142463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079152743
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1148/radiol.2512081403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031436692
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1158/1078-0432.ccr-08-2537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020222505
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1158/1078-0432.ccr-13-1594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039288568
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1177/1758834017705588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084859570
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1200/jco.2017.35.15_suppl.11014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106845797
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1200/jco.2017.75.1610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099625712
277 rdf:type schema:CreativeWork
278 https://doi.org/10.18383/j.tom.2016.00202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068635243
279 rdf:type schema:CreativeWork
280 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
281 schema:name Department of Diagnostic and Interventional Radiology, Institut Bergonie, Comprehensive Cancer Center, 229 cours de l’Argonne, F-33000, Bordeaux, France
282 Modelisation in Oncology (MOnc) Team, INRIA Bordeaux-Sud-Ouest, CNRS UMR 5251 & Université de Bordeaux, F-33405, Talence, France
283 University of Bordeaux, F-33000, Bordeaux, France
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.476460.7 schema:alternateName Institut Bergonié
286 schema:name Department of Diagnostic and Interventional Radiology, Institut Bergonie, Comprehensive Cancer Center, 229 cours de l’Argonne, F-33000, Bordeaux, France
287 Department of Medical Oncology, Institut Bergonie, F-33000, Bordeaux, France
288 Department of Pathology, Institut Bergonie, F-33000, Bordeaux, France
289 Department of Surgery, Institut Bergonie, F-33000, Bordeaux, France
290 University of Bordeaux, F-33000, Bordeaux, France
291 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...