Combined hepatocellular cholangiocarcinoma: LI-RADS v2017 categorisation for differential diagnosis and prognostication on gadoxetic acid-enhanced MR imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Sun Kyung Jeon, Ijin Joo, Dong Ho Lee, Sang Min Lee, Hyo-Jin Kang, Kyoung-Bun Lee, Jeong Min Lee

ABSTRACT

OBJECTIVES: To investigate the performance of the Liver Imaging Reporting and Data System (LI-RADS) v2017 for combined hepatocellular cholangiocarcinoma (cHCC-CCA) in the differential diagnosis from hepatocellular carcinoma (HCC) and prediction of prognosis on gadoxetic acid-enhanced MRI (Gd-EOB-MRI). METHODS: Patients at high risk of HCC with pathologically confirmed cHCC-CCAs (n = 70) and a matched control of HCCs (n = 70) who had undergone Gd-EOB-MRI were included. LI-RADS category was assigned for each lesion by two radiologists. Imaging features and surgical outcomes were compared between cHCC-CCAs of LR-M and LR-5/4 using the χ2 test or Fisher's exact test. Recurrence-free survival (RFS) was estimated using Kaplan-Meier survival curves and compared using the log-rank test. RESULTS: cHCC-CCAs and HCCs were categorised as LR-M, LR-5/4 and LR-TIV in 61.4% (43/70), 37.1% (26/70) and 1.4% (1/70) and 10.0% (7/70), 88.6% (62/70) and 1.4% (1/70), respectively. cHCC-CCAs of LR-5/4, in comparison to LR-M, showed significantly higher frequencies of major HCC features: arterial hyperenhancement (96.2% (25/26) vs. 58.1% (25/43), p = 0.001), washout appearance (80.8% (21/26) vs. 48.8% (21/43), p = 0.011) and enhancing capsule (34.6% (9/26) vs. 11.6% (5/43), p = 0.031). After curative surgery, patients with cHCC-CCAs of LR-M showed a higher early recurrence rate (≤ 6 months) than did those with LR-5/4 (27.8% (10/36) vs. 4.8% (1/21), p = 0.041), whereas no significant difference was observed in RFS (log-rank p = 0.084). CONCLUSIONS: By using LI-RADS on Gd-EOB-MRI, a substantial proportion of cHCC-CCAs can be categorised as non-LR-M. In addition, cHCC-CCAs mimicking HCCs on imaging (LR-5/4) may indicate better surgical outcomes with regard to early recurrence than those of LR-M. KEY POINTS: • cHCC-CCAs can be categorised as either LR-M or non-LR-M on Gd-EOB-MRI. • cHCC-CCAs of LR-5/4 frequently demonstrate major HCC imaging features. • LI-RADS categorisation may provide prognostic information after surgery in cHCC-CCAs. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5605-x

DOI

http://dx.doi.org/10.1007/s00330-018-5605-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105204792

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29955948


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeon", 
        "givenName": "Sun Kyung", 
        "id": "sg:person.013645756703.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013645756703.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joo", 
        "givenName": "Ijin", 
        "id": "sg:person.01301443145.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Ho", 
        "id": "sg:person.0662301041.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662301041.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hallym University Sacred Heart Hospital", 
          "id": "https://www.grid.ac/institutes/grid.488421.3", 
          "name": [
            "Department of Radiology, Hallym University Sacred Heart Hospital, Anyang, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang Min", 
        "id": "sg:person.01315300754.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Hyo-Jin", 
        "id": "sg:person.01011545037.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011545037.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Pathology, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kyoung-Bun", 
        "id": "sg:person.01204275617.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204275617.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jeong Min", 
        "id": "sg:person.01266602714.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1245/s10434-012-2328-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002466357", 
          "https://doi.org/10.1245/s10434-012-2328-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/liv.12563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006373376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.22307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006950782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.27304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009492069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.transproceed.2015.11.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012571787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0000000000000494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016641550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0000000000000494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016641550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-013-0069-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020426845", 
          "https://doi.org/10.1007/s00261-013-0069-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2015.16.1.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020926282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.23897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030684026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032582165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lt.24711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033356062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041008183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3349-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047008805", 
          "https://doi.org/10.1007/s00330-014-3349-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052818135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.13.10570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.15.14997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069304404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079070293", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dld.2017.01.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083695485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12659/aot.900779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084257381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4254/wjh.v9.i6.300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084457124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.16.17478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090390209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1261-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090949286", 
          "https://doi.org/10.1007/s00261-017-1261-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1261-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090949286", 
          "https://doi.org/10.1007/s00261-017-1261-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2017170114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091434402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2017170376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092479519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.2017170098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092685377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092752264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092752264"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "OBJECTIVES: To investigate the performance of the Liver Imaging Reporting and Data System (LI-RADS) v2017 for combined hepatocellular cholangiocarcinoma (cHCC-CCA) in the differential diagnosis from hepatocellular carcinoma (HCC) and prediction of prognosis on gadoxetic acid-enhanced MRI (Gd-EOB-MRI).\nMETHODS: Patients at high risk of HCC with pathologically confirmed cHCC-CCAs (n = 70) and a matched control of HCCs (n = 70) who had undergone Gd-EOB-MRI were included. LI-RADS category was assigned for each lesion by two radiologists. Imaging features and surgical outcomes were compared between cHCC-CCAs of LR-M and LR-5/4 using the \u03c72 test or Fisher's exact test. Recurrence-free survival (RFS) was estimated using Kaplan-Meier survival curves and compared using the log-rank test.\nRESULTS: cHCC-CCAs and HCCs were categorised as LR-M, LR-5/4 and LR-TIV in 61.4% (43/70), 37.1% (26/70) and 1.4% (1/70) and 10.0% (7/70), 88.6% (62/70) and 1.4% (1/70), respectively. cHCC-CCAs of LR-5/4, in comparison to LR-M, showed significantly higher frequencies of major HCC features: arterial hyperenhancement (96.2% (25/26) vs. 58.1% (25/43), p = 0.001), washout appearance (80.8% (21/26) vs. 48.8% (21/43), p = 0.011) and enhancing capsule (34.6% (9/26) vs. 11.6% (5/43), p = 0.031). After curative surgery, patients with cHCC-CCAs of LR-M showed a higher early recurrence rate (\u2264 6 months) than did those with LR-5/4 (27.8% (10/36) vs. 4.8% (1/21), p = 0.041), whereas no significant difference was observed in RFS (log-rank p = 0.084).\nCONCLUSIONS: By using LI-RADS on Gd-EOB-MRI, a substantial proportion of cHCC-CCAs can be categorised as non-LR-M. In addition, cHCC-CCAs mimicking HCCs on imaging (LR-5/4) may indicate better surgical outcomes with regard to early recurrence than those of LR-M.\nKEY POINTS: \u2022 cHCC-CCAs can be categorised as either LR-M or non-LR-M on Gd-EOB-MRI. \u2022 cHCC-CCAs of LR-5/4 frequently demonstrate major HCC imaging features. \u2022 LI-RADS categorisation may provide prognostic information after surgery in cHCC-CCAs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5605-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Combined hepatocellular cholangiocarcinoma: LI-RADS v2017 categorisation for differential diagnosis and prognostication on gadoxetic acid-enhanced MR imaging", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d0c94b30831713701700d31809a979409ddeea94a834b14271a761081cd6390f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29955948"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5605-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105204792"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5605-x", 
      "https://app.dimensions.ai/details/publication/pub.1105204792"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-018-5605-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5605-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5605-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5605-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5605-x'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5605-x schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nea07162175fe4443a707f9b1a23ce36e
4 schema:citation sg:pub.10.1007/s00261-013-0069-6
5 sg:pub.10.1007/s00261-017-1261-x
6 sg:pub.10.1007/s00330-014-3349-9
7 sg:pub.10.1245/s10434-012-2328-0
8 https://app.dimensions.ai/details/publication/pub.1079070293
9 https://doi.org/10.1002/hep.27304
10 https://doi.org/10.1002/jmri.24937
11 https://doi.org/10.1002/jmri.25287
12 https://doi.org/10.1002/jmri.25568
13 https://doi.org/10.1002/lt.22307
14 https://doi.org/10.1002/lt.23897
15 https://doi.org/10.1002/lt.24711
16 https://doi.org/10.1016/j.dld.2017.01.166
17 https://doi.org/10.1016/j.transproceed.2015.11.029
18 https://doi.org/10.1097/rct.0000000000000695
19 https://doi.org/10.1097/sla.0000000000000494
20 https://doi.org/10.1111/liv.12563
21 https://doi.org/10.1148/radiol.2017170114
22 https://doi.org/10.1148/radiol.2017170376
23 https://doi.org/10.1148/rg.2017170098
24 https://doi.org/10.12659/aot.900779
25 https://doi.org/10.2214/ajr.12.9488
26 https://doi.org/10.2214/ajr.13.10570
27 https://doi.org/10.2214/ajr.15.14997
28 https://doi.org/10.2214/ajr.16.17478
29 https://doi.org/10.3348/kjr.2015.16.1.50
30 https://doi.org/10.4254/wjh.v9.i6.300
31 schema:datePublished 2019-01
32 schema:datePublishedReg 2019-01-01
33 schema:description OBJECTIVES: To investigate the performance of the Liver Imaging Reporting and Data System (LI-RADS) v2017 for combined hepatocellular cholangiocarcinoma (cHCC-CCA) in the differential diagnosis from hepatocellular carcinoma (HCC) and prediction of prognosis on gadoxetic acid-enhanced MRI (Gd-EOB-MRI). METHODS: Patients at high risk of HCC with pathologically confirmed cHCC-CCAs (n = 70) and a matched control of HCCs (n = 70) who had undergone Gd-EOB-MRI were included. LI-RADS category was assigned for each lesion by two radiologists. Imaging features and surgical outcomes were compared between cHCC-CCAs of LR-M and LR-5/4 using the χ2 test or Fisher's exact test. Recurrence-free survival (RFS) was estimated using Kaplan-Meier survival curves and compared using the log-rank test. RESULTS: cHCC-CCAs and HCCs were categorised as LR-M, LR-5/4 and LR-TIV in 61.4% (43/70), 37.1% (26/70) and 1.4% (1/70) and 10.0% (7/70), 88.6% (62/70) and 1.4% (1/70), respectively. cHCC-CCAs of LR-5/4, in comparison to LR-M, showed significantly higher frequencies of major HCC features: arterial hyperenhancement (96.2% (25/26) vs. 58.1% (25/43), p = 0.001), washout appearance (80.8% (21/26) vs. 48.8% (21/43), p = 0.011) and enhancing capsule (34.6% (9/26) vs. 11.6% (5/43), p = 0.031). After curative surgery, patients with cHCC-CCAs of LR-M showed a higher early recurrence rate (≤ 6 months) than did those with LR-5/4 (27.8% (10/36) vs. 4.8% (1/21), p = 0.041), whereas no significant difference was observed in RFS (log-rank p = 0.084). CONCLUSIONS: By using LI-RADS on Gd-EOB-MRI, a substantial proportion of cHCC-CCAs can be categorised as non-LR-M. In addition, cHCC-CCAs mimicking HCCs on imaging (LR-5/4) may indicate better surgical outcomes with regard to early recurrence than those of LR-M. KEY POINTS: • cHCC-CCAs can be categorised as either LR-M or non-LR-M on Gd-EOB-MRI. • cHCC-CCAs of LR-5/4 frequently demonstrate major HCC imaging features. • LI-RADS categorisation may provide prognostic information after surgery in cHCC-CCAs.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1289120
38 schema:name Combined hepatocellular cholangiocarcinoma: LI-RADS v2017 categorisation for differential diagnosis and prognostication on gadoxetic acid-enhanced MR imaging
39 schema:pagination 1-10
40 schema:productId N461f5bc358a84cb684082b1c5ef42d46
41 N5685d03be6f24b1cb560f97dbfbc5c99
42 N66a7e71883e94e91a317aeba72915977
43 N7c3f13fde98c46eaa11e242e9dc36cb5
44 Nb8b24b85c3924084b22b2c39e3ee3b38
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105204792
46 https://doi.org/10.1007/s00330-018-5605-x
47 schema:sdDatePublished 2019-04-10T16:55
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Ne7576513b203490d8ef6c3a5697ae7fd
50 schema:url http://link.springer.com/10.1007%2Fs00330-018-5605-x
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0172a936309649408513694111f9db72 rdf:first sg:person.0662301041.59
55 rdf:rest N66fcd9d7773f40eba59b3c95c5518030
56 N461f5bc358a84cb684082b1c5ef42d46 schema:name readcube_id
57 schema:value d0c94b30831713701700d31809a979409ddeea94a834b14271a761081cd6390f
58 rdf:type schema:PropertyValue
59 N5685d03be6f24b1cb560f97dbfbc5c99 schema:name doi
60 schema:value 10.1007/s00330-018-5605-x
61 rdf:type schema:PropertyValue
62 N66a7e71883e94e91a317aeba72915977 schema:name nlm_unique_id
63 schema:value 9114774
64 rdf:type schema:PropertyValue
65 N66fcd9d7773f40eba59b3c95c5518030 rdf:first sg:person.01315300754.59
66 rdf:rest Nccf498fe44a841d48ee840cc2e3b5c01
67 N7c3f13fde98c46eaa11e242e9dc36cb5 schema:name dimensions_id
68 schema:value pub.1105204792
69 rdf:type schema:PropertyValue
70 Nb8b24b85c3924084b22b2c39e3ee3b38 schema:name pubmed_id
71 schema:value 29955948
72 rdf:type schema:PropertyValue
73 Nccf498fe44a841d48ee840cc2e3b5c01 rdf:first sg:person.01011545037.83
74 rdf:rest Nfcbee8ec6e444518ae583ab37c99e250
75 Nd2161cceaa5645a0a7fe9c2039b92b5b rdf:first sg:person.01266602714.81
76 rdf:rest rdf:nil
77 Ne7576513b203490d8ef6c3a5697ae7fd schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nea07162175fe4443a707f9b1a23ce36e rdf:first sg:person.013645756703.63
80 rdf:rest Nec48990fdf9f42a5b349ff5e7342f790
81 Nec48990fdf9f42a5b349ff5e7342f790 rdf:first sg:person.01301443145.43
82 rdf:rest N0172a936309649408513694111f9db72
83 Nfcbee8ec6e444518ae583ab37c99e250 rdf:first sg:person.01204275617.31
84 rdf:rest Nd2161cceaa5645a0a7fe9c2039b92b5b
85 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
86 schema:name Medical and Health Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
89 schema:name Clinical Sciences
90 rdf:type schema:DefinedTerm
91 sg:journal.1289120 schema:issn 0938-7994
92 1432-1084
93 schema:name European Radiology
94 rdf:type schema:Periodical
95 sg:person.01011545037.83 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
96 schema:familyName Kang
97 schema:givenName Hyo-Jin
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011545037.83
99 rdf:type schema:Person
100 sg:person.01204275617.31 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
101 schema:familyName Lee
102 schema:givenName Kyoung-Bun
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204275617.31
104 rdf:type schema:Person
105 sg:person.01266602714.81 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
106 schema:familyName Lee
107 schema:givenName Jeong Min
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81
109 rdf:type schema:Person
110 sg:person.01301443145.43 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
111 schema:familyName Joo
112 schema:givenName Ijin
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43
114 rdf:type schema:Person
115 sg:person.01315300754.59 schema:affiliation https://www.grid.ac/institutes/grid.488421.3
116 schema:familyName Lee
117 schema:givenName Sang Min
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59
119 rdf:type schema:Person
120 sg:person.013645756703.63 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
121 schema:familyName Jeon
122 schema:givenName Sun Kyung
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013645756703.63
124 rdf:type schema:Person
125 sg:person.0662301041.59 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
126 schema:familyName Lee
127 schema:givenName Dong Ho
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662301041.59
129 rdf:type schema:Person
130 sg:pub.10.1007/s00261-013-0069-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020426845
131 https://doi.org/10.1007/s00261-013-0069-6
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s00261-017-1261-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1090949286
134 https://doi.org/10.1007/s00261-017-1261-x
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00330-014-3349-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047008805
137 https://doi.org/10.1007/s00330-014-3349-9
138 rdf:type schema:CreativeWork
139 sg:pub.10.1245/s10434-012-2328-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002466357
140 https://doi.org/10.1245/s10434-012-2328-0
141 rdf:type schema:CreativeWork
142 https://app.dimensions.ai/details/publication/pub.1079070293 schema:CreativeWork
143 https://doi.org/10.1002/hep.27304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009492069
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/jmri.24937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041008183
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/jmri.25287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052818135
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/jmri.25568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032582165
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/lt.22307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006950782
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/lt.23897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030684026
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/lt.24711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033356062
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.dld.2017.01.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083695485
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.transproceed.2015.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012571787
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1097/rct.0000000000000695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092752264
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1097/sla.0000000000000494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016641550
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1111/liv.12563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006373376
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1148/radiol.2017170114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091434402
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1148/radiol.2017170376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092479519
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1148/rg.2017170098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092685377
172 rdf:type schema:CreativeWork
173 https://doi.org/10.12659/aot.900779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084257381
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2214/ajr.12.9488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302867
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2214/ajr.13.10570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303055
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2214/ajr.15.14997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069304404
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2214/ajr.16.17478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090390209
182 rdf:type schema:CreativeWork
183 https://doi.org/10.3348/kjr.2015.16.1.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020926282
184 rdf:type schema:CreativeWork
185 https://doi.org/10.4254/wjh.v9.i6.300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084457124
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
188 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
189 Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
192 schema:name Department of Pathology, Seoul National University Hospital, Seoul, Korea
193 Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
194 Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
195 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.488421.3 schema:alternateName Hallym University Sacred Heart Hospital
198 schema:name Department of Radiology, Hallym University Sacred Heart Hospital, Anyang, Korea
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...