CT prediction of resectability and prognosis in patients with pancreatic ductal adenocarcinoma after neoadjuvant treatment using image findings and texture ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Bo Ram Kim, Jung Hoon Kim, Su Joa Ahn, Ijin Joo, Seo-Youn Choi, Sang Joon Park, Joon Koo Han

ABSTRACT

OBJECTIVES: To assess utility of CT findings and texture analysis for predicting the resectability and prognosis in patients after neoadjuvant therapy for pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS: Among 308 patients, 45 with PDAC underwent neoadjuvant therapy (concurrent-chemoradiation-therapy, CCRT, n = 27 and chemotherapy, ChoT, n = 18) before surgery were included. All underwent baseline and preoperative CT. Two reviewers assessed CT findings and resectability. We analyzed relationship between CT resectability and residual tumor. CT texture values obtained by subtracting preoperative from baseline CT were analyzed using multivariate Cox/logistic regression analysis to identify significant parameters predicting resectability and prognosis. RESULTS: There were 30 patients without residual tumor (CCRT, n = 20; ChoT, n = 10) and 15 with residual tumor (CCRT, n = 7; ChoT, n = 8). Considering borderline as resectable was more accurate for R0 resectability than considering borderline as unresectable (68.9% vs 55.6% and 51.1%, p < 0.001). Particularly, neoadjuvant CCRT provided better accuracy than that in (p < 0.001). In CT texture analysis, higher subtracted entropy (cut-off: 0.03, HR 0.159, p = 0.005) and lower subtracted GLCM entropy (cut-off: -0.35, HR 10.235, p = 0.036) are important parameters for prediction of longer overall survival. CONCLUSION: CT findings with texture analysis can be useful for predicting a patient's outcome, including resectability and prognosis, after neoadjuvant therapy for PDAC. KEY POINTS: • Considering borderline resectable tumor as resectable have better accuracy for resectability. • Considering borderline as resectable, CCRT-patients have better resectability accuracy than chemotherapy-patients. • Higher subtracted entropy and lower subtracted GLCM entropy are predictors of favorable outcome. More... »

PAGES

362-372

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5574-0

DOI

http://dx.doi.org/10.1007/s00330-018-5574-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105052211

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29931561


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Bo Ram", 
        "id": "sg:person.016255441035.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016255441035.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jung Hoon", 
        "id": "sg:person.014534173224.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014534173224.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Su Joa", 
        "id": "sg:person.01065717421.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065717421.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joo", 
        "givenName": "Ijin", 
        "id": "sg:person.01301443145.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soonchunhyang University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412678.e", 
          "name": [
            "Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Seo-Youn", 
        "id": "sg:person.0701343356.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701343356.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sang Joon", 
        "id": "sg:person.0646222154.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5858/arpa.2011-0144-ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001522234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1477-2574.2009.00136.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002005958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4708-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002739230", 
          "https://doi.org/10.1007/s00330-016-4708-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4708-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002739230", 
          "https://doi.org/10.1007/s00330-016-4708-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2013.279201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003333891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0108335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013909328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002619900046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016126201", 
          "https://doi.org/10.1007/s002619900046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020669084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022961172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13122869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027174637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000371745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031154681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.gassur.2006.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031265211", 
          "https://doi.org/10.1016/j.gassur.2006.08.018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14132914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034864965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jamcollsurg.2008.04.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041619584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042743379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1000267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045271156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045809942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.26651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047019599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1091-255x(00)80105-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048529586", 
          "https://doi.org/10.1016/s1091-255x(00)80105-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048596152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa032295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048680038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/dote.12170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048768285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2004.04087.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049061650", 
          "https://doi.org/10.1111/j.1572-0241.2004.04087.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2502080501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050421543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1091-255x(01)80105-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051133341", 
          "https://doi.org/10.1016/s1091-255x(01)80105-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-009-0408-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051621519", 
          "https://doi.org/10.1245/s10434-009-0408-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-009-0408-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051621519", 
          "https://doi.org/10.1245/s10434-009-0408-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.27636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051952201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-200112000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053277218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00000658-200112000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053277218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2005.862744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.08.1022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2012.0073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078574725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6004/jnccn.2012.0073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078574725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14132187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078953021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.1000-9604.2014.08.07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078974406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2017.02.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083907169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-017-0209-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086106187", 
          "https://doi.org/10.1186/s12880-017-0209-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-017-0209-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086106187", 
          "https://doi.org/10.1186/s12880-017-0209-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0182883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091151508"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "OBJECTIVES: To assess utility of CT findings and texture analysis for predicting the resectability and prognosis in patients after neoadjuvant therapy for pancreatic ductal adenocarcinoma (PDAC).\nMATERIALS AND METHODS: Among 308 patients, 45 with PDAC underwent neoadjuvant therapy (concurrent-chemoradiation-therapy, CCRT, n = 27 and chemotherapy, ChoT, n = 18) before surgery were included. All underwent baseline and preoperative CT. Two reviewers assessed CT findings and resectability. We analyzed relationship between CT resectability and residual tumor. CT texture values obtained by subtracting preoperative from baseline CT were analyzed using multivariate Cox/logistic regression analysis to identify significant parameters predicting resectability and prognosis.\nRESULTS: There were 30 patients without residual tumor (CCRT, n = 20; ChoT, n = 10) and 15 with residual tumor (CCRT, n = 7; ChoT, n = 8). Considering borderline as resectable was more accurate for R0 resectability than considering borderline as unresectable (68.9% vs 55.6% and 51.1%, p < 0.001). Particularly, neoadjuvant CCRT provided better accuracy than that in (p < 0.001). In CT texture analysis, higher subtracted entropy (cut-off: 0.03, HR 0.159, p = 0.005) and lower subtracted GLCM entropy (cut-off: -0.35, HR 10.235, p = 0.036) are important parameters for prediction of longer overall survival.\nCONCLUSION: CT findings with texture analysis can be useful for predicting a patient's outcome, including resectability and prognosis, after neoadjuvant therapy for PDAC.\nKEY POINTS: \u2022 Considering borderline resectable tumor as resectable have better accuracy for resectability. \u2022 Considering borderline as resectable, CCRT-patients have better resectability accuracy than chemotherapy-patients. \u2022 Higher subtracted entropy and lower subtracted GLCM entropy are predictors of favorable outcome.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5574-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "CT prediction of resectability and prognosis in patients with pancreatic ductal adenocarcinoma after neoadjuvant treatment using image findings and texture analysis", 
    "pagination": "362-372", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f2d74f8b2338e1aaca4951c5e42da016bf61132f2389a9afae0de371baa128b8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29931561"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5574-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105052211"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5574-0", 
      "https://app.dimensions.ai/details/publication/pub.1105052211"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45363_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5574-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5574-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5574-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5574-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5574-0'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5574-0 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N5b53d997caec401f9d275c318aaae48a
4 schema:citation sg:pub.10.1007/s002619900046
5 sg:pub.10.1007/s00330-016-4708-5
6 sg:pub.10.1016/j.gassur.2006.08.018
7 sg:pub.10.1016/s1091-255x(00)80105-5
8 sg:pub.10.1016/s1091-255x(01)80105-0
9 sg:pub.10.1111/j.1572-0241.2004.04087.x
10 sg:pub.10.1186/s12880-017-0209-5
11 sg:pub.10.1245/s10434-009-0408-6
12 https://doi.org/10.1001/jama.2013.279201
13 https://doi.org/10.1002/cncr.26651
14 https://doi.org/10.1002/cncr.27636
15 https://doi.org/10.1016/j.ejrad.2012.10.023
16 https://doi.org/10.1016/j.ejrad.2012.12.002
17 https://doi.org/10.1016/j.ejrad.2016.08.014
18 https://doi.org/10.1016/j.ejrad.2017.02.033
19 https://doi.org/10.1016/j.jamcollsurg.2008.04.033
20 https://doi.org/10.1056/nejmoa032295
21 https://doi.org/10.1097/00000658-200112000-00007
22 https://doi.org/10.1109/tmi.2005.862744
23 https://doi.org/10.1111/dote.12170
24 https://doi.org/10.1111/j.1477-2574.2009.00136.x
25 https://doi.org/10.1148/radiol.11110264
26 https://doi.org/10.1148/radiol.12120254
27 https://doi.org/10.1148/radiol.13122869
28 https://doi.org/10.1148/radiol.14132187
29 https://doi.org/10.1148/radiol.14132914
30 https://doi.org/10.1148/radiol.2502080501
31 https://doi.org/10.1159/000371745
32 https://doi.org/10.1371/journal.pmed.1000267
33 https://doi.org/10.1371/journal.pone.0108335
34 https://doi.org/10.1371/journal.pone.0182883
35 https://doi.org/10.2214/ajr.08.1022
36 https://doi.org/10.3978/j.issn.1000-9604.2014.08.07
37 https://doi.org/10.5858/arpa.2011-0144-ra
38 https://doi.org/10.6004/jnccn.2012.0073
39 schema:datePublished 2019-01
40 schema:datePublishedReg 2019-01-01
41 schema:description OBJECTIVES: To assess utility of CT findings and texture analysis for predicting the resectability and prognosis in patients after neoadjuvant therapy for pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS: Among 308 patients, 45 with PDAC underwent neoadjuvant therapy (concurrent-chemoradiation-therapy, CCRT, n = 27 and chemotherapy, ChoT, n = 18) before surgery were included. All underwent baseline and preoperative CT. Two reviewers assessed CT findings and resectability. We analyzed relationship between CT resectability and residual tumor. CT texture values obtained by subtracting preoperative from baseline CT were analyzed using multivariate Cox/logistic regression analysis to identify significant parameters predicting resectability and prognosis. RESULTS: There were 30 patients without residual tumor (CCRT, n = 20; ChoT, n = 10) and 15 with residual tumor (CCRT, n = 7; ChoT, n = 8). Considering borderline as resectable was more accurate for R0 resectability than considering borderline as unresectable (68.9% vs 55.6% and 51.1%, p < 0.001). Particularly, neoadjuvant CCRT provided better accuracy than that in (p < 0.001). In CT texture analysis, higher subtracted entropy (cut-off: 0.03, HR 0.159, p = 0.005) and lower subtracted GLCM entropy (cut-off: -0.35, HR 10.235, p = 0.036) are important parameters for prediction of longer overall survival. CONCLUSION: CT findings with texture analysis can be useful for predicting a patient's outcome, including resectability and prognosis, after neoadjuvant therapy for PDAC. KEY POINTS: • Considering borderline resectable tumor as resectable have better accuracy for resectability. • Considering borderline as resectable, CCRT-patients have better resectability accuracy than chemotherapy-patients. • Higher subtracted entropy and lower subtracted GLCM entropy are predictors of favorable outcome.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf Nbc917d6759aa4b67b4c5b0707b26e74d
46 Ncca49223b7344d7796de6ffaf3edd71f
47 sg:journal.1289120
48 schema:name CT prediction of resectability and prognosis in patients with pancreatic ductal adenocarcinoma after neoadjuvant treatment using image findings and texture analysis
49 schema:pagination 362-372
50 schema:productId N09c7da1eac034b219991ed5633318a48
51 N32c48ca3391743b99929b9523135f309
52 N520414e2536a417daccb2d85191492d3
53 N63aa6a3fc22740adbcff91bc4d1c2bfc
54 Nbe8c86e1699a462e87bb27787887d255
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105052211
56 https://doi.org/10.1007/s00330-018-5574-0
57 schema:sdDatePublished 2019-04-11T11:12
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N81a958ee11474025bbee05be9521379f
60 schema:url https://link.springer.com/10.1007%2Fs00330-018-5574-0
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N09c7da1eac034b219991ed5633318a48 schema:name pubmed_id
65 schema:value 29931561
66 rdf:type schema:PropertyValue
67 N290ed7467ec64fc89377d677895ff66e rdf:first sg:person.0647723014.95
68 rdf:rest rdf:nil
69 N32c48ca3391743b99929b9523135f309 schema:name doi
70 schema:value 10.1007/s00330-018-5574-0
71 rdf:type schema:PropertyValue
72 N49785e4f154844bba9f5a1ca3e9a665f rdf:first sg:person.0701343356.31
73 rdf:rest Naa3925ec2a8648578a78abd28c01565e
74 N520414e2536a417daccb2d85191492d3 schema:name nlm_unique_id
75 schema:value 9114774
76 rdf:type schema:PropertyValue
77 N5b53d997caec401f9d275c318aaae48a rdf:first sg:person.016255441035.94
78 rdf:rest N8bd52ddbf8d04d9dbd1a43a224a48ce2
79 N63aa6a3fc22740adbcff91bc4d1c2bfc schema:name readcube_id
80 schema:value f2d74f8b2338e1aaca4951c5e42da016bf61132f2389a9afae0de371baa128b8
81 rdf:type schema:PropertyValue
82 N6a3eb484fa4d447db66d0087c4759b69 rdf:first sg:person.01065717421.22
83 rdf:rest Nc81edaad65384202a0557ad954ab92f9
84 N81a958ee11474025bbee05be9521379f schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N8bd52ddbf8d04d9dbd1a43a224a48ce2 rdf:first sg:person.014534173224.00
87 rdf:rest N6a3eb484fa4d447db66d0087c4759b69
88 Naa3925ec2a8648578a78abd28c01565e rdf:first sg:person.0646222154.82
89 rdf:rest N290ed7467ec64fc89377d677895ff66e
90 Nbc917d6759aa4b67b4c5b0707b26e74d schema:volumeNumber 29
91 rdf:type schema:PublicationVolume
92 Nbe8c86e1699a462e87bb27787887d255 schema:name dimensions_id
93 schema:value pub.1105052211
94 rdf:type schema:PropertyValue
95 Nc81edaad65384202a0557ad954ab92f9 rdf:first sg:person.01301443145.43
96 rdf:rest N49785e4f154844bba9f5a1ca3e9a665f
97 Ncca49223b7344d7796de6ffaf3edd71f schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
100 schema:name Medical and Health Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
103 schema:name Oncology and Carcinogenesis
104 rdf:type schema:DefinedTerm
105 sg:journal.1289120 schema:issn 0938-7994
106 1432-1084
107 schema:name European Radiology
108 rdf:type schema:Periodical
109 sg:person.01065717421.22 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
110 schema:familyName Ahn
111 schema:givenName Su Joa
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065717421.22
113 rdf:type schema:Person
114 sg:person.01301443145.43 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
115 schema:familyName Joo
116 schema:givenName Ijin
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43
118 rdf:type schema:Person
119 sg:person.014534173224.00 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
120 schema:familyName Kim
121 schema:givenName Jung Hoon
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014534173224.00
123 rdf:type schema:Person
124 sg:person.016255441035.94 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
125 schema:familyName Kim
126 schema:givenName Bo Ram
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016255441035.94
128 rdf:type schema:Person
129 sg:person.0646222154.82 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
130 schema:familyName Park
131 schema:givenName Sang Joon
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82
133 rdf:type schema:Person
134 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
135 schema:familyName Han
136 schema:givenName Joon Koo
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
138 rdf:type schema:Person
139 sg:person.0701343356.31 schema:affiliation https://www.grid.ac/institutes/grid.412678.e
140 schema:familyName Choi
141 schema:givenName Seo-Youn
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701343356.31
143 rdf:type schema:Person
144 sg:pub.10.1007/s002619900046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016126201
145 https://doi.org/10.1007/s002619900046
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00330-016-4708-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002739230
148 https://doi.org/10.1007/s00330-016-4708-5
149 rdf:type schema:CreativeWork
150 sg:pub.10.1016/j.gassur.2006.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031265211
151 https://doi.org/10.1016/j.gassur.2006.08.018
152 rdf:type schema:CreativeWork
153 sg:pub.10.1016/s1091-255x(00)80105-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048529586
154 https://doi.org/10.1016/s1091-255x(00)80105-5
155 rdf:type schema:CreativeWork
156 sg:pub.10.1016/s1091-255x(01)80105-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051133341
157 https://doi.org/10.1016/s1091-255x(01)80105-0
158 rdf:type schema:CreativeWork
159 sg:pub.10.1111/j.1572-0241.2004.04087.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049061650
160 https://doi.org/10.1111/j.1572-0241.2004.04087.x
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/s12880-017-0209-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086106187
163 https://doi.org/10.1186/s12880-017-0209-5
164 rdf:type schema:CreativeWork
165 sg:pub.10.1245/s10434-009-0408-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051621519
166 https://doi.org/10.1245/s10434-009-0408-6
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1001/jama.2013.279201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003333891
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/cncr.26651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047019599
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/cncr.27636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051952201
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.ejrad.2012.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045809942
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.ejrad.2012.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048596152
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.ejrad.2016.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022961172
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ejrad.2017.02.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083907169
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jamcollsurg.2008.04.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041619584
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1056/nejmoa032295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048680038
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1097/00000658-200112000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053277218
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/tmi.2005.862744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694823
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/dote.12170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048768285
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/j.1477-2574.2009.00136.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002005958
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1148/radiol.11110264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020669084
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1148/radiol.12120254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042743379
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1148/radiol.13122869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027174637
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1148/radiol.14132187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078953021
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1148/radiol.14132914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034864965
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1148/radiol.2502080501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050421543
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1159/000371745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031154681
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1371/journal.pmed.1000267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045271156
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1371/journal.pone.0108335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013909328
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1371/journal.pone.0182883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091151508
213 rdf:type schema:CreativeWork
214 https://doi.org/10.2214/ajr.08.1022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299512
215 rdf:type schema:CreativeWork
216 https://doi.org/10.3978/j.issn.1000-9604.2014.08.07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078974406
217 rdf:type schema:CreativeWork
218 https://doi.org/10.5858/arpa.2011-0144-ra schema:sameAs https://app.dimensions.ai/details/publication/pub.1001522234
219 rdf:type schema:CreativeWork
220 https://doi.org/10.6004/jnccn.2012.0073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078574725
221 rdf:type schema:CreativeWork
222 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
223 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea
224 Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
227 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Republic of Korea
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.412678.e schema:alternateName Soonchunhyang University Hospital
230 schema:name Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...