Sub-millisievert CT colonography: effect of knowledge-based iterative reconstruction on the detection of colonic polyps View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06-08

AUTHORS

Hyo-Jin Kang, Se Hyung Kim, Cheong-Il Shin, Ijin Joo, Hwaseong Ryu, Sang Gyun Kim, Jong Pil Im, Joon Koo Han

ABSTRACT

ObjectivesTo assess the feasibility of ultra-low dose computed tomography colonography (CTC) using knowledge-based iterative reconstruction (IR) and to determine its effect on polyp detection.MethodsForty-nine prospectively-enrolled patients underwent ultra-low dose CTC in the supine (100 kVp/20 mAs) and prone positions (80 kVp/20 mAs), followed by same-day colonoscopy. Thereafter, images were reconstructed using filtered back projection (FBP) and knowledge-based IR (IMR; Philips Healthcare, Best, Netherlands) algorithms. Effective radiation dose of CTC was recorded. Pooled per-polyp sensitivity and positive predictive value of three radiologists was analysed and compared between FBP and IMR. Image quality was assessed on a five-point scale and image noise was recorded using standard deviations.ResultsMean effective radiation dose of ultra-low dose CTC was 0.90 ± 0.06 mSv. Eighty-nine polyps were detected on colonoscopy (mean, 8.5 ± 4.7 mm). The pooled per-polyp sensitivity for polyps 6.0-9.9 mm (n = 22) on CTC reconstructed with IMR (36/66, 54.5%) was not significantly different with that using FBP algorithm (34/66, 51.5%) (p = 0.414). For polyps ≥10 mm (n = 35), however, the pooled per-polyp sensitivity on CTC with IMR (73/105, 69.5%) was significantly higher than that with FBP (55/105, 52.4%) (p < 0.001). In particular, the difference of per-polyp sensitivity was statistically significant in intermediate (p = 0.014) and novice (p = 0.003) reviewers. Furthermore, mean image noise of IMR (8.4 ± 6.2 HU) was significantly lower than that of FBP (37.5 ± 13.9 HU) (p < 0.001) and image quality with IMR was significantly better than with FBP in all evaluated segments in all reviewers (all ps < 0.001).ConclusionsSub-mSv CTC reconstructed with IMR was feasible for the detection of clinically significant polyps, demonstrating 70% per-polyp sensitivity of polyps ≥10 mm, while allowing significant noise reduction and improvement in image quality compared with FBP reconstruction.Key Points• Sub-mSv CTC using IMR demonstrated 70% per-polyp sensitivity for polyps ≥10 mm.• CTC using IMR significantly outperformed CTC reconstructed with FBP.• IMR allows significantly more noise reduction and improvement in image quality than FBP. More... »

PAGES

5258-5266

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5545-5

DOI

http://dx.doi.org/10.1007/s00330-018-5545-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104476102

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29948063


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Competence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colonic Polyps", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colonography, Computed Tomographic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colonoscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Hyo-Jin", 
        "id": "sg:person.01011545037.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011545037.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Se Hyung", 
        "id": "sg:person.01134651464.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134651464.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Cheong-Il", 
        "id": "sg:person.01267336720.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267336720.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joo", 
        "givenName": "Ijin", 
        "id": "sg:person.01301443145.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pusan National University Yangsan Hospital, Yangsan, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412591.a", 
          "name": [
            "Pusan National University Yangsan Hospital, Yangsan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryu", 
        "givenName": "Hwaseong", 
        "id": "sg:person.016656056677.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656056677.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal medicine, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sang Gyun", 
        "id": "sg:person.016035435043.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035435043.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal medicine, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Im", 
        "givenName": "Jong Pil", 
        "id": "sg:person.0776072110.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776072110.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-011-2104-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015043090", 
          "https://doi.org/10.1007/s00330-011-2104-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3603-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018258674", 
          "https://doi.org/10.1007/s00330-015-3603-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2765-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022014391", 
          "https://doi.org/10.1007/s00330-012-2765-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2001.03639.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040070942", 
          "https://doi.org/10.1111/j.1572-0241.2001.03639.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3350-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052938082", 
          "https://doi.org/10.1007/s00330-014-3350-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-08", 
    "datePublishedReg": "2018-06-08", 
    "description": "ObjectivesTo assess the feasibility of ultra-low dose computed tomography colonography (CTC) using knowledge-based iterative reconstruction (IR) and to determine its effect on polyp detection.MethodsForty-nine prospectively-enrolled patients underwent ultra-low dose CTC in the supine (100 kVp/20 mAs) and prone positions (80 kVp/20 mAs), followed by same-day colonoscopy. Thereafter, images were reconstructed using filtered back projection (FBP) and knowledge-based IR (IMR; Philips Healthcare, Best, Netherlands) algorithms. Effective radiation dose of CTC was recorded. Pooled per-polyp sensitivity and positive predictive value of three radiologists was analysed and compared between FBP and IMR. Image quality was assessed on a five-point scale and image noise was recorded using standard deviations.ResultsMean effective radiation dose of ultra-low dose CTC was 0.90 \u00b1 0.06 mSv. Eighty-nine polyps were detected on colonoscopy (mean, 8.5 \u00b1 4.7 mm). The pooled per-polyp sensitivity for polyps 6.0-9.9 mm (n = 22) on CTC reconstructed with IMR (36/66, 54.5%) was not significantly different with that using FBP algorithm (34/66, 51.5%) (p = 0.414). For polyps \u226510 mm (n = 35), however, the pooled per-polyp sensitivity on CTC with IMR (73/105, 69.5%) was significantly higher than that with FBP (55/105, 52.4%) (p < 0.001). In particular, the difference of per-polyp sensitivity was statistically significant in intermediate (p = 0.014) and novice (p = 0.003) reviewers. Furthermore, mean image noise of IMR (8.4 \u00b1 6.2 HU) was significantly lower than that of FBP (37.5 \u00b1 13.9 HU) (p < 0.001) and image quality with IMR was significantly better than with FBP in all evaluated segments in all reviewers (all ps < 0.001).ConclusionsSub-mSv CTC reconstructed with IMR was feasible for the detection of clinically significant polyps, demonstrating 70% per-polyp sensitivity of polyps \u226510 mm, while allowing significant noise reduction and improvement in image quality compared with FBP reconstruction.Key Points\u2022 Sub-mSv CTC using IMR demonstrated 70% per-polyp sensitivity for polyps \u226510 mm.\u2022 CTC using IMR significantly outperformed CTC reconstructed with FBP.\u2022 IMR allows significantly more noise reduction and improvement in image quality than FBP.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-018-5545-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "effective radiation dose", 
      "polyp sensitivity", 
      "knowledge-based iterative reconstruction", 
      "same-day colonoscopy", 
      "radiation dose", 
      "ultra-low dose", 
      "positive predictive value", 
      "mean image noise", 
      "MethodsForty-nine", 
      "prone position", 
      "predictive value", 
      "tomography colonography", 
      "significant polyps", 
      "colonic polyps", 
      "iterative reconstruction", 
      "polyps", 
      "CT colonography", 
      "five-point scale", 
      "dose", 
      "colonoscopy", 
      "CTCs", 
      "IMR", 
      "colonography", 
      "reviewers", 
      "polyp detection", 
      "patients", 
      "image quality", 
      "supine", 
      "ObjectivesTo", 
      "image noise", 
      "sensitivity", 
      "radiologists", 
      "FBP", 
      "FBP reconstruction", 
      "reduction", 
      "effect", 
      "reconstruction", 
      "improvement", 
      "quality", 
      "detection", 
      "differences", 
      "standard deviation", 
      "segments", 
      "feasibility", 
      "scale", 
      "projections", 
      "sub", 
      "values", 
      "FBP algorithm", 
      "deviation", 
      "position", 
      "images", 
      "noise", 
      "significant noise reduction", 
      "noise reduction", 
      "algorithm", 
      "more noise reduction"
    ], 
    "name": "Sub-millisievert CT colonography: effect of knowledge-based iterative reconstruction on the detection of colonic polyps", 
    "pagination": "5258-5266", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104476102"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5545-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29948063"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5545-5", 
      "https://app.dimensions.ai/details/publication/pub.1104476102"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_772.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-018-5545-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5545-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5545-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5545-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5545-5'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      100 URIs      87 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5545-5 schema:about N3239a24f38f44580be425744d03a9e4f
2 N3b35a9b0bd4f4fbd87b80f2c6bc7ba52
3 N418671fc2a9242c3a2e2ec0fc15067b3
4 N425c7fc8c9de47df9eda354ba7b2668d
5 N5339fe1fea584f2aaf78c024bbc8cfc6
6 N539db1bfd1674612bdb8094c60eef546
7 N5f4987f0ae564b88a4c4f931c219bbbc
8 N6c4841dd1ee7412ab802a889b3c62835
9 N8cec6405b1cc4b66ac17f87aba39df07
10 Nb37b9b6ab6f149e898376048db355833
11 Nb436621d80d2456b938c6bd86f9726e8
12 Ncbe97bc3bdb64148be997207eabdd7f3
13 Ne4d29877468c49b38b3ea18aa47dee57
14 anzsrc-for:11
15 anzsrc-for:1103
16 schema:author Nd471cdb7b294456db9e1bb3c482379f1
17 schema:citation sg:pub.10.1007/s00330-011-2104-8
18 sg:pub.10.1007/s00330-012-2765-y
19 sg:pub.10.1007/s00330-014-3350-3
20 sg:pub.10.1007/s00330-015-3603-9
21 sg:pub.10.1111/j.1572-0241.2001.03639.x
22 schema:datePublished 2018-06-08
23 schema:datePublishedReg 2018-06-08
24 schema:description ObjectivesTo assess the feasibility of ultra-low dose computed tomography colonography (CTC) using knowledge-based iterative reconstruction (IR) and to determine its effect on polyp detection.MethodsForty-nine prospectively-enrolled patients underwent ultra-low dose CTC in the supine (100 kVp/20 mAs) and prone positions (80 kVp/20 mAs), followed by same-day colonoscopy. Thereafter, images were reconstructed using filtered back projection (FBP) and knowledge-based IR (IMR; Philips Healthcare, Best, Netherlands) algorithms. Effective radiation dose of CTC was recorded. Pooled per-polyp sensitivity and positive predictive value of three radiologists was analysed and compared between FBP and IMR. Image quality was assessed on a five-point scale and image noise was recorded using standard deviations.ResultsMean effective radiation dose of ultra-low dose CTC was 0.90 ± 0.06 mSv. Eighty-nine polyps were detected on colonoscopy (mean, 8.5 ± 4.7 mm). The pooled per-polyp sensitivity for polyps 6.0-9.9 mm (n = 22) on CTC reconstructed with IMR (36/66, 54.5%) was not significantly different with that using FBP algorithm (34/66, 51.5%) (p = 0.414). For polyps ≥10 mm (n = 35), however, the pooled per-polyp sensitivity on CTC with IMR (73/105, 69.5%) was significantly higher than that with FBP (55/105, 52.4%) (p < 0.001). In particular, the difference of per-polyp sensitivity was statistically significant in intermediate (p = 0.014) and novice (p = 0.003) reviewers. Furthermore, mean image noise of IMR (8.4 ± 6.2 HU) was significantly lower than that of FBP (37.5 ± 13.9 HU) (p < 0.001) and image quality with IMR was significantly better than with FBP in all evaluated segments in all reviewers (all ps < 0.001).ConclusionsSub-mSv CTC reconstructed with IMR was feasible for the detection of clinically significant polyps, demonstrating 70% per-polyp sensitivity of polyps ≥10 mm, while allowing significant noise reduction and improvement in image quality compared with FBP reconstruction.Key Points• Sub-mSv CTC using IMR demonstrated 70% per-polyp sensitivity for polyps ≥10 mm.• CTC using IMR significantly outperformed CTC reconstructed with FBP.• IMR allows significantly more noise reduction and improvement in image quality than FBP.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N0ebaa8a5044c47cf8d2e0deed7fda8d9
28 N5c5e2d9e6edd43c2a7bf50f4099c28b7
29 sg:journal.1289120
30 schema:keywords CT colonography
31 CTCs
32 FBP
33 FBP algorithm
34 FBP reconstruction
35 IMR
36 MethodsForty-nine
37 ObjectivesTo
38 algorithm
39 colonic polyps
40 colonography
41 colonoscopy
42 detection
43 deviation
44 differences
45 dose
46 effect
47 effective radiation dose
48 feasibility
49 five-point scale
50 image noise
51 image quality
52 images
53 improvement
54 iterative reconstruction
55 knowledge-based iterative reconstruction
56 mean image noise
57 more noise reduction
58 noise
59 noise reduction
60 patients
61 polyp detection
62 polyp sensitivity
63 polyps
64 position
65 positive predictive value
66 predictive value
67 projections
68 prone position
69 quality
70 radiation dose
71 radiologists
72 reconstruction
73 reduction
74 reviewers
75 same-day colonoscopy
76 scale
77 segments
78 sensitivity
79 significant noise reduction
80 significant polyps
81 standard deviation
82 sub
83 supine
84 tomography colonography
85 ultra-low dose
86 values
87 schema:name Sub-millisievert CT colonography: effect of knowledge-based iterative reconstruction on the detection of colonic polyps
88 schema:pagination 5258-5266
89 schema:productId N02515d9314c2417e995aff4493118b62
90 N2648ae1a59e64c66be1f0300c95a4972
91 Nb507e2d1a1b546cba814fc1f41a590a6
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104476102
93 https://doi.org/10.1007/s00330-018-5545-5
94 schema:sdDatePublished 2022-09-02T16:01
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nddf6d19300314b298611a69c3323a742
97 schema:url https://doi.org/10.1007/s00330-018-5545-5
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N02515d9314c2417e995aff4493118b62 schema:name dimensions_id
102 schema:value pub.1104476102
103 rdf:type schema:PropertyValue
104 N0ebaa8a5044c47cf8d2e0deed7fda8d9 schema:volumeNumber 28
105 rdf:type schema:PublicationVolume
106 N13615b4c25494577a381c538e5ac15ca rdf:first sg:person.016656056677.21
107 rdf:rest N372564e778a243ff8c7194981d7c1582
108 N2648ae1a59e64c66be1f0300c95a4972 schema:name pubmed_id
109 schema:value 29948063
110 rdf:type schema:PropertyValue
111 N31767214d19845c2aade62ca12ed5a74 rdf:first sg:person.0647723014.95
112 rdf:rest rdf:nil
113 N3239a24f38f44580be425744d03a9e4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Clinical Competence
115 rdf:type schema:DefinedTerm
116 N372564e778a243ff8c7194981d7c1582 rdf:first sg:person.016035435043.00
117 rdf:rest Nf2cdda603bcb47f2a883bf9e9076d6d0
118 N3b35a9b0bd4f4fbd87b80f2c6bc7ba52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Middle Aged
120 rdf:type schema:DefinedTerm
121 N418671fc2a9242c3a2e2ec0fc15067b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Algorithms
123 rdf:type schema:DefinedTerm
124 N425c7fc8c9de47df9eda354ba7b2668d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Radiation Dosage
126 rdf:type schema:DefinedTerm
127 N5339fe1fea584f2aaf78c024bbc8cfc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Aged
129 rdf:type schema:DefinedTerm
130 N539db1bfd1674612bdb8094c60eef546 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Colonic Polyps
132 rdf:type schema:DefinedTerm
133 N5a7699e403cb40c583bd9b2ff42e8cce rdf:first sg:person.01267336720.55
134 rdf:rest Ne42b831b8bdf495db363a20015d640f8
135 N5c5e2d9e6edd43c2a7bf50f4099c28b7 schema:issueNumber 12
136 rdf:type schema:PublicationIssue
137 N5f4987f0ae564b88a4c4f931c219bbbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Colonoscopy
139 rdf:type schema:DefinedTerm
140 N6c4841dd1ee7412ab802a889b3c62835 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Colonography, Computed Tomographic
142 rdf:type schema:DefinedTerm
143 N8cec6405b1cc4b66ac17f87aba39df07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Male
145 rdf:type schema:DefinedTerm
146 Nb37b9b6ab6f149e898376048db355833 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Humans
148 rdf:type schema:DefinedTerm
149 Nb436621d80d2456b938c6bd86f9726e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Female
151 rdf:type schema:DefinedTerm
152 Nb507e2d1a1b546cba814fc1f41a590a6 schema:name doi
153 schema:value 10.1007/s00330-018-5545-5
154 rdf:type schema:PropertyValue
155 Ncbe97bc3bdb64148be997207eabdd7f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Adult
157 rdf:type schema:DefinedTerm
158 Nd471cdb7b294456db9e1bb3c482379f1 rdf:first sg:person.01011545037.83
159 rdf:rest Ne0728750e5f5453bb73aa0be03ff6072
160 Nddf6d19300314b298611a69c3323a742 schema:name Springer Nature - SN SciGraph project
161 rdf:type schema:Organization
162 Ne0728750e5f5453bb73aa0be03ff6072 rdf:first sg:person.01134651464.00
163 rdf:rest N5a7699e403cb40c583bd9b2ff42e8cce
164 Ne42b831b8bdf495db363a20015d640f8 rdf:first sg:person.01301443145.43
165 rdf:rest N13615b4c25494577a381c538e5ac15ca
166 Ne4d29877468c49b38b3ea18aa47dee57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Radiographic Image Interpretation, Computer-Assisted
168 rdf:type schema:DefinedTerm
169 Nf2cdda603bcb47f2a883bf9e9076d6d0 rdf:first sg:person.0776072110.52
170 rdf:rest N31767214d19845c2aade62ca12ed5a74
171 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
172 schema:name Medical and Health Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
175 schema:name Clinical Sciences
176 rdf:type schema:DefinedTerm
177 sg:journal.1289120 schema:issn 0938-7994
178 1432-1084
179 schema:name European Radiology
180 schema:publisher Springer Nature
181 rdf:type schema:Periodical
182 sg:person.01011545037.83 schema:affiliation grid-institutes:grid.31501.36
183 schema:familyName Kang
184 schema:givenName Hyo-Jin
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011545037.83
186 rdf:type schema:Person
187 sg:person.01134651464.00 schema:affiliation grid-institutes:grid.31501.36
188 schema:familyName Kim
189 schema:givenName Se Hyung
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134651464.00
191 rdf:type schema:Person
192 sg:person.01267336720.55 schema:affiliation grid-institutes:grid.31501.36
193 schema:familyName Shin
194 schema:givenName Cheong-Il
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267336720.55
196 rdf:type schema:Person
197 sg:person.01301443145.43 schema:affiliation grid-institutes:grid.31501.36
198 schema:familyName Joo
199 schema:givenName Ijin
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43
201 rdf:type schema:Person
202 sg:person.016035435043.00 schema:affiliation grid-institutes:grid.412484.f
203 schema:familyName Kim
204 schema:givenName Sang Gyun
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035435043.00
206 rdf:type schema:Person
207 sg:person.016656056677.21 schema:affiliation grid-institutes:grid.412591.a
208 schema:familyName Ryu
209 schema:givenName Hwaseong
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656056677.21
211 rdf:type schema:Person
212 sg:person.0647723014.95 schema:affiliation grid-institutes:grid.412484.f
213 schema:familyName Han
214 schema:givenName Joon Koo
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
216 rdf:type schema:Person
217 sg:person.0776072110.52 schema:affiliation grid-institutes:grid.412484.f
218 schema:familyName Im
219 schema:givenName Jong Pil
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776072110.52
221 rdf:type schema:Person
222 sg:pub.10.1007/s00330-011-2104-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015043090
223 https://doi.org/10.1007/s00330-011-2104-8
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00330-012-2765-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022014391
226 https://doi.org/10.1007/s00330-012-2765-y
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00330-014-3350-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052938082
229 https://doi.org/10.1007/s00330-014-3350-3
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s00330-015-3603-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018258674
232 https://doi.org/10.1007/s00330-015-3603-9
233 rdf:type schema:CreativeWork
234 sg:pub.10.1111/j.1572-0241.2001.03639.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040070942
235 https://doi.org/10.1111/j.1572-0241.2001.03639.x
236 rdf:type schema:CreativeWork
237 grid-institutes:grid.31501.36 schema:alternateName Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
238 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
239 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
240 rdf:type schema:Organization
241 grid-institutes:grid.412484.f schema:alternateName Department of Internal medicine, Seoul National University Hospital, Seoul, Korea
242 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
243 schema:name Department of Internal medicine, Seoul National University Hospital, Seoul, Korea
244 Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
245 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
246 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
247 rdf:type schema:Organization
248 grid-institutes:grid.412591.a schema:alternateName Pusan National University Yangsan Hospital, Yangsan, Korea
249 schema:name Pusan National University Yangsan Hospital, Yangsan, Korea
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...