Sub-millisievert CT colonography: effect of knowledge-based iterative reconstruction on the detection of colonic polyps View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Hyo-Jin Kang, Se Hyung Kim, Cheong-Il Shin, Ijin Joo, Hwaseong Ryu, Sang Gyun Kim, Jong Pil Im, Joon Koo Han

ABSTRACT

OBJECTIVES: To assess the feasibility of ultra-low dose computed tomography colonography (CTC) using knowledge-based iterative reconstruction (IR) and to determine its effect on polyp detection. METHODS: Forty-nine prospectively-enrolled patients underwent ultra-low dose CTC in the supine (100 kVp/20 mAs) and prone positions (80 kVp/20 mAs), followed by same-day colonoscopy. Thereafter, images were reconstructed using filtered back projection (FBP) and knowledge-based IR (IMR; Philips Healthcare, Best, Netherlands) algorithms. Effective radiation dose of CTC was recorded. Pooled per-polyp sensitivity and positive predictive value of three radiologists was analysed and compared between FBP and IMR. Image quality was assessed on a five-point scale and image noise was recorded using standard deviations. RESULTS: Mean effective radiation dose of ultra-low dose CTC was 0.90 ± 0.06 mSv. Eighty-nine polyps were detected on colonoscopy (mean, 8.5 ± 4.7 mm). The pooled per-polyp sensitivity for polyps 6.0-9.9 mm (n = 22) on CTC reconstructed with IMR (36/66, 54.5%) was not significantly different with that using FBP algorithm (34/66, 51.5%) (p = 0.414). For polyps ≥10 mm (n = 35), however, the pooled per-polyp sensitivity on CTC with IMR (73/105, 69.5%) was significantly higher than that with FBP (55/105, 52.4%) (p < 0.001). In particular, the difference of per-polyp sensitivity was statistically significant in intermediate (p = 0.014) and novice (p = 0.003) reviewers. Furthermore, mean image noise of IMR (8.4 ± 6.2 HU) was significantly lower than that of FBP (37.5 ± 13.9 HU) (p < 0.001) and image quality with IMR was significantly better than with FBP in all evaluated segments in all reviewers (all ps < 0.001). CONCLUSIONS: Sub-mSv CTC reconstructed with IMR was feasible for the detection of clinically significant polyps, demonstrating 70% per-polyp sensitivity of polyps ≥10 mm, while allowing significant noise reduction and improvement in image quality compared with FBP reconstruction. KEY POINTS: • Sub-mSv CTC using IMR demonstrated 70% per-polyp sensitivity for polyps ≥10 mm. • CTC using IMR significantly outperformed CTC reconstructed with FBP. • IMR allows significantly more noise reduction and improvement in image quality than FBP. More... »

PAGES

5258-5266

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5545-5

DOI

http://dx.doi.org/10.1007/s00330-018-5545-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104476102

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29948063


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Hyo-Jin", 
        "id": "sg:person.01011545037.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011545037.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Se Hyung", 
        "id": "sg:person.016434366660.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Cheong-Il", 
        "id": "sg:person.01267336720.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267336720.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joo", 
        "givenName": "Ijin", 
        "id": "sg:person.01301443145.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pusan National University Yangsan Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412591.a", 
          "name": [
            "Pusan National University Yangsan Hospital, Yangsan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryu", 
        "givenName": "Hwaseong", 
        "id": "sg:person.016656056677.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656056677.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sang Gyun", 
        "id": "sg:person.014115061074.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115061074.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Im", 
        "givenName": "Jong Pil", 
        "id": "sg:person.0776072110.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776072110.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3348/kjr.2012.13.3.290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000277883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2007.8.4.264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000837547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.1883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013539534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0800996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014068982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2104-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015043090", 
          "https://doi.org/10.1007/s00330-011-2104-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3603-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018258674", 
          "https://doi.org/10.1007/s00330-015-3603-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2482071025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021265257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2765-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022014391", 
          "https://doi.org/10.1007/s00330-012-2765-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2015.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028237060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31826092be", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029300200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31826092be", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029300200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2272020293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029562144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2016.3332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030938504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2015.16.3.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031316648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2015.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032933328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2001.03639.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040070942", 
          "https://doi.org/10.1111/j.1572-0241.2001.03639.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2015.16.1.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041250601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182899104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045321990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182899104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045321990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2373041747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046506229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318263cc1b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046789199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e318263cc1b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046789199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/ca.2007.0018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052309352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3350-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052938082", 
          "https://doi.org/10.1007/s00330-014-3350-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20140667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.2099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.3855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.183.5.1831355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069326461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14140192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078940125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2017.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093026132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2017.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093026132"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "OBJECTIVES: To assess the feasibility of ultra-low dose computed tomography colonography (CTC) using knowledge-based iterative reconstruction (IR) and to determine its effect on polyp detection.\nMETHODS: Forty-nine prospectively-enrolled patients underwent ultra-low dose CTC in the supine (100 kVp/20 mAs) and prone positions (80 kVp/20 mAs), followed by same-day colonoscopy. Thereafter, images were reconstructed using filtered back projection (FBP) and knowledge-based IR (IMR; Philips Healthcare, Best, Netherlands) algorithms. Effective radiation dose of CTC was recorded. Pooled per-polyp sensitivity and positive predictive value of three radiologists was analysed and compared between FBP and IMR. Image quality was assessed on a five-point scale and image noise was recorded using standard deviations.\nRESULTS: Mean effective radiation dose of ultra-low dose CTC was 0.90 \u00b1 0.06 mSv. Eighty-nine polyps were detected on colonoscopy (mean, 8.5 \u00b1 4.7 mm). The pooled per-polyp sensitivity for polyps 6.0-9.9 mm (n = 22) on CTC reconstructed with IMR (36/66, 54.5%) was not significantly different with that using FBP algorithm (34/66, 51.5%) (p = 0.414). For polyps \u226510 mm (n = 35), however, the pooled per-polyp sensitivity on CTC with IMR (73/105, 69.5%) was significantly higher than that with FBP (55/105, 52.4%) (p < 0.001). In particular, the difference of per-polyp sensitivity was statistically significant in intermediate (p = 0.014) and novice (p = 0.003) reviewers. Furthermore, mean image noise of IMR (8.4 \u00b1 6.2 HU) was significantly lower than that of FBP (37.5 \u00b1 13.9 HU) (p < 0.001) and image quality with IMR was significantly better than with FBP in all evaluated segments in all reviewers (all ps < 0.001).\nCONCLUSIONS: Sub-mSv CTC reconstructed with IMR was feasible for the detection of clinically significant polyps, demonstrating 70% per-polyp sensitivity of polyps \u226510 mm, while allowing significant noise reduction and improvement in image quality compared with FBP reconstruction.\nKEY POINTS: \u2022 Sub-mSv CTC using IMR demonstrated 70% per-polyp sensitivity for polyps \u226510 mm. \u2022 CTC using IMR significantly outperformed CTC reconstructed with FBP. \u2022 IMR allows significantly more noise reduction and improvement in image quality than FBP.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5545-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Sub-millisievert CT colonography: effect of knowledge-based iterative reconstruction on the detection of colonic polyps", 
    "pagination": "5258-5266", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "16c5c9dad87d38e38e44c38113a0410f823bc393170f4d073b94089e86928c4a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29948063"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5545-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104476102"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5545-5", 
      "https://app.dimensions.ai/details/publication/pub.1104476102"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5545-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5545-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5545-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5545-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5545-5'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5545-5 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Ndc5f1203f37441c39862f1efd816c09e
4 schema:citation sg:pub.10.1007/s00330-011-2104-8
5 sg:pub.10.1007/s00330-012-2765-y
6 sg:pub.10.1007/s00330-014-3350-3
7 sg:pub.10.1007/s00330-015-3603-9
8 sg:pub.10.1111/j.1572-0241.2001.03639.x
9 https://doi.org/10.1001/jama.2016.3332
10 https://doi.org/10.1016/j.acra.2015.03.009
11 https://doi.org/10.1016/j.acra.2017.10.008
12 https://doi.org/10.1016/j.ejrad.2015.12.030
13 https://doi.org/10.1056/nejmoa0800996
14 https://doi.org/10.1097/rct.0b013e31826092be
15 https://doi.org/10.1097/rct.0b013e318263cc1b
16 https://doi.org/10.1097/rli.0b013e3182899104
17 https://doi.org/10.1148/radiol.14140192
18 https://doi.org/10.1148/radiol.2272020293
19 https://doi.org/10.1148/radiol.2373041747
20 https://doi.org/10.1148/radiol.2482071025
21 https://doi.org/10.1259/bjr.20140667
22 https://doi.org/10.2214/ajr.07.2099
23 https://doi.org/10.2214/ajr.09.3855
24 https://doi.org/10.2214/ajr.183.5.1831355
25 https://doi.org/10.3322/ca.2007.0018
26 https://doi.org/10.3348/kjr.2007.8.4.264
27 https://doi.org/10.3348/kjr.2012.13.3.290
28 https://doi.org/10.3348/kjr.2015.16.1.69
29 https://doi.org/10.3348/kjr.2015.16.3.531
30 https://doi.org/10.7717/peerj.1883
31 schema:datePublished 2018-12
32 schema:datePublishedReg 2018-12-01
33 schema:description OBJECTIVES: To assess the feasibility of ultra-low dose computed tomography colonography (CTC) using knowledge-based iterative reconstruction (IR) and to determine its effect on polyp detection. METHODS: Forty-nine prospectively-enrolled patients underwent ultra-low dose CTC in the supine (100 kVp/20 mAs) and prone positions (80 kVp/20 mAs), followed by same-day colonoscopy. Thereafter, images were reconstructed using filtered back projection (FBP) and knowledge-based IR (IMR; Philips Healthcare, Best, Netherlands) algorithms. Effective radiation dose of CTC was recorded. Pooled per-polyp sensitivity and positive predictive value of three radiologists was analysed and compared between FBP and IMR. Image quality was assessed on a five-point scale and image noise was recorded using standard deviations. RESULTS: Mean effective radiation dose of ultra-low dose CTC was 0.90 ± 0.06 mSv. Eighty-nine polyps were detected on colonoscopy (mean, 8.5 ± 4.7 mm). The pooled per-polyp sensitivity for polyps 6.0-9.9 mm (n = 22) on CTC reconstructed with IMR (36/66, 54.5%) was not significantly different with that using FBP algorithm (34/66, 51.5%) (p = 0.414). For polyps ≥10 mm (n = 35), however, the pooled per-polyp sensitivity on CTC with IMR (73/105, 69.5%) was significantly higher than that with FBP (55/105, 52.4%) (p < 0.001). In particular, the difference of per-polyp sensitivity was statistically significant in intermediate (p = 0.014) and novice (p = 0.003) reviewers. Furthermore, mean image noise of IMR (8.4 ± 6.2 HU) was significantly lower than that of FBP (37.5 ± 13.9 HU) (p < 0.001) and image quality with IMR was significantly better than with FBP in all evaluated segments in all reviewers (all ps < 0.001). CONCLUSIONS: Sub-mSv CTC reconstructed with IMR was feasible for the detection of clinically significant polyps, demonstrating 70% per-polyp sensitivity of polyps ≥10 mm, while allowing significant noise reduction and improvement in image quality compared with FBP reconstruction. KEY POINTS: • Sub-mSv CTC using IMR demonstrated 70% per-polyp sensitivity for polyps ≥10 mm. • CTC using IMR significantly outperformed CTC reconstructed with FBP. • IMR allows significantly more noise reduction and improvement in image quality than FBP.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N530bbbd2c5ed4e36b49375993e086340
38 Nbf4b1258fc564149b441ac6a0b809669
39 sg:journal.1289120
40 schema:name Sub-millisievert CT colonography: effect of knowledge-based iterative reconstruction on the detection of colonic polyps
41 schema:pagination 5258-5266
42 schema:productId N2e782740a67040f6b772cdc9cc01fd54
43 N82ffb8a84e21437886d58aa06eaf0336
44 Nb923e2cc7c094333a874bcec7e8f8bcd
45 Nbbd599fd08644c5aa66a155c686c0040
46 Nbce986eb96be47798b5b86e76322f964
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104476102
48 https://doi.org/10.1007/s00330-018-5545-5
49 schema:sdDatePublished 2019-04-10T13:33
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N6b9ca660b6254b75b1900d89e86f32a6
52 schema:url https://link.springer.com/10.1007%2Fs00330-018-5545-5
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N025f6474ec9d46908ee9eb4c236fad67 rdf:first sg:person.016656056677.21
57 rdf:rest Nc5bfae868f1f4617a367a8a0d09dad8b
58 N0d18cddefc774b3e918195624bb26e71 rdf:first sg:person.0647723014.95
59 rdf:rest rdf:nil
60 N13ba6707f70a497ba95827161ec5230f rdf:first sg:person.016434366660.80
61 rdf:rest N9cb144660ff2443d8eb4d99ea7b347ee
62 N2e782740a67040f6b772cdc9cc01fd54 schema:name nlm_unique_id
63 schema:value 9114774
64 rdf:type schema:PropertyValue
65 N3848c6f10179448f9b8c3606c64b106d rdf:first sg:person.0776072110.52
66 rdf:rest N0d18cddefc774b3e918195624bb26e71
67 N530bbbd2c5ed4e36b49375993e086340 schema:volumeNumber 28
68 rdf:type schema:PublicationVolume
69 N6b9ca660b6254b75b1900d89e86f32a6 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N82ffb8a84e21437886d58aa06eaf0336 schema:name dimensions_id
72 schema:value pub.1104476102
73 rdf:type schema:PropertyValue
74 N9cb144660ff2443d8eb4d99ea7b347ee rdf:first sg:person.01267336720.55
75 rdf:rest Na337eed09b524e5884c0ba825716e64d
76 Na337eed09b524e5884c0ba825716e64d rdf:first sg:person.01301443145.43
77 rdf:rest N025f6474ec9d46908ee9eb4c236fad67
78 Nb923e2cc7c094333a874bcec7e8f8bcd schema:name pubmed_id
79 schema:value 29948063
80 rdf:type schema:PropertyValue
81 Nbbd599fd08644c5aa66a155c686c0040 schema:name readcube_id
82 schema:value 16c5c9dad87d38e38e44c38113a0410f823bc393170f4d073b94089e86928c4a
83 rdf:type schema:PropertyValue
84 Nbce986eb96be47798b5b86e76322f964 schema:name doi
85 schema:value 10.1007/s00330-018-5545-5
86 rdf:type schema:PropertyValue
87 Nbf4b1258fc564149b441ac6a0b809669 schema:issueNumber 12
88 rdf:type schema:PublicationIssue
89 Nc5bfae868f1f4617a367a8a0d09dad8b rdf:first sg:person.014115061074.71
90 rdf:rest N3848c6f10179448f9b8c3606c64b106d
91 Ndc5f1203f37441c39862f1efd816c09e rdf:first sg:person.01011545037.83
92 rdf:rest N13ba6707f70a497ba95827161ec5230f
93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
97 schema:name Other Physical Sciences
98 rdf:type schema:DefinedTerm
99 sg:journal.1289120 schema:issn 0938-7994
100 1432-1084
101 schema:name European Radiology
102 rdf:type schema:Periodical
103 sg:person.01011545037.83 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
104 schema:familyName Kang
105 schema:givenName Hyo-Jin
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011545037.83
107 rdf:type schema:Person
108 sg:person.01267336720.55 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
109 schema:familyName Shin
110 schema:givenName Cheong-Il
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267336720.55
112 rdf:type schema:Person
113 sg:person.01301443145.43 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
114 schema:familyName Joo
115 schema:givenName Ijin
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43
117 rdf:type schema:Person
118 sg:person.014115061074.71 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
119 schema:familyName Kim
120 schema:givenName Sang Gyun
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115061074.71
122 rdf:type schema:Person
123 sg:person.016434366660.80 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
124 schema:familyName Kim
125 schema:givenName Se Hyung
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80
127 rdf:type schema:Person
128 sg:person.016656056677.21 schema:affiliation https://www.grid.ac/institutes/grid.412591.a
129 schema:familyName Ryu
130 schema:givenName Hwaseong
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656056677.21
132 rdf:type schema:Person
133 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
134 schema:familyName Han
135 schema:givenName Joon Koo
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
137 rdf:type schema:Person
138 sg:person.0776072110.52 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
139 schema:familyName Im
140 schema:givenName Jong Pil
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776072110.52
142 rdf:type schema:Person
143 sg:pub.10.1007/s00330-011-2104-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015043090
144 https://doi.org/10.1007/s00330-011-2104-8
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s00330-012-2765-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022014391
147 https://doi.org/10.1007/s00330-012-2765-y
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00330-014-3350-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052938082
150 https://doi.org/10.1007/s00330-014-3350-3
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00330-015-3603-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018258674
153 https://doi.org/10.1007/s00330-015-3603-9
154 rdf:type schema:CreativeWork
155 sg:pub.10.1111/j.1572-0241.2001.03639.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040070942
156 https://doi.org/10.1111/j.1572-0241.2001.03639.x
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1001/jama.2016.3332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030938504
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.acra.2015.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032933328
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.acra.2017.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093026132
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ejrad.2015.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028237060
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1056/nejmoa0800996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014068982
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1097/rct.0b013e31826092be schema:sameAs https://app.dimensions.ai/details/publication/pub.1029300200
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1097/rct.0b013e318263cc1b schema:sameAs https://app.dimensions.ai/details/publication/pub.1046789199
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1097/rli.0b013e3182899104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045321990
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1148/radiol.14140192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078940125
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1148/radiol.2272020293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029562144
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1148/radiol.2373041747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046506229
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1148/radiol.2482071025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021265257
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1259/bjr.20140667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565485
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2214/ajr.07.2099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298505
185 rdf:type schema:CreativeWork
186 https://doi.org/10.2214/ajr.09.3855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300630
187 rdf:type schema:CreativeWork
188 https://doi.org/10.2214/ajr.183.5.1831355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069326461
189 rdf:type schema:CreativeWork
190 https://doi.org/10.3322/ca.2007.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052309352
191 rdf:type schema:CreativeWork
192 https://doi.org/10.3348/kjr.2007.8.4.264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000837547
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3348/kjr.2012.13.3.290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000277883
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3348/kjr.2015.16.1.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041250601
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3348/kjr.2015.16.3.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031316648
199 rdf:type schema:CreativeWork
200 https://doi.org/10.7717/peerj.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013539534
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
203 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
204 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
207 schema:name Department of Internal medicine, Seoul National University Hospital, Seoul, Korea
208 Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
209 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
210 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.412591.a schema:alternateName Pusan National University Yangsan Hospital
213 schema:name Pusan National University Yangsan Hospital, Yangsan, Korea
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...