T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Sungwon Kim, Kyunghwa Han, Nieun Seo, Hye Jin Kim, Myeong-Jin Kim, Woong Sub Koom, Joong Bae Ahn, Joon Seok Lim

ABSTRACT

OBJECTIVES: To evaluate the diagnostic value of signal intensity (SI)-selected volumetry findings in T2-weighted magnetic resonance imaging (MRI) as a potential biomarker for predicting pathological complete response (pCR) to preoperative chemoradiotherapy (CRT) in patients with rectal cancer. METHODS: Forty consecutive patients with pCR after preoperative CRT were compared with 80 age- and sex-matched non-pCR patients in a case-control study. SI-selected tumor volume was measured on post-CRT T2-weighted MRI, which included voxels of the treated tumor exceeding the SI (obturator internus muscle SI + [ischiorectal fossa fat SI - obturator internus muscle SI] × 0.2). Three blinded readers independently rated five-point pCR confidence scores and compared the diagnostic outcome with SI-selected volumetry findings. The SI-selected volumetry protocol was validated in 30 additional rectal cancer patients. RESULTS: The area under the receiver-operating characteristic curve (AUC) of SI-selected volumetry for pCR prediction was 0.831, with an optimal cutoff value of 649.6 mm3 (sensitivity 0.850, specificity 0.725). The AUC of the SI-selected tumor volume was significantly greater than the pooled AUC of readers (0.707, p < 0.001). At this cutoff, the validation trial yielded an accuracy of 0.87. CONCLUSION: SI-selected volumetry in post-CRT T2-weighted MRI can help predict pCR after preoperative CRT in patients with rectal cancer. KEY POINTS: • Fibrosis and viable tumor MRI signal intensities (SIs) are difficult to distinguish. • T2 SI-selected volumetry yields high diagnostic performance for assessing pathological complete response. • T2 SI-selected volumetry is significantly more accurate than readers and non-SI-selected volumetry. • Post-chemoradiation therapy T2-weighted MRI SI-selected volumetry facilitates prediction of pathological complete response. More... »

PAGES

5231-5240

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-018-5520-1

DOI

http://dx.doi.org/10.1007/s00330-018-5520-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104351302

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29858637


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, 120-752, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sungwon", 
        "id": "sg:person.014501402164.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014501402164.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, 120-752, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Kyunghwa", 
        "id": "sg:person.011475543172.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475543172.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, 120-752, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Nieun", 
        "id": "sg:person.0600054321.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600054321.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411261.1", 
          "name": [
            "Department of Radiology, Ajou University Hospital, Suwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hye Jin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, 120-752, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Myeong-Jin", 
        "id": "sg:person.010342157420.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010342157420.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiation Oncology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koom", 
        "givenName": "Woong Sub", 
        "id": "sg:person.01201275170.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201275170.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Joong Bae", 
        "id": "sg:person.010673374672.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673374672.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, 120-752, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Joon Seok", 
        "id": "sg:person.01317030477.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317030477.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.acra.2007.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000850042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2004.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006888724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/572149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007683242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2411050942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012890855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10350-004-0851-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014553970", 
          "https://doi.org/10.1007/s10350-004-0851-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/s10350-004-0851-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014553970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(15)00467-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017383013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2220-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018175402", 
          "https://doi.org/10.1007/s00330-011-2220-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.gassur.2006.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020098246", 
          "https://doi.org/10.1016/j.gassur.2006.09.005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v20.i8.2023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022209045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/dcr.0b013e31823f86cb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028331095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/dcr.0b013e31823f86cb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028331095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/17474124.2014.906898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032667099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2578-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034187339", 
          "https://doi.org/10.1007/s00330-012-2578-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0000000000000909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034255129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0000000000000909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034255129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/dcr.0b013e3181bcd3cc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035324544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/dcr.0b013e3181bcd3cc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035324544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2011.34.9068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038139662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.86.2.420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038345864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10350-007-9080-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043436530", 
          "https://doi.org/10.1007/s10350-007-9080-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/s10350-007-9080-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043436530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11102467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045388740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(19940601)73:11<2680::aid-cncr2820731105>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049079293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2004.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049346335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2004.06.206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049963451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4283-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050067936", 
          "https://doi.org/10.1007/s00330-016-4283-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2462062166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050381757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2016.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050648909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2936-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052159164", 
          "https://doi.org/10.1007/s00330-013-2936-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.303095085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052862400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v042.i08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.11.8210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2531595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076340246", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076895672", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079224383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-5026-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092249363", 
          "https://doi.org/10.1007/s00330-017-5026-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "OBJECTIVES: To evaluate the diagnostic value of signal intensity (SI)-selected volumetry findings in T2-weighted magnetic resonance imaging (MRI) as a potential biomarker for predicting pathological complete response (pCR) to preoperative chemoradiotherapy (CRT) in patients with rectal cancer.\nMETHODS: Forty consecutive patients with pCR after preoperative CRT were compared with 80 age- and sex-matched non-pCR patients in a case-control study. SI-selected tumor volume was measured on post-CRT T2-weighted MRI, which included voxels of the treated tumor exceeding the SI (obturator internus muscle SI + [ischiorectal fossa fat SI - obturator internus muscle SI] \u00d7 0.2). Three blinded readers independently rated five-point pCR confidence scores and compared the diagnostic outcome with SI-selected volumetry findings. The SI-selected volumetry protocol was validated in 30 additional rectal cancer patients.\nRESULTS: The area under the receiver-operating characteristic curve (AUC) of SI-selected volumetry for pCR prediction was 0.831, with an optimal cutoff value of 649.6 mm3 (sensitivity 0.850, specificity 0.725). The AUC of the SI-selected tumor volume was significantly greater than the pooled AUC of readers (0.707, p < 0.001). At this cutoff, the validation trial yielded an accuracy of 0.87.\nCONCLUSION: SI-selected volumetry in post-CRT T2-weighted MRI can help predict pCR after preoperative CRT in patients with rectal cancer.\nKEY POINTS: \u2022 Fibrosis and viable tumor MRI signal intensities (SIs) are difficult to distinguish. \u2022 T2 SI-selected volumetry yields high diagnostic performance for assessing pathological complete response. \u2022 T2 SI-selected volumetry is significantly more accurate than readers and non-SI-selected volumetry. \u2022 Post-chemoradiation therapy T2-weighted MRI SI-selected volumetry facilitates prediction of pathological complete response.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-018-5520-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer", 
    "pagination": "5231-5240", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a2bb1e98a96c4a778502952deda4817f8d11447faf1b07f303af44a785ffe654"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29858637"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-018-5520-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104351302"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-018-5520-1", 
      "https://app.dimensions.ai/details/publication/pub.1104351302"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-018-5520-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5520-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5520-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5520-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-018-5520-1'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-018-5520-1 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N80ad4de6c4624b52b729ae1297bb73cd
4 schema:citation sg:pub.10.1007/s00330-011-2220-5
5 sg:pub.10.1007/s00330-012-2578-z
6 sg:pub.10.1007/s00330-013-2936-5
7 sg:pub.10.1007/s00330-016-4283-9
8 sg:pub.10.1007/s00330-017-5026-2
9 sg:pub.10.1007/s10350-004-0851-1
10 sg:pub.10.1007/s10350-007-9080-8
11 sg:pub.10.1016/j.gassur.2006.09.005
12 https://app.dimensions.ai/details/publication/pub.1076340246
13 https://app.dimensions.ai/details/publication/pub.1076895672
14 https://doi.org/10.1002/1097-0142(19940601)73:11<2680::aid-cncr2820731105>3.0.co;2-c
15 https://doi.org/10.1007/dcr.0b013e3181bcd3cc
16 https://doi.org/10.1007/s10350-004-0851-1
17 https://doi.org/10.1007/s10350-007-9080-8
18 https://doi.org/10.1016/j.acra.2007.12.015
19 https://doi.org/10.1016/j.crad.2016.05.005
20 https://doi.org/10.1016/j.ijrobp.2004.06.206
21 https://doi.org/10.1016/j.ijrobp.2004.11.005
22 https://doi.org/10.1016/j.ijrobp.2004.11.017
23 https://doi.org/10.1016/s1470-2045(15)00467-2
24 https://doi.org/10.1037/0033-2909.86.2.420
25 https://doi.org/10.1097/dcr.0b013e31823f86cb
26 https://doi.org/10.1097/sla.0000000000000909
27 https://doi.org/10.1148/radiol.11102467
28 https://doi.org/10.1148/radiol.2016151406
29 https://doi.org/10.1148/radiol.2411050942
30 https://doi.org/10.1148/radiol.2462062166
31 https://doi.org/10.1148/rg.303095085
32 https://doi.org/10.1155/2013/572149
33 https://doi.org/10.1200/jco.2011.34.9068
34 https://doi.org/10.1586/17474124.2014.906898
35 https://doi.org/10.18637/jss.v042.i08
36 https://doi.org/10.2214/ajr.11.8210
37 https://doi.org/10.2307/2531595
38 https://doi.org/10.3748/wjg.v20.i8.2023
39 schema:datePublished 2018-12
40 schema:datePublishedReg 2018-12-01
41 schema:description OBJECTIVES: To evaluate the diagnostic value of signal intensity (SI)-selected volumetry findings in T2-weighted magnetic resonance imaging (MRI) as a potential biomarker for predicting pathological complete response (pCR) to preoperative chemoradiotherapy (CRT) in patients with rectal cancer. METHODS: Forty consecutive patients with pCR after preoperative CRT were compared with 80 age- and sex-matched non-pCR patients in a case-control study. SI-selected tumor volume was measured on post-CRT T2-weighted MRI, which included voxels of the treated tumor exceeding the SI (obturator internus muscle SI + [ischiorectal fossa fat SI - obturator internus muscle SI] × 0.2). Three blinded readers independently rated five-point pCR confidence scores and compared the diagnostic outcome with SI-selected volumetry findings. The SI-selected volumetry protocol was validated in 30 additional rectal cancer patients. RESULTS: The area under the receiver-operating characteristic curve (AUC) of SI-selected volumetry for pCR prediction was 0.831, with an optimal cutoff value of 649.6 mm3 (sensitivity 0.850, specificity 0.725). The AUC of the SI-selected tumor volume was significantly greater than the pooled AUC of readers (0.707, p < 0.001). At this cutoff, the validation trial yielded an accuracy of 0.87. CONCLUSION: SI-selected volumetry in post-CRT T2-weighted MRI can help predict pCR after preoperative CRT in patients with rectal cancer. KEY POINTS: • Fibrosis and viable tumor MRI signal intensities (SIs) are difficult to distinguish. • T2 SI-selected volumetry yields high diagnostic performance for assessing pathological complete response. • T2 SI-selected volumetry is significantly more accurate than readers and non-SI-selected volumetry. • Post-chemoradiation therapy T2-weighted MRI SI-selected volumetry facilitates prediction of pathological complete response.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N2a084375df0347c4b888414eb2bb0e3a
46 N304bacd7b6cb417fb121f84e27235f1c
47 sg:journal.1289120
48 schema:name T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer
49 schema:pagination 5231-5240
50 schema:productId N04f16f4c6aca467c92c16e5e873075b2
51 N57c4b647536344f69fb41f21e798807e
52 Nc88e2896036749acac21f7fd5407dbc4
53 Ne5717d87ca31432da044c222c9c81dfb
54 Ne585f82d58d14174a24452074c0b0dc6
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104351302
56 https://doi.org/10.1007/s00330-018-5520-1
57 schema:sdDatePublished 2019-04-10T16:05
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N4cd94591202d4296941efb9731c64115
60 schema:url https://link.springer.com/10.1007%2Fs00330-018-5520-1
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N04f16f4c6aca467c92c16e5e873075b2 schema:name nlm_unique_id
65 schema:value 9114774
66 rdf:type schema:PropertyValue
67 N08c05527243948b3996fd42fb52fa4ce rdf:first sg:person.0600054321.13
68 rdf:rest Nc2490ab893534b8fa7d2abb0165fb85c
69 N2a084375df0347c4b888414eb2bb0e3a schema:volumeNumber 28
70 rdf:type schema:PublicationVolume
71 N2a8b3143777041f7b9aa6565293cbdea rdf:first sg:person.011475543172.00
72 rdf:rest N08c05527243948b3996fd42fb52fa4ce
73 N304bacd7b6cb417fb121f84e27235f1c schema:issueNumber 12
74 rdf:type schema:PublicationIssue
75 N4cd94591202d4296941efb9731c64115 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N57c4b647536344f69fb41f21e798807e schema:name readcube_id
78 schema:value a2bb1e98a96c4a778502952deda4817f8d11447faf1b07f303af44a785ffe654
79 rdf:type schema:PropertyValue
80 N6a2ff1678a644ec58e9819f3553daae4 rdf:first sg:person.01317030477.96
81 rdf:rest rdf:nil
82 N7ee9cdddcfeb41bba813981025e74686 schema:affiliation https://www.grid.ac/institutes/grid.411261.1
83 schema:familyName Kim
84 schema:givenName Hye Jin
85 rdf:type schema:Person
86 N8083c5dad0ab4d92a4f166d19b5564ce rdf:first sg:person.010342157420.32
87 rdf:rest Nf5b9f3cb824041ae92d67ac84fc869ae
88 N80ad4de6c4624b52b729ae1297bb73cd rdf:first sg:person.014501402164.73
89 rdf:rest N2a8b3143777041f7b9aa6565293cbdea
90 N99fa5a33bce449fcb4c510b745ae0a91 rdf:first sg:person.010673374672.49
91 rdf:rest N6a2ff1678a644ec58e9819f3553daae4
92 Nc2490ab893534b8fa7d2abb0165fb85c rdf:first N7ee9cdddcfeb41bba813981025e74686
93 rdf:rest N8083c5dad0ab4d92a4f166d19b5564ce
94 Nc88e2896036749acac21f7fd5407dbc4 schema:name dimensions_id
95 schema:value pub.1104351302
96 rdf:type schema:PropertyValue
97 Ne5717d87ca31432da044c222c9c81dfb schema:name doi
98 schema:value 10.1007/s00330-018-5520-1
99 rdf:type schema:PropertyValue
100 Ne585f82d58d14174a24452074c0b0dc6 schema:name pubmed_id
101 schema:value 29858637
102 rdf:type schema:PropertyValue
103 Nf5b9f3cb824041ae92d67ac84fc869ae rdf:first sg:person.01201275170.59
104 rdf:rest N99fa5a33bce449fcb4c510b745ae0a91
105 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
106 schema:name Medical and Health Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
109 schema:name Oncology and Carcinogenesis
110 rdf:type schema:DefinedTerm
111 sg:journal.1289120 schema:issn 0938-7994
112 1432-1084
113 schema:name European Radiology
114 rdf:type schema:Periodical
115 sg:person.010342157420.32 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
116 schema:familyName Kim
117 schema:givenName Myeong-Jin
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010342157420.32
119 rdf:type schema:Person
120 sg:person.010673374672.49 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
121 schema:familyName Ahn
122 schema:givenName Joong Bae
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673374672.49
124 rdf:type schema:Person
125 sg:person.011475543172.00 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
126 schema:familyName Han
127 schema:givenName Kyunghwa
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475543172.00
129 rdf:type schema:Person
130 sg:person.01201275170.59 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
131 schema:familyName Koom
132 schema:givenName Woong Sub
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201275170.59
134 rdf:type schema:Person
135 sg:person.01317030477.96 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
136 schema:familyName Lim
137 schema:givenName Joon Seok
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317030477.96
139 rdf:type schema:Person
140 sg:person.014501402164.73 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
141 schema:familyName Kim
142 schema:givenName Sungwon
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014501402164.73
144 rdf:type schema:Person
145 sg:person.0600054321.13 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
146 schema:familyName Seo
147 schema:givenName Nieun
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600054321.13
149 rdf:type schema:Person
150 sg:pub.10.1007/s00330-011-2220-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018175402
151 https://doi.org/10.1007/s00330-011-2220-5
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00330-012-2578-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1034187339
154 https://doi.org/10.1007/s00330-012-2578-z
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00330-013-2936-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052159164
157 https://doi.org/10.1007/s00330-013-2936-5
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00330-016-4283-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050067936
160 https://doi.org/10.1007/s00330-016-4283-9
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00330-017-5026-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092249363
163 https://doi.org/10.1007/s00330-017-5026-2
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s10350-004-0851-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014553970
166 https://doi.org/10.1007/s10350-004-0851-1
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s10350-007-9080-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043436530
169 https://doi.org/10.1007/s10350-007-9080-8
170 rdf:type schema:CreativeWork
171 sg:pub.10.1016/j.gassur.2006.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020098246
172 https://doi.org/10.1016/j.gassur.2006.09.005
173 rdf:type schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1076340246 schema:CreativeWork
175 https://app.dimensions.ai/details/publication/pub.1076895672 schema:CreativeWork
176 https://doi.org/10.1002/1097-0142(19940601)73:11<2680::aid-cncr2820731105>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1049079293
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1007/dcr.0b013e3181bcd3cc schema:sameAs https://app.dimensions.ai/details/publication/pub.1035324544
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1007/s10350-004-0851-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014553970
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1007/s10350-007-9080-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043436530
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.acra.2007.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000850042
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.crad.2016.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050648909
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.ijrobp.2004.06.206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049963451
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ijrobp.2004.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049346335
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.ijrobp.2004.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006888724
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s1470-2045(15)00467-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017383013
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1037/0033-2909.86.2.420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038345864
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1097/dcr.0b013e31823f86cb schema:sameAs https://app.dimensions.ai/details/publication/pub.1028331095
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1097/sla.0000000000000909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034255129
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1148/radiol.11102467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045388740
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1148/radiol.2016151406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079224383
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1148/radiol.2411050942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012890855
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1148/radiol.2462062166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050381757
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1148/rg.303095085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052862400
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1155/2013/572149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007683242
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1200/jco.2011.34.9068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038139662
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1586/17474124.2014.906898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032667099
217 rdf:type schema:CreativeWork
218 https://doi.org/10.18637/jss.v042.i08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672630
219 rdf:type schema:CreativeWork
220 https://doi.org/10.2214/ajr.11.8210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302257
221 rdf:type schema:CreativeWork
222 https://doi.org/10.2307/2531595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977037
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3748/wjg.v20.i8.2023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022209045
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
227 schema:name Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
228 Department of Radiation Oncology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
229 Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, 120-752, Seoul, Republic of Korea
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.411261.1 schema:alternateName Ajou University Hospital
232 schema:name Department of Radiology, Ajou University Hospital, Suwon, Republic of Korea
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...