Accelerated real-time cardiac MRI using iterative sparse SENSE reconstruction: comparing performance in patients with sinus rhythm and atrial fibrillation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

Bradley D. Allen, Maria L. Carr, Michael Markl, Michael O. Zenge, Michaela Schmidt, Mariappan S. Nadar, Bruce Spottiswoode, Jeremy D. Collins, James C. Carr

ABSTRACT

OBJECTIVES: To compare accelerated real-time cardiac MRI (CMR) using sparse spatial and temporal undersampling and non-linear iterative SENSE reconstruction (RT IS SENSE) with real-time CMR (RT) and segmented CMR (SEG) in a cohort that included atrial fibrillation (AF) patients. METHODS: We evaluated 27 subjects, including 11 AF patients, by acquiring steady-state free precession cine images covering the left ventricle (LV) at 1.5 T with SEG (acceleration factor 2, TR 42 ms, 1.8 × 1.8 × 6 mm3), RT (acceleration factor 3, TR 62 ms, 3.0 × 3.0 × 7 mm3), and RT IS SENSE (acceleration factor 9.9-12, TR 42 ms, 2.0 × 2.0 × 7 mm3). We performed quantitative LV functional analysis in sinus rhythm (SR) patients and qualitatively scored image quality, noise and artefact using a 5-point Likert scale in the complete cohort and AF and SR subgroups. RESULTS: There was no difference between LV functional parameters between acquisitions in SR patients. RT IS SENSE short-axis image quality was superior to SEG (4.5 ± 0.6 vs. 3.9 ± 1.1, p = 0.007) and RT (3.8 ± 0.4, p = 0.003). There was reduced artefact in RT IS SENSE compared to SEG (4.4 ± 0.6 vs. 3.8 ± 1.2, p = 0.04), driven by arrhythmia performance. RT IS SENSE short-axis image quality was superior to SEG (4.6 ± 0.5 vs. 3.1 ± 1.0, p < 0.001) in the AF subgroup. CONCLUSION: Accelerated real-time CMR with iterative sparse SENSE provides excellent clinical performance, especially in patients with AF. KEY POINTS: • Iterative sparse SENSE significantly accelerates real-time cardiovascular MRI acquisitions. • It provides excellent qualitative and quantitative performance in sinus rhythm patients. • It outperforms standard segmented acquisitions in patients with atrial fibrillation. • It improves the trade-off between temporal and spatial resolution in real-time imaging. More... »

PAGES

3088-3096

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-5283-0

DOI

http://dx.doi.org/10.1007/s00330-017-5283-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100719083

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29383529


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atrial Fibrillation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiac Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Ventricles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging, Cine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Function, Left", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Radiology, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "Bradley D.", 
        "id": "sg:person.01227506635.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227506635.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NorthShore University HealthSystem", 
          "id": "https://www.grid.ac/institutes/grid.240372.0", 
          "name": [
            "Northshore University Health System, Evanston, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carr", 
        "givenName": "Maria L.", 
        "id": "sg:person.0624523435.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624523435.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Radiology, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA", 
            "Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Markl", 
        "givenName": "Michael", 
        "id": "sg:person.01071157260.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071157260.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens Healthcare GmbH, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zenge", 
        "givenName": "Michael O.", 
        "id": "sg:person.01332174757.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332174757.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens Healthcare GmbH, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Michaela", 
        "id": "sg:person.01366540300.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366540300.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthineers, Siemens Healthcare, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nadar", 
        "givenName": "Mariappan S.", 
        "id": "sg:person.01315152647.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315152647.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR Collaborations, Siemens Medical Solutions USA Inc, Malvern, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spottiswoode", 
        "givenName": "Bruce", 
        "id": "sg:person.01116647425.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116647425.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Radiology, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "Jeremy D.", 
        "id": "sg:person.01143244722.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143244722.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Radiology, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carr", 
        "givenName": "James C.", 
        "id": "sg:person.012326026537.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012326026537.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.22351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001287002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003732919", 
          "https://doi.org/10.1186/1532-429x-15-79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005037453", 
          "https://doi.org/10.1186/1532-429x-15-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2586(200009)12:3<430::aid-jmri8>3.0.co;2-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005883970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2017.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006554062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4301-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007387910", 
          "https://doi.org/10.1007/s00330-016-4301-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2014.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007628741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011692266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012449961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016754525", 
          "https://doi.org/10.1186/1532-429x-15-102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018855203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018855203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020876139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2014.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021071943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026776997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026807801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029982078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0271-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037013398", 
          "https://doi.org/10.1186/s12968-016-0271-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-016-0271-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037013398", 
          "https://doi.org/10.1186/s12968-016-0271-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037838340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.1812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040739667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-016-0859-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040757126", 
          "https://doi.org/10.1007/s10554-016-0859-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-12-39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041779670", 
          "https://doi.org/10.1186/1532-429x-12-39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047674181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048683077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-016-0874-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051332255", 
          "https://doi.org/10.1007/s10554-016-0874-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079298858"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "OBJECTIVES: To compare accelerated real-time cardiac MRI (CMR) using sparse spatial and temporal undersampling and non-linear iterative SENSE reconstruction (RT IS SENSE) with real-time CMR (RT) and segmented CMR (SEG) in a cohort that included atrial fibrillation (AF) patients.\nMETHODS: We evaluated 27 subjects, including 11 AF patients, by acquiring steady-state free precession cine images covering the left ventricle (LV) at 1.5 T with SEG (acceleration factor 2, TR 42 ms, 1.8 \u00d7 1.8 \u00d7 6 mm3), RT (acceleration factor 3, TR 62 ms, 3.0 \u00d7 3.0 \u00d7 7 mm3), and RT IS SENSE (acceleration factor 9.9-12, TR 42 ms, 2.0 \u00d7 2.0 \u00d7 7 mm3). We performed quantitative LV functional analysis in sinus rhythm (SR) patients and qualitatively scored image quality, noise and artefact using a 5-point Likert scale in the complete cohort and AF and SR subgroups.\nRESULTS: There was no difference between LV functional parameters between acquisitions in SR patients. RT IS SENSE short-axis image quality was superior to SEG (4.5 \u00b1 0.6 vs. 3.9 \u00b1 1.1, p = 0.007) and RT (3.8 \u00b1 0.4, p = 0.003). There was reduced artefact in RT IS SENSE compared to SEG (4.4 \u00b1 0.6 vs. 3.8 \u00b1 1.2, p = 0.04), driven by arrhythmia performance. RT IS SENSE short-axis image quality was superior to SEG (4.6 \u00b1 0.5 vs. 3.1 \u00b1 1.0, p < 0.001) in the AF subgroup.\nCONCLUSION: Accelerated real-time CMR with iterative sparse SENSE provides excellent clinical performance, especially in patients with AF.\nKEY POINTS: \u2022 Iterative sparse SENSE significantly accelerates real-time cardiovascular MRI acquisitions. \u2022 It provides excellent qualitative and quantitative performance in sinus rhythm patients. \u2022 It outperforms standard segmented acquisitions in patients with atrial fibrillation. \u2022 It improves the trade-off between temporal and spatial resolution in real-time imaging.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-017-5283-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2622696", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Accelerated real-time cardiac MRI using iterative sparse SENSE reconstruction: comparing performance in patients with sinus rhythm and atrial fibrillation", 
    "pagination": "3088-3096", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c152539ae2272ad6f028a0f1a23e001d4fa3fc06a8f34914068a55472cfaafc4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29383529"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-5283-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100719083"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-5283-0", 
      "https://app.dimensions.ai/details/publication/pub.1100719083"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54003_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-017-5283-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5283-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5283-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5283-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5283-0'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      21 PREDICATES      70 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-5283-0 schema:about N113c75da6bde4413824431fd9ae7b8bc
2 N1bfa7401240e42a7a5a5f908421e711c
3 N2339e8aea5424086b0a8e106f2f1bfba
4 N245b40cf693c40a7a17f6821283f13a1
5 N2c1d606321a44cbf83d7831d1f5ff83f
6 N448f2c66ac5e46e38a64526ddd1e991b
7 N543f305492934b9b8d929b68e6713c16
8 N68aeb0eb5ed54ca68657140f0aa29fd1
9 N771c8f7d180e4e9689454480d453da15
10 N84787855c84a43f9ba52bf5a7a52d234
11 Nae86d2cdae1247bda3e4e1ac9627d9a0
12 Nbb1426f2d4c64252813687de430db6b0
13 Nd473ee90cd1f476daed534799d24a134
14 Ne870f7b4382d4d0bae7c539abf2b9938
15 Neeaee68e67104b778da7fc1f45736f0c
16 Nf9f15f71bcf548a8a0449296a497dc48
17 anzsrc-for:11
18 anzsrc-for:1102
19 schema:author N0b0ddc60bfc44406b3388e0eb33940b4
20 schema:citation sg:pub.10.1007/s00330-016-4301-y
21 sg:pub.10.1007/s10554-016-0859-3
22 sg:pub.10.1007/s10554-016-0874-4
23 sg:pub.10.1186/1532-429x-12-39
24 sg:pub.10.1186/1532-429x-15-102
25 sg:pub.10.1186/1532-429x-15-41
26 sg:pub.10.1186/1532-429x-15-79
27 sg:pub.10.1186/s12968-016-0271-0
28 https://doi.org/10.1002/1522-2586(200009)12:3<430::aid-jmri8>3.0.co;2-v
29 https://doi.org/10.1002/jmri.1146
30 https://doi.org/10.1002/jmri.21987
31 https://doi.org/10.1002/mrm.10171
32 https://doi.org/10.1002/mrm.1113
33 https://doi.org/10.1002/mrm.20430
34 https://doi.org/10.1002/mrm.21391
35 https://doi.org/10.1002/mrm.22153
36 https://doi.org/10.1002/mrm.22351
37 https://doi.org/10.1002/mrm.22618
38 https://doi.org/10.1002/mrm.24440
39 https://doi.org/10.1002/mrm.25565
40 https://doi.org/10.1002/nbm.1812
41 https://doi.org/10.1016/j.jcmg.2014.04.016
42 https://doi.org/10.1016/j.mri.2014.02.022
43 https://doi.org/10.1016/j.mri.2017.01.002
44 https://doi.org/10.1148/radiol.2016151002
45 schema:datePublished 2018-07
46 schema:datePublishedReg 2018-07-01
47 schema:description OBJECTIVES: To compare accelerated real-time cardiac MRI (CMR) using sparse spatial and temporal undersampling and non-linear iterative SENSE reconstruction (RT IS SENSE) with real-time CMR (RT) and segmented CMR (SEG) in a cohort that included atrial fibrillation (AF) patients. METHODS: We evaluated 27 subjects, including 11 AF patients, by acquiring steady-state free precession cine images covering the left ventricle (LV) at 1.5 T with SEG (acceleration factor 2, TR 42 ms, 1.8 × 1.8 × 6 mm3), RT (acceleration factor 3, TR 62 ms, 3.0 × 3.0 × 7 mm3), and RT IS SENSE (acceleration factor 9.9-12, TR 42 ms, 2.0 × 2.0 × 7 mm3). We performed quantitative LV functional analysis in sinus rhythm (SR) patients and qualitatively scored image quality, noise and artefact using a 5-point Likert scale in the complete cohort and AF and SR subgroups. RESULTS: There was no difference between LV functional parameters between acquisitions in SR patients. RT IS SENSE short-axis image quality was superior to SEG (4.5 ± 0.6 vs. 3.9 ± 1.1, p = 0.007) and RT (3.8 ± 0.4, p = 0.003). There was reduced artefact in RT IS SENSE compared to SEG (4.4 ± 0.6 vs. 3.8 ± 1.2, p = 0.04), driven by arrhythmia performance. RT IS SENSE short-axis image quality was superior to SEG (4.6 ± 0.5 vs. 3.1 ± 1.0, p < 0.001) in the AF subgroup. CONCLUSION: Accelerated real-time CMR with iterative sparse SENSE provides excellent clinical performance, especially in patients with AF. KEY POINTS: • Iterative sparse SENSE significantly accelerates real-time cardiovascular MRI acquisitions. • It provides excellent qualitative and quantitative performance in sinus rhythm patients. • It outperforms standard segmented acquisitions in patients with atrial fibrillation. • It improves the trade-off between temporal and spatial resolution in real-time imaging.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N08fbbacb2d5f4ce09fe7c487c347bfe2
52 N8d6cc8245fc2419c9f08b28a07f7cdb9
53 sg:journal.1289120
54 schema:name Accelerated real-time cardiac MRI using iterative sparse SENSE reconstruction: comparing performance in patients with sinus rhythm and atrial fibrillation
55 schema:pagination 3088-3096
56 schema:productId N7738c26fb8ee4466b9de7417ba871f83
57 N8dbb322aa1144ab2a2659b7694bce534
58 N8e81b41d093b4168ab19acb59a56ade1
59 Nb51846fd765d448d8db486d063b8ceff
60 Nfe938d1268284346b5053947fa46778c
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100719083
62 https://doi.org/10.1007/s00330-017-5283-0
63 schema:sdDatePublished 2019-04-11T12:14
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N89f45d91036d4b7d9d6a8d96740a93c8
66 schema:url https://link.springer.com/10.1007%2Fs00330-017-5283-0
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N08fbbacb2d5f4ce09fe7c487c347bfe2 schema:volumeNumber 28
71 rdf:type schema:PublicationVolume
72 N0b0ddc60bfc44406b3388e0eb33940b4 rdf:first sg:person.01227506635.77
73 rdf:rest Nbf8e8196bbb747c088f2436560178899
74 N113c75da6bde4413824431fd9ae7b8bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Magnetic Resonance Imaging
76 rdf:type schema:DefinedTerm
77 N1bfa7401240e42a7a5a5f908421e711c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Ventricular Function, Left
79 rdf:type schema:DefinedTerm
80 N2339e8aea5424086b0a8e106f2f1bfba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Male
82 rdf:type schema:DefinedTerm
83 N245b40cf693c40a7a17f6821283f13a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Female
85 rdf:type schema:DefinedTerm
86 N24b5d4ad5d484efdb43957d045c16b21 rdf:first sg:person.01366540300.16
87 rdf:rest Nbca045622a364399b4ef7a0f75e5ad9b
88 N2c1d606321a44cbf83d7831d1f5ff83f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Magnetic Resonance Imaging, Cine
90 rdf:type schema:DefinedTerm
91 N3eae9fc9eadc40fd905eb7e1fca378ad rdf:first sg:person.012326026537.18
92 rdf:rest rdf:nil
93 N448f2c66ac5e46e38a64526ddd1e991b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Artifacts
95 rdf:type schema:DefinedTerm
96 N543f305492934b9b8d929b68e6713c16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Adult
98 rdf:type schema:DefinedTerm
99 N68aeb0eb5ed54ca68657140f0aa29fd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Middle Aged
101 rdf:type schema:DefinedTerm
102 N771c8f7d180e4e9689454480d453da15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Atrial Fibrillation
104 rdf:type schema:DefinedTerm
105 N7738c26fb8ee4466b9de7417ba871f83 schema:name doi
106 schema:value 10.1007/s00330-017-5283-0
107 rdf:type schema:PropertyValue
108 N84787855c84a43f9ba52bf5a7a52d234 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Time Factors
110 rdf:type schema:DefinedTerm
111 N89f45d91036d4b7d9d6a8d96740a93c8 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N8d6cc8245fc2419c9f08b28a07f7cdb9 schema:issueNumber 7
114 rdf:type schema:PublicationIssue
115 N8dbb322aa1144ab2a2659b7694bce534 schema:name dimensions_id
116 schema:value pub.1100719083
117 rdf:type schema:PropertyValue
118 N8e81b41d093b4168ab19acb59a56ade1 schema:name pubmed_id
119 schema:value 29383529
120 rdf:type schema:PropertyValue
121 N9884370e3ecc4c1da919ea11d524d9e1 rdf:first sg:person.01071157260.17
122 rdf:rest Ndc7f380db22843e29201a9b4672b7f5e
123 Nae86d2cdae1247bda3e4e1ac9627d9a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Cardiac Imaging Techniques
125 rdf:type schema:DefinedTerm
126 Nb51846fd765d448d8db486d063b8ceff schema:name readcube_id
127 schema:value c152539ae2272ad6f028a0f1a23e001d4fa3fc06a8f34914068a55472cfaafc4
128 rdf:type schema:PropertyValue
129 Nbb1426f2d4c64252813687de430db6b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Image Interpretation, Computer-Assisted
131 rdf:type schema:DefinedTerm
132 Nbca045622a364399b4ef7a0f75e5ad9b rdf:first sg:person.01315152647.96
133 rdf:rest Nd8f5d16cedbc4fa3819b27d941597be3
134 Nbf8e8196bbb747c088f2436560178899 rdf:first sg:person.0624523435.67
135 rdf:rest N9884370e3ecc4c1da919ea11d524d9e1
136 Nd473ee90cd1f476daed534799d24a134 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Heart Ventricles
138 rdf:type schema:DefinedTerm
139 Nd6a271dcfa514b7498a4c35d4c91021e rdf:first sg:person.01143244722.65
140 rdf:rest N3eae9fc9eadc40fd905eb7e1fca378ad
141 Nd84f8df9ddd54dd9b7cd9f3ca66c99e9 schema:name MR Collaborations, Siemens Medical Solutions USA Inc, Malvern, PA, USA
142 rdf:type schema:Organization
143 Nd8f5d16cedbc4fa3819b27d941597be3 rdf:first sg:person.01116647425.29
144 rdf:rest Nd6a271dcfa514b7498a4c35d4c91021e
145 Ndc7f380db22843e29201a9b4672b7f5e rdf:first sg:person.01332174757.37
146 rdf:rest N24b5d4ad5d484efdb43957d045c16b21
147 Ne870f7b4382d4d0bae7c539abf2b9938 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Humans
149 rdf:type schema:DefinedTerm
150 Neeaee68e67104b778da7fc1f45736f0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Aged
152 rdf:type schema:DefinedTerm
153 Nf9f15f71bcf548a8a0449296a497dc48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Reproducibility of Results
155 rdf:type schema:DefinedTerm
156 Nfe938d1268284346b5053947fa46778c schema:name nlm_unique_id
157 schema:value 9114774
158 rdf:type schema:PropertyValue
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
163 schema:name Cardiorespiratory Medicine and Haematology
164 rdf:type schema:DefinedTerm
165 sg:grant.2622696 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-017-5283-0
166 rdf:type schema:MonetaryGrant
167 sg:journal.1289120 schema:issn 0938-7994
168 1432-1084
169 schema:name European Radiology
170 rdf:type schema:Periodical
171 sg:person.01071157260.17 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
172 schema:familyName Markl
173 schema:givenName Michael
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071157260.17
175 rdf:type schema:Person
176 sg:person.01116647425.29 schema:affiliation Nd84f8df9ddd54dd9b7cd9f3ca66c99e9
177 schema:familyName Spottiswoode
178 schema:givenName Bruce
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116647425.29
180 rdf:type schema:Person
181 sg:person.01143244722.65 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
182 schema:familyName Collins
183 schema:givenName Jeremy D.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143244722.65
185 rdf:type schema:Person
186 sg:person.01227506635.77 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
187 schema:familyName Allen
188 schema:givenName Bradley D.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227506635.77
190 rdf:type schema:Person
191 sg:person.012326026537.18 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
192 schema:familyName Carr
193 schema:givenName James C.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012326026537.18
195 rdf:type schema:Person
196 sg:person.01315152647.96 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
197 schema:familyName Nadar
198 schema:givenName Mariappan S.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315152647.96
200 rdf:type schema:Person
201 sg:person.01332174757.37 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
202 schema:familyName Zenge
203 schema:givenName Michael O.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332174757.37
205 rdf:type schema:Person
206 sg:person.01366540300.16 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
207 schema:familyName Schmidt
208 schema:givenName Michaela
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366540300.16
210 rdf:type schema:Person
211 sg:person.0624523435.67 schema:affiliation https://www.grid.ac/institutes/grid.240372.0
212 schema:familyName Carr
213 schema:givenName Maria L.
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624523435.67
215 rdf:type schema:Person
216 sg:pub.10.1007/s00330-016-4301-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007387910
217 https://doi.org/10.1007/s00330-016-4301-y
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s10554-016-0859-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040757126
220 https://doi.org/10.1007/s10554-016-0859-3
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s10554-016-0874-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051332255
223 https://doi.org/10.1007/s10554-016-0874-4
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/1532-429x-12-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041779670
226 https://doi.org/10.1186/1532-429x-12-39
227 rdf:type schema:CreativeWork
228 sg:pub.10.1186/1532-429x-15-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016754525
229 https://doi.org/10.1186/1532-429x-15-102
230 rdf:type schema:CreativeWork
231 sg:pub.10.1186/1532-429x-15-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005037453
232 https://doi.org/10.1186/1532-429x-15-41
233 rdf:type schema:CreativeWork
234 sg:pub.10.1186/1532-429x-15-79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003732919
235 https://doi.org/10.1186/1532-429x-15-79
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/s12968-016-0271-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037013398
238 https://doi.org/10.1186/s12968-016-0271-0
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1002/1522-2586(200009)12:3<430::aid-jmri8>3.0.co;2-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1005883970
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/jmri.1146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011692266
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1002/jmri.21987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029982078
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1002/mrm.10171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012449961
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1002/mrm.1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020876139
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1002/mrm.20430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026776997
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1002/mrm.21391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037838340
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1002/mrm.22153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018855203
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1002/mrm.22351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001287002
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1002/mrm.22618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048683077
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1002/mrm.24440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026807801
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1002/mrm.25565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047674181
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1002/nbm.1812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040739667
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/j.jcmg.2014.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007628741
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.mri.2014.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021071943
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.mri.2017.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006554062
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1148/radiol.2016151002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079298858
273 rdf:type schema:CreativeWork
274 https://www.grid.ac/institutes/grid.16753.36 schema:alternateName Northwestern University
275 schema:name Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
276 Department of Radiology, Northwestern University, 737 N. Michigan Ave, Suite 1600, 60611, Chicago, IL, USA
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.240372.0 schema:alternateName NorthShore University HealthSystem
279 schema:name Northshore University Health System, Evanston, IL, USA
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.415886.6 schema:alternateName Siemens Healthcare (United States)
282 schema:name Siemens Healthineers, Siemens Healthcare, Princeton, NJ, USA
283 rdf:type schema:Organization
284 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
285 schema:name Siemens Healthcare GmbH, Erlangen, Germany
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...