GRASE Revisited: breath-hold three-dimensional (3D) magnetic resonance cholangiopancreatography using a Gradient and Spin Echo (GRASE) technique at 3T View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Ju Gang Nam, Jeong Min Lee, Hyo-Jin Kang, Sang Min Lee, Eunju Kim, Johannes M. Peeters, Jeong Hee Yoon

ABSTRACT

OBJECTIVE: To evaluate the clinical feasibility and image quality of breath-hold (BH) three-dimensional (3D) magnetic resonance cholangiopancreatography (MRCP) using a gradient and spin-echo (GRASE) technique compared to the conventional 3D respiratory-triggered (RT)-MRCP using a turbo spin-echo (TSE) sequence at 3 T. METHODS: Sixty-six patients underwent both 3D RT-TSE-MRCP and 3D BH-GRASE-MRCP at 3 T. Three radiologists independently reviewed the visualisation of biliary and pancreatic ducts, image blurring, and overall image quality of the two data sets using four- or five-point scales. The numbers of scans with non-diagnostic or poor image quality were compared between the two scans. RESULTS: The 3D BH-GRASE-MRCP had a significantly better image quality (3.69 ± 0.77 vs. 3.30 ± 1.18, p = 0.005) and less image blurring (3.23 ± 0.94 vs. 3.65 ± 0.57, p = 0.0003) than the 3D RT-TSE-MRCP. In detail, 3D BH-GRASE-MRCP better depicted the common bile duct, cystic duct, and bilateral first intrahepatic duct (all ps < 0.05). The number of scans with non-diagnostic or poor image quality significantly decreased with 3D BH-GRASE-MRCP compared with 3D RT-TSE-MRCP [19.7% (13/66) vs. 1.5% (1/66), p = 0.002]. CONCLUSION: The 3D BH-GRASE-MRCP provided better image quality and a reduced number of non-diagnostic images compared to 3D RT-TSE-MRCP. KEY POINTS: • The GRASE technique enabled 3D MRCP acquisition within a single breath-hold. • The short acquisition time of 3D BH-GRASE-MRCP significantly reduced image blurring. • The 3D BH-GRASE-MRCP had a better image quality than 3D RT-TSE-MRCP. • The number of non-diagnostic scans was reduced with 3D BH-GRASE-MRCP. More... »

PAGES

3721-3728

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-5275-0

DOI

http://dx.doi.org/10.1007/s00330-017-5275-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100770224

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29392471


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bile Duct Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bile Ducts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breath Holding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholangiopancreatography, Magnetic Resonance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreatic Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreatic Ducts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
            "College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nam", 
        "givenName": "Ju Gang", 
        "id": "sg:person.012217447334.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217447334.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
            "College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, 03087, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jeong Min", 
        "id": "sg:person.01266602714.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
            "College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Hyo-Jin", 
        "id": "sg:person.01011545037.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011545037.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hallym University Sacred Heart Hospital", 
          "id": "https://www.grid.ac/institutes/grid.488421.3", 
          "name": [
            "Radiology, Hallym University Sacred Heart Hospital, 14068, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang Min", 
        "id": "sg:person.01315300754.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Philips Healthcare Korea, 04637, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Eunju", 
        "id": "sg:person.011631141441.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011631141441.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Philips MR Clinical Science, Best, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peeters", 
        "givenName": "Johannes M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea", 
            "College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Jeong Hee", 
        "id": "sg:person.01020423064.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020423064.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00261-016-0936-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000874964", 
          "https://doi.org/10.1007/s00261-016-0936-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-016-0936-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000874964", 
          "https://doi.org/10.1007/s00261-016-0936-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2013.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001226965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mric.2007.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002819137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mric.2008.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005697364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880070404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012540037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2493080389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016021973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12112715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016200704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-009-0365-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016302072", 
          "https://doi.org/10.1007/s11604-009-0365-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-009-0365-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016302072", 
          "https://doi.org/10.1007/s11604-009-0365-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11604-009-0365-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016302072", 
          "https://doi.org/10.1007/s11604-009-0365-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2007.01279.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020889593", 
          "https://doi.org/10.1111/j.1572-0241.2007.01279.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2586(199902)9:2<157::aid-jmri2>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022636288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024392335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026849024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-014-0099-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027476957", 
          "https://doi.org/10.1007/s00261-014-0099-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.210.1.r99ja05247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029105548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910330411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030812399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-015-0633-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039143080", 
          "https://doi.org/10.1007/s00261-015-0633-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2382032065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042052395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049796358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/28094700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064568800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/28094700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064568800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.181.2.1924811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077855662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016151935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079242836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016160482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079313111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085076763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085076763"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "OBJECTIVE: To evaluate the clinical feasibility and image quality of breath-hold (BH) three-dimensional (3D) magnetic resonance cholangiopancreatography (MRCP) using a gradient and spin-echo (GRASE) technique compared to the conventional 3D respiratory-triggered (RT)-MRCP using a turbo spin-echo (TSE) sequence at 3 T.\nMETHODS: Sixty-six patients underwent both 3D RT-TSE-MRCP and 3D BH-GRASE-MRCP at 3 T. Three radiologists independently reviewed the visualisation of biliary and pancreatic ducts, image blurring, and overall image quality of the two data sets using four- or five-point scales. The numbers of scans with non-diagnostic or poor image quality were compared between the two scans.\nRESULTS: The 3D BH-GRASE-MRCP had a significantly better image quality (3.69 \u00b1 0.77 vs. 3.30 \u00b1 1.18, p = 0.005) and less image blurring (3.23 \u00b1 0.94 vs. 3.65 \u00b1 0.57, p = 0.0003) than the 3D RT-TSE-MRCP. In detail, 3D BH-GRASE-MRCP better depicted the common bile duct, cystic duct, and bilateral first intrahepatic duct (all ps < 0.05). The number of scans with non-diagnostic or poor image quality significantly decreased with 3D BH-GRASE-MRCP compared with 3D RT-TSE-MRCP [19.7% (13/66) vs. 1.5% (1/66), p = 0.002].\nCONCLUSION: The 3D BH-GRASE-MRCP provided better image quality and a reduced number of non-diagnostic images compared to 3D RT-TSE-MRCP.\nKEY POINTS: \u2022 The GRASE technique enabled 3D MRCP acquisition within a single breath-hold. \u2022 The short acquisition time of 3D BH-GRASE-MRCP significantly reduced image blurring. \u2022 The 3D BH-GRASE-MRCP had a better image quality than 3D RT-TSE-MRCP. \u2022 The number of non-diagnostic scans was reduced with 3D BH-GRASE-MRCP.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-017-5275-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "GRASE Revisited: breath-hold three-dimensional (3D) magnetic resonance cholangiopancreatography using a Gradient and Spin Echo (GRASE) technique at 3T", 
    "pagination": "3721-3728", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "64c2cac06ea122810b944835974312d48cba6064dc74f6eaccad31b700bb36b1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29392471"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-5275-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100770224"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-5275-0", 
      "https://app.dimensions.ai/details/publication/pub.1100770224"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-017-5275-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5275-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5275-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5275-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5275-0'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      21 PREDICATES      68 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-5275-0 schema:about N008313004e724903b579d9e09d5fa1d1
2 N0bf7cc2279054c9eb3e50ae090942d2e
3 N418696b39c614af483c6a90a0ad51c14
4 N4f39120c2f1e477aac2f382484851461
5 N614c8df9befb40cd88f25319eedfecac
6 N671705e4c37a406fb85ca3f80934938d
7 N6d9c04f1f6a94c2fb83b3d1d9125c8cc
8 N7033bae03de74118827f0873f90c5331
9 N8244356851e242dca2e053de08904b5b
10 N999cc144932c4b39a6f18d9139d0b414
11 Nafd772f61be741a0a806434b819dba15
12 Nb71f0ee03a9a453986eb8e978e4b1fdb
13 Nccdc467bfcec408180e6b194bce72312
14 Ndd6a60a857b44aa78f8225b23cdd8323
15 Ne144852fbc0a47d2a895a563da5070ba
16 Nf4d038ca687748b39acb7df39d280eab
17 anzsrc-for:08
18 anzsrc-for:0801
19 schema:author N301d35a9b0ff40f8a289dc25ea7f0de7
20 schema:citation sg:pub.10.1007/s00261-014-0099-8
21 sg:pub.10.1007/s00261-015-0633-3
22 sg:pub.10.1007/s00261-016-0936-z
23 sg:pub.10.1007/s11604-009-0365-9
24 sg:pub.10.1111/j.1572-0241.2007.01279.x
25 https://doi.org/10.1002/(sici)1522-2586(199902)9:2<157::aid-jmri2>3.0.co;2-n
26 https://doi.org/10.1002/jmri.1880070404
27 https://doi.org/10.1002/jmri.23571
28 https://doi.org/10.1002/jmri.24033
29 https://doi.org/10.1002/jmri.25289
30 https://doi.org/10.1002/mrm.1910330411
31 https://doi.org/10.1016/j.mri.2013.06.008
32 https://doi.org/10.1016/j.mric.2007.06.009
33 https://doi.org/10.1016/j.mric.2008.04.005
34 https://doi.org/10.1097/rli.0000000000000380
35 https://doi.org/10.1148/radiol.12112715
36 https://doi.org/10.1148/radiol.2016151935
37 https://doi.org/10.1148/radiol.2016160482
38 https://doi.org/10.1148/radiol.2382032065
39 https://doi.org/10.1148/radiol.2493080389
40 https://doi.org/10.1148/radiology.181.2.1924811
41 https://doi.org/10.1148/radiology.210.1.r99ja05247
42 https://doi.org/10.1259/bjr/28094700
43 schema:datePublished 2018-09
44 schema:datePublishedReg 2018-09-01
45 schema:description OBJECTIVE: To evaluate the clinical feasibility and image quality of breath-hold (BH) three-dimensional (3D) magnetic resonance cholangiopancreatography (MRCP) using a gradient and spin-echo (GRASE) technique compared to the conventional 3D respiratory-triggered (RT)-MRCP using a turbo spin-echo (TSE) sequence at 3 T. METHODS: Sixty-six patients underwent both 3D RT-TSE-MRCP and 3D BH-GRASE-MRCP at 3 T. Three radiologists independently reviewed the visualisation of biliary and pancreatic ducts, image blurring, and overall image quality of the two data sets using four- or five-point scales. The numbers of scans with non-diagnostic or poor image quality were compared between the two scans. RESULTS: The 3D BH-GRASE-MRCP had a significantly better image quality (3.69 ± 0.77 vs. 3.30 ± 1.18, p = 0.005) and less image blurring (3.23 ± 0.94 vs. 3.65 ± 0.57, p = 0.0003) than the 3D RT-TSE-MRCP. In detail, 3D BH-GRASE-MRCP better depicted the common bile duct, cystic duct, and bilateral first intrahepatic duct (all ps < 0.05). The number of scans with non-diagnostic or poor image quality significantly decreased with 3D BH-GRASE-MRCP compared with 3D RT-TSE-MRCP [19.7% (13/66) vs. 1.5% (1/66), p = 0.002]. CONCLUSION: The 3D BH-GRASE-MRCP provided better image quality and a reduced number of non-diagnostic images compared to 3D RT-TSE-MRCP. KEY POINTS: • The GRASE technique enabled 3D MRCP acquisition within a single breath-hold. • The short acquisition time of 3D BH-GRASE-MRCP significantly reduced image blurring. • The 3D BH-GRASE-MRCP had a better image quality than 3D RT-TSE-MRCP. • The number of non-diagnostic scans was reduced with 3D BH-GRASE-MRCP.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N6c3d4bc6b9c743778dbd5c66176e3649
50 Nda32e899e985409a85f39ff978721e04
51 sg:journal.1289120
52 schema:name GRASE Revisited: breath-hold three-dimensional (3D) magnetic resonance cholangiopancreatography using a Gradient and Spin Echo (GRASE) technique at 3T
53 schema:pagination 3721-3728
54 schema:productId N39f9f425bce245619de113e5604dac21
55 Na222343fe72b4080b3a39fd92ec4d3ed
56 Nc1721850555e46fdb8197c75c4cfc77e
57 Ncb9af3c3524b4aefbab4164a8cf964de
58 Nefa876205ac5495f9e0140917e743285
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100770224
60 https://doi.org/10.1007/s00330-017-5275-0
61 schema:sdDatePublished 2019-04-10T20:11
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Ncccef3dcf51042439fdc6d53b035c1cb
64 schema:url http://link.springer.com/10.1007%2Fs00330-017-5275-0
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N008313004e724903b579d9e09d5fa1d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Pancreatic Ducts
70 rdf:type schema:DefinedTerm
71 N0bf7cc2279054c9eb3e50ae090942d2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Cholangiopancreatography, Magnetic Resonance
73 rdf:type schema:DefinedTerm
74 N301d35a9b0ff40f8a289dc25ea7f0de7 rdf:first sg:person.012217447334.05
75 rdf:rest N4af5d6f506964d2ea495432879420904
76 N332275b45d4c4c639eb3be78d3399aca schema:name Philips MR Clinical Science, Best, The Netherlands
77 rdf:type schema:Organization
78 N39f9f425bce245619de113e5604dac21 schema:name readcube_id
79 schema:value 64c2cac06ea122810b944835974312d48cba6064dc74f6eaccad31b700bb36b1
80 rdf:type schema:PropertyValue
81 N418696b39c614af483c6a90a0ad51c14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Humans
83 rdf:type schema:DefinedTerm
84 N4af5d6f506964d2ea495432879420904 rdf:first sg:person.01266602714.81
85 rdf:rest Nf5fac1e51d4b4268a8faa8999538090d
86 N4f39120c2f1e477aac2f382484851461 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Middle Aged
88 rdf:type schema:DefinedTerm
89 N614c8df9befb40cd88f25319eedfecac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Male
91 rdf:type schema:DefinedTerm
92 N671705e4c37a406fb85ca3f80934938d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Reproducibility of Results
94 rdf:type schema:DefinedTerm
95 N6c3d4bc6b9c743778dbd5c66176e3649 schema:volumeNumber 28
96 rdf:type schema:PublicationVolume
97 N6c66d107c2cf4178b5a7d07edebd6b7f rdf:first N7387d3feac1e42be975486cb0c7a5eb3
98 rdf:rest Na93c237c440d4d26a3d865d84960bded
99 N6d9c04f1f6a94c2fb83b3d1d9125c8cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Pancreatic Diseases
101 rdf:type schema:DefinedTerm
102 N7033bae03de74118827f0873f90c5331 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Imaging, Three-Dimensional
104 rdf:type schema:DefinedTerm
105 N7387d3feac1e42be975486cb0c7a5eb3 schema:affiliation N332275b45d4c4c639eb3be78d3399aca
106 schema:familyName Peeters
107 schema:givenName Johannes M.
108 rdf:type schema:Person
109 N75707dbb85e94b618cf7a5fc04da8516 rdf:first sg:person.011631141441.47
110 rdf:rest N6c66d107c2cf4178b5a7d07edebd6b7f
111 N8244356851e242dca2e053de08904b5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Bile Duct Diseases
113 rdf:type schema:DefinedTerm
114 N8622d81406a0488c95cbcde05a076646 rdf:first sg:person.01315300754.59
115 rdf:rest N75707dbb85e94b618cf7a5fc04da8516
116 N999cc144932c4b39a6f18d9139d0b414 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Female
118 rdf:type schema:DefinedTerm
119 Na222343fe72b4080b3a39fd92ec4d3ed schema:name dimensions_id
120 schema:value pub.1100770224
121 rdf:type schema:PropertyValue
122 Na93c237c440d4d26a3d865d84960bded rdf:first sg:person.01020423064.40
123 rdf:rest rdf:nil
124 Nafd772f61be741a0a806434b819dba15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Adult
126 rdf:type schema:DefinedTerm
127 Nb71f0ee03a9a453986eb8e978e4b1fdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Feasibility Studies
129 rdf:type schema:DefinedTerm
130 Nc030953482894cda85742615dfaf8af9 schema:name Philips Healthcare Korea, 04637, Seoul, Republic of Korea
131 rdf:type schema:Organization
132 Nc1721850555e46fdb8197c75c4cfc77e schema:name pubmed_id
133 schema:value 29392471
134 rdf:type schema:PropertyValue
135 Ncb9af3c3524b4aefbab4164a8cf964de schema:name nlm_unique_id
136 schema:value 9114774
137 rdf:type schema:PropertyValue
138 Ncccef3dcf51042439fdc6d53b035c1cb schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Nccdc467bfcec408180e6b194bce72312 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Breath Holding
142 rdf:type schema:DefinedTerm
143 Nda32e899e985409a85f39ff978721e04 schema:issueNumber 9
144 rdf:type schema:PublicationIssue
145 Ndd6a60a857b44aa78f8225b23cdd8323 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Young Adult
147 rdf:type schema:DefinedTerm
148 Ne144852fbc0a47d2a895a563da5070ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Bile Ducts
150 rdf:type schema:DefinedTerm
151 Nefa876205ac5495f9e0140917e743285 schema:name doi
152 schema:value 10.1007/s00330-017-5275-0
153 rdf:type schema:PropertyValue
154 Nf4d038ca687748b39acb7df39d280eab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Aged
156 rdf:type schema:DefinedTerm
157 Nf5fac1e51d4b4268a8faa8999538090d rdf:first sg:person.01011545037.83
158 rdf:rest N8622d81406a0488c95cbcde05a076646
159 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
160 schema:name Information and Computing Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
163 schema:name Artificial Intelligence and Image Processing
164 rdf:type schema:DefinedTerm
165 sg:journal.1289120 schema:issn 0938-7994
166 1432-1084
167 schema:name European Radiology
168 rdf:type schema:Periodical
169 sg:person.01011545037.83 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
170 schema:familyName Kang
171 schema:givenName Hyo-Jin
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011545037.83
173 rdf:type schema:Person
174 sg:person.01020423064.40 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
175 schema:familyName Yoon
176 schema:givenName Jeong Hee
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020423064.40
178 rdf:type schema:Person
179 sg:person.011631141441.47 schema:affiliation Nc030953482894cda85742615dfaf8af9
180 schema:familyName Kim
181 schema:givenName Eunju
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011631141441.47
183 rdf:type schema:Person
184 sg:person.012217447334.05 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
185 schema:familyName Nam
186 schema:givenName Ju Gang
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012217447334.05
188 rdf:type schema:Person
189 sg:person.01266602714.81 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
190 schema:familyName Lee
191 schema:givenName Jeong Min
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81
193 rdf:type schema:Person
194 sg:person.01315300754.59 schema:affiliation https://www.grid.ac/institutes/grid.488421.3
195 schema:familyName Lee
196 schema:givenName Sang Min
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59
198 rdf:type schema:Person
199 sg:pub.10.1007/s00261-014-0099-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027476957
200 https://doi.org/10.1007/s00261-014-0099-8
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00261-015-0633-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039143080
203 https://doi.org/10.1007/s00261-015-0633-3
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00261-016-0936-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000874964
206 https://doi.org/10.1007/s00261-016-0936-z
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s11604-009-0365-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016302072
209 https://doi.org/10.1007/s11604-009-0365-9
210 rdf:type schema:CreativeWork
211 sg:pub.10.1111/j.1572-0241.2007.01279.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020889593
212 https://doi.org/10.1111/j.1572-0241.2007.01279.x
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1002/(sici)1522-2586(199902)9:2<157::aid-jmri2>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1022636288
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/jmri.1880070404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012540037
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/jmri.23571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049796358
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1002/jmri.24033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026849024
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1002/jmri.25289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024392335
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/mrm.1910330411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030812399
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.mri.2013.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001226965
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.mric.2007.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002819137
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.mric.2008.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005697364
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1097/rli.0000000000000380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085076763
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1148/radiol.12112715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016200704
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1148/radiol.2016151935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079242836
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1148/radiol.2016160482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079313111
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1148/radiol.2382032065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042052395
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1148/radiol.2493080389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016021973
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1148/radiology.181.2.1924811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077855662
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1148/radiology.210.1.r99ja05247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029105548
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1259/bjr/28094700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064568800
249 rdf:type schema:CreativeWork
250 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
251 schema:name College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
252 Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
253 Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, 03087, Seoul, Republic of Korea
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.488421.3 schema:alternateName Hallym University Sacred Heart Hospital
256 schema:name Radiology, Hallym University Sacred Heart Hospital, 14068, Gyeonggi-do, Korea
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...