Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02-22

AUTHORS

Huimin Lin, Hongjiang Wei, Naying He, Caixia Fu, Shu Cheng, Jun Shen, Baisong Wang, Xu Yan, Chunlei Liu, Fuhua Yan

ABSTRACT

PurposesTo evaluate the feasibility of simultaneous quantification of liver iron concentration (LIC) and fat fraction (FF) using water-fat separation and quantitative susceptibility mapping (QSM).MethodsForty-five patients suspected of liver iron overload (LIO) were included. A volumetric interpolated breath-hold examination sequence for QSM and FF, a fat-saturated gradient echo sequence for R2*, a spin echo sequence for LIC measurements and MRS analyses for FF (FF-MRS) were performed. Magnetic susceptibility and FF were calculated using a water-fat separation method (FF-MRI). Correlation and receiver operating characteristic analyses were performed.ResultsMagnetic susceptibility showed strong correlation with LIC (rs=0.918). The optimal susceptibility cut-off values were 0.34, 0.63, 1.29 and 2.23 ppm corresponding to LIC thresholds of 1.8, 3.2, 7.0 and 15.0 mg/g dry weight. The area under the curve (AUC) were 0.948, 0.970, 1 and 1, respectively. No difference in AUC was found between susceptibility and R2* at all LIC thresholds. Correlation was found between FF-MRI and FF-MRS (R2=0.910).ConclusionsQSM has a high diagnostic performance for LIC quantification, similar to that of R2*. FF-MRI provides simultaneous fat quantification. Findings suggest QSM in combination with water-fat separation has potential value for evaluating LIO, especially in cases with coexisting steatosis.Key Points• Magnetic susceptibility showed strong correlation with LIC (rs=0.918).• QSM showed high diagnostic performance for LIC, similar to that of R2*.• Simultaneously estimated FF-MRI showed strong correlation with MR-Spectroscopy-based FF (R2=0.910).• QSM combining water-fat separation has quantitative value for LIO with coexisted steatosis. More... »

PAGES

3494-3504

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-5263-4

DOI

http://dx.doi.org/10.1007/s00330-017-5263-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101172092

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29470640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron Overload", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, 200025, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, 200025, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Huimin", 
        "id": "sg:person.01135534766.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135534766.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Hongjiang", 
        "id": "sg:person.0734623073.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734623073.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, 200025, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, 200025, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Naying", 
        "id": "sg:person.0624343701.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624343701.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Application Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Application Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Caixia", 
        "id": "sg:person.01113325663.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113325663.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Shu", 
        "id": "sg:person.01211625611.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211625611.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, 200025, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, 200025, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Jun", 
        "id": "sg:person.013114572124.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013114572124.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Statistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Biological Statistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Baisong", 
        "id": "sg:person.0777460172.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777460172.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.452598.7", 
          "name": [
            "MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xu", 
        "id": "sg:person.01265137305.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265137305.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA", 
            "Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chunlei", 
        "id": "sg:person.01153363405.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153363405.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, 200025, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, 200025, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Fuhua", 
        "id": "sg:person.0755107271.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755107271.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00261-017-1048-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053762367", 
          "https://doi.org/10.1007/s00261-017-1048-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2506-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020522015", 
          "https://doi.org/10.1007/s00330-012-2506-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00431-007-0604-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041401761", 
          "https://doi.org/10.1007/s00431-007-0604-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-22", 
    "datePublishedReg": "2018-02-22", 
    "description": "PurposesTo evaluate the feasibility of simultaneous quantification of liver iron concentration (LIC) and fat fraction (FF) using water-fat separation and quantitative susceptibility mapping (QSM).MethodsForty-five patients suspected of liver iron overload (LIO) were included. A volumetric interpolated breath-hold examination sequence for QSM and FF, a fat-saturated gradient echo sequence for R2*, a spin echo sequence for LIC measurements and MRS analyses for FF (FF-MRS) were performed. Magnetic susceptibility and FF were calculated using a water-fat separation method (FF-MRI). Correlation and receiver operating characteristic analyses were performed.ResultsMagnetic susceptibility showed strong correlation with LIC (rs=0.918). The optimal susceptibility cut-off values were 0.34, 0.63, 1.29 and 2.23 ppm corresponding to LIC thresholds of 1.8, 3.2, 7.0 and 15.0 mg/g dry weight. The area under the curve (AUC) were 0.948, 0.970, 1 and 1, respectively. No difference in AUC was found between susceptibility and R2* at all LIC thresholds. Correlation was found between FF-MRI and FF-MRS (R2=0.910).ConclusionsQSM has a high diagnostic performance for LIC quantification, similar to that of R2*. FF-MRI provides simultaneous fat quantification. Findings suggest QSM in combination with water-fat separation has potential value for evaluating LIO, especially in cases with coexisting steatosis.Key Points\u2022 Magnetic susceptibility showed strong correlation with LIC (rs=0.918).\u2022 QSM showed high diagnostic performance for LIC, similar to that of R2*.\u2022 Simultaneously estimated FF-MRI showed strong correlation with MR-Spectroscopy-based FF (R2=0.910).\u2022 QSM combining water-fat separation has quantitative value for LIO with coexisted steatosis.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-017-5263-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3536947", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3804700", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2552667", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8359777", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3859259", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "liver iron concentration", 
      "liver iron overload", 
      "water-fat separation", 
      "high diagnostic performance", 
      "quantitative susceptibility mapping", 
      "fat fraction", 
      "diagnostic performance", 
      "MethodsForty-five patients", 
      "breath-hold examination (VIBE) sequence", 
      "iron overload", 
      "liver iron", 
      "echo sequence", 
      "water-fat separation method", 
      "MR spectroscopy", 
      "gradient echo sequence", 
      "MRS analysis", 
      "LIC measurements", 
      "strong correlation", 
      "spin-echo sequence", 
      "steatosis", 
      "fat quantification", 
      "separation method", 
      "characteristic analysis", 
      "examination sequence", 
      "fat fraction quantification", 
      "susceptibility", 
      "susceptibility mapping", 
      "patients", 
      "PurposesTo", 
      "separation", 
      "optimal susceptibility", 
      "iron concentration", 
      "correlation", 
      "AUC", 
      "performance", 
      "potential value", 
      "simultaneous quantification", 
      "overload", 
      "magnetic susceptibility", 
      "findings", 
      "quantitative values", 
      "quantification", 
      "combination", 
      "R2", 
      "differences", 
      "feasibility", 
      "weight", 
      "cases", 
      "measurements", 
      "values", 
      "iron", 
      "analysis", 
      "concentration", 
      "receiver", 
      "ppm", 
      "method", 
      "curves", 
      "mapping", 
      "fraction", 
      "dry weight", 
      "area", 
      "sequence"
    ], 
    "name": "Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification", 
    "pagination": "3494-3504", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101172092"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-5263-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29470640"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-5263-4", 
      "https://app.dimensions.ai/details/publication/pub.1101172092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_779.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-017-5263-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5263-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5263-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5263-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5263-4'


 

This table displays all metadata directly associated to this object as RDF triples.

291 TRIPLES      21 PREDICATES      107 URIs      96 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-5263-4 schema:about N07af553480a0430f9e1320c6c8a37ef7
2 N0a7ac9575429460e81da2c8de0497f67
3 N181fb3ecbfb043aa8f3dfb74c42b840d
4 N1f64e839f57a4251a9db01fb56b3b990
5 N250538c3ba5b4fa0adfb91f1d2ac8394
6 N2ee9349b71004f55930325155ce288ee
7 N4bc431b83a5f4a54aa8e1627bddf18f1
8 N55278d3842384b4b8a6fd364d5e3fe8b
9 N5f5ab79223d847bcbb5818a4ceded6d8
10 N701422402b2a41ada41e92f7abac5cee
11 N7885fb5a7ef34428a5ab8a243749a047
12 N7d8ab1647563446c8b2c2fa8bcfd510e
13 N8ec5d64f99ca4982b010eadf3e209a8e
14 N9b14810b2fa947278c42e0a5e91e9ce4
15 Na15e2d9cb88f4bc098cd88f29439e434
16 Nc80cbae0b9d14048abc6b73744191423
17 Ne2434c9f98a243879e3dc37ad08c91cf
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author N7bf2d885ac01472fb8d2af1bdbce5a24
21 schema:citation sg:pub.10.1007/s00261-017-1048-0
22 sg:pub.10.1007/s00330-012-2506-2
23 sg:pub.10.1007/s00431-007-0604-y
24 schema:datePublished 2018-02-22
25 schema:datePublishedReg 2018-02-22
26 schema:description PurposesTo evaluate the feasibility of simultaneous quantification of liver iron concentration (LIC) and fat fraction (FF) using water-fat separation and quantitative susceptibility mapping (QSM).MethodsForty-five patients suspected of liver iron overload (LIO) were included. A volumetric interpolated breath-hold examination sequence for QSM and FF, a fat-saturated gradient echo sequence for R2*, a spin echo sequence for LIC measurements and MRS analyses for FF (FF-MRS) were performed. Magnetic susceptibility and FF were calculated using a water-fat separation method (FF-MRI). Correlation and receiver operating characteristic analyses were performed.ResultsMagnetic susceptibility showed strong correlation with LIC (rs=0.918). The optimal susceptibility cut-off values were 0.34, 0.63, 1.29 and 2.23 ppm corresponding to LIC thresholds of 1.8, 3.2, 7.0 and 15.0 mg/g dry weight. The area under the curve (AUC) were 0.948, 0.970, 1 and 1, respectively. No difference in AUC was found between susceptibility and R2* at all LIC thresholds. Correlation was found between FF-MRI and FF-MRS (R2=0.910).ConclusionsQSM has a high diagnostic performance for LIC quantification, similar to that of R2*. FF-MRI provides simultaneous fat quantification. Findings suggest QSM in combination with water-fat separation has potential value for evaluating LIO, especially in cases with coexisting steatosis.Key Points• Magnetic susceptibility showed strong correlation with LIC (rs=0.918).• QSM showed high diagnostic performance for LIC, similar to that of R2*.• Simultaneously estimated FF-MRI showed strong correlation with MR-Spectroscopy-based FF (R2=0.910).• QSM combining water-fat separation has quantitative value for LIO with coexisted steatosis.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N121c76271a744ebd9db7ff1539e64f38
30 N8aec53926bc54a1cbcd1d3057ffea29c
31 sg:journal.1289120
32 schema:keywords AUC
33 LIC measurements
34 MR spectroscopy
35 MRS analysis
36 MethodsForty-five patients
37 PurposesTo
38 R2
39 analysis
40 area
41 breath-hold examination (VIBE) sequence
42 cases
43 characteristic analysis
44 combination
45 concentration
46 correlation
47 curves
48 diagnostic performance
49 differences
50 dry weight
51 echo sequence
52 examination sequence
53 fat fraction
54 fat fraction quantification
55 fat quantification
56 feasibility
57 findings
58 fraction
59 gradient echo sequence
60 high diagnostic performance
61 iron
62 iron concentration
63 iron overload
64 liver iron
65 liver iron concentration
66 liver iron overload
67 magnetic susceptibility
68 mapping
69 measurements
70 method
71 optimal susceptibility
72 overload
73 patients
74 performance
75 potential value
76 ppm
77 quantification
78 quantitative susceptibility mapping
79 quantitative values
80 receiver
81 separation
82 separation method
83 sequence
84 simultaneous quantification
85 spin-echo sequence
86 steatosis
87 strong correlation
88 susceptibility
89 susceptibility mapping
90 values
91 water-fat separation
92 water-fat separation method
93 weight
94 schema:name Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification
95 schema:pagination 3494-3504
96 schema:productId N0a5f6fcfe6ca4d95ac80f6fcc878c1df
97 N99456449ed0b4e0e9103e54f6e79ff32
98 Nb7a8ff501ace43c898041c085fc87c82
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101172092
100 https://doi.org/10.1007/s00330-017-5263-4
101 schema:sdDatePublished 2022-09-02T16:03
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Na45e2da2d8714f62badeb748fd242340
104 schema:url https://doi.org/10.1007/s00330-017-5263-4
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N01d5943cb22a4ac4bf270c145cf2d1e7 rdf:first sg:person.013114572124.97
109 rdf:rest Ncf02eec3c07d47169d472980a585b8a8
110 N07af553480a0430f9e1320c6c8a37ef7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Iron Overload
112 rdf:type schema:DefinedTerm
113 N0a5f6fcfe6ca4d95ac80f6fcc878c1df schema:name pubmed_id
114 schema:value 29470640
115 rdf:type schema:PropertyValue
116 N0a7ac9575429460e81da2c8de0497f67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Iron
118 rdf:type schema:DefinedTerm
119 N121c76271a744ebd9db7ff1539e64f38 schema:volumeNumber 28
120 rdf:type schema:PublicationVolume
121 N181fb3ecbfb043aa8f3dfb74c42b840d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Fatty Liver
123 rdf:type schema:DefinedTerm
124 N1f64e839f57a4251a9db01fb56b3b990 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Humans
126 rdf:type schema:DefinedTerm
127 N250538c3ba5b4fa0adfb91f1d2ac8394 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Magnetic Resonance Spectroscopy
129 rdf:type schema:DefinedTerm
130 N2ee9349b71004f55930325155ce288ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Prospective Studies
132 rdf:type schema:DefinedTerm
133 N2eec2ff34c524435912f4342d5b4a18c rdf:first sg:person.0624343701.28
134 rdf:rest N657523ad1ec1433ba7919e6268da0799
135 N4bc431b83a5f4a54aa8e1627bddf18f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Aged
137 rdf:type schema:DefinedTerm
138 N55278d3842384b4b8a6fd364d5e3fe8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Adolescent
140 rdf:type schema:DefinedTerm
141 N5f5ab79223d847bcbb5818a4ceded6d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name ROC Curve
143 rdf:type schema:DefinedTerm
144 N657523ad1ec1433ba7919e6268da0799 rdf:first sg:person.01113325663.07
145 rdf:rest N6c01b487a91842a4bdaaea41e2b7ec65
146 N6c01b487a91842a4bdaaea41e2b7ec65 rdf:first sg:person.01211625611.73
147 rdf:rest N01d5943cb22a4ac4bf270c145cf2d1e7
148 N701422402b2a41ada41e92f7abac5cee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Female
150 rdf:type schema:DefinedTerm
151 N7885fb5a7ef34428a5ab8a243749a047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Water
153 rdf:type schema:DefinedTerm
154 N7bf2d885ac01472fb8d2af1bdbce5a24 rdf:first sg:person.01135534766.57
155 rdf:rest Nda2616ee8a594175a370a0036249a57c
156 N7d8ab1647563446c8b2c2fa8bcfd510e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Male
158 rdf:type schema:DefinedTerm
159 N8aec53926bc54a1cbcd1d3057ffea29c schema:issueNumber 8
160 rdf:type schema:PublicationIssue
161 N8ec5d64f99ca4982b010eadf3e209a8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Middle Aged
163 rdf:type schema:DefinedTerm
164 N99456449ed0b4e0e9103e54f6e79ff32 schema:name dimensions_id
165 schema:value pub.1101172092
166 rdf:type schema:PropertyValue
167 N9b14810b2fa947278c42e0a5e91e9ce4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Liver
169 rdf:type schema:DefinedTerm
170 N9ed157c0b5564c999731c1accf7bcedb rdf:first sg:person.01153363405.15
171 rdf:rest Nd54c5695513e4b118270c73c964a86fb
172 Na15e2d9cb88f4bc098cd88f29439e434 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Young Adult
174 rdf:type schema:DefinedTerm
175 Na45e2da2d8714f62badeb748fd242340 schema:name Springer Nature - SN SciGraph project
176 rdf:type schema:Organization
177 Nb7a8ff501ace43c898041c085fc87c82 schema:name doi
178 schema:value 10.1007/s00330-017-5263-4
179 rdf:type schema:PropertyValue
180 Nc80cbae0b9d14048abc6b73744191423 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Adult
182 rdf:type schema:DefinedTerm
183 Ncf02eec3c07d47169d472980a585b8a8 rdf:first sg:person.0777460172.41
184 rdf:rest Nfe7a034e96c94b0ba40dbccc8027285b
185 Nd54c5695513e4b118270c73c964a86fb rdf:first sg:person.0755107271.57
186 rdf:rest rdf:nil
187 Nda2616ee8a594175a370a0036249a57c rdf:first sg:person.0734623073.42
188 rdf:rest N2eec2ff34c524435912f4342d5b4a18c
189 Ne2434c9f98a243879e3dc37ad08c91cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Feasibility Studies
191 rdf:type schema:DefinedTerm
192 Nfe7a034e96c94b0ba40dbccc8027285b rdf:first sg:person.01265137305.80
193 rdf:rest N9ed157c0b5564c999731c1accf7bcedb
194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
195 schema:name Medical and Health Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
198 schema:name Clinical Sciences
199 rdf:type schema:DefinedTerm
200 sg:grant.2552667 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-017-5263-4
201 rdf:type schema:MonetaryGrant
202 sg:grant.3536947 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-017-5263-4
203 rdf:type schema:MonetaryGrant
204 sg:grant.3804700 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-017-5263-4
205 rdf:type schema:MonetaryGrant
206 sg:grant.3859259 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-017-5263-4
207 rdf:type schema:MonetaryGrant
208 sg:grant.8359777 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-017-5263-4
209 rdf:type schema:MonetaryGrant
210 sg:journal.1289120 schema:issn 0938-7994
211 1432-1084
212 schema:name European Radiology
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01113325663.07 schema:affiliation grid-institutes:None
216 schema:familyName Fu
217 schema:givenName Caixia
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113325663.07
219 rdf:type schema:Person
220 sg:person.01135534766.57 schema:affiliation grid-institutes:grid.16821.3c
221 schema:familyName Lin
222 schema:givenName Huimin
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135534766.57
224 rdf:type schema:Person
225 sg:person.01153363405.15 schema:affiliation grid-institutes:grid.47840.3f
226 schema:familyName Liu
227 schema:givenName Chunlei
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153363405.15
229 rdf:type schema:Person
230 sg:person.01211625611.73 schema:affiliation grid-institutes:grid.16821.3c
231 schema:familyName Cheng
232 schema:givenName Shu
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211625611.73
234 rdf:type schema:Person
235 sg:person.01265137305.80 schema:affiliation grid-institutes:grid.452598.7
236 schema:familyName Yan
237 schema:givenName Xu
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265137305.80
239 rdf:type schema:Person
240 sg:person.013114572124.97 schema:affiliation grid-institutes:grid.16821.3c
241 schema:familyName Shen
242 schema:givenName Jun
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013114572124.97
244 rdf:type schema:Person
245 sg:person.0624343701.28 schema:affiliation grid-institutes:grid.16821.3c
246 schema:familyName He
247 schema:givenName Naying
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624343701.28
249 rdf:type schema:Person
250 sg:person.0734623073.42 schema:affiliation grid-institutes:grid.47840.3f
251 schema:familyName Wei
252 schema:givenName Hongjiang
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734623073.42
254 rdf:type schema:Person
255 sg:person.0755107271.57 schema:affiliation grid-institutes:grid.16821.3c
256 schema:familyName Yan
257 schema:givenName Fuhua
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755107271.57
259 rdf:type schema:Person
260 sg:person.0777460172.41 schema:affiliation grid-institutes:grid.16821.3c
261 schema:familyName Wang
262 schema:givenName Baisong
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777460172.41
264 rdf:type schema:Person
265 sg:pub.10.1007/s00261-017-1048-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053762367
266 https://doi.org/10.1007/s00261-017-1048-0
267 rdf:type schema:CreativeWork
268 sg:pub.10.1007/s00330-012-2506-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020522015
269 https://doi.org/10.1007/s00330-012-2506-2
270 rdf:type schema:CreativeWork
271 sg:pub.10.1007/s00431-007-0604-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041401761
272 https://doi.org/10.1007/s00431-007-0604-y
273 rdf:type schema:CreativeWork
274 grid-institutes:None schema:alternateName Application Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
275 schema:name Application Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
276 rdf:type schema:Organization
277 grid-institutes:grid.16821.3c schema:alternateName Department of Biological Statistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
278 Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
279 Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, 200025, Shanghai, China
280 schema:name Department of Biological Statistics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
281 Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
282 Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, 200025, Shanghai, China
283 rdf:type schema:Organization
284 grid-institutes:grid.452598.7 schema:alternateName MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China
285 schema:name MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China
286 rdf:type schema:Organization
287 grid-institutes:grid.47840.3f schema:alternateName Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
288 Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
289 schema:name Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
290 Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
291 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...