Virtual monoenergetic dual-layer, dual-energy CT enterography: optimization of keV settings and its added value for Crohn’s disease View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Sang Min Lee, Se Hyung Kim, Su Joa Ahn, Hyo-Jin Kang, Ji Hee Kang, Joon Koo Han

ABSTRACT

OBJECTIVES: To determine the optimal keV on dual-layer, dual-energy CT enterography (dlDE-CTE) and to investigate the added value of virtual monoenergetic images (VMIs) for the diagnosis of active Crohn's disease (CD). METHODS: We collected 76 patients (including 45 CD patients) who underwent dlDE-CTE. CD was diagnosed using ileocolonoscopy. Conventional polychromatic images (PCI) were reconstructed using an iterative reconstruction algorithm at 120 kVp, and VMI at 40 keV (VMI40), 55 keV (VMI55), and 70 keV (VMI70). Contrast-to-noise ratio (CNR) was compared using Kruskal-Wallis test. Three radiologists independently reviewed PCI and subsequently combined PCI and the optimized VMI for the diagnosis of active CD using a 5-point scale. Multi-reader multi-case receiver operating characteristic analysis was performed. RESULTS: Mean ± standard deviation of CNRs for both normal (13.6±6.5, 6.1±3.2, 2.0±2.1, 1.9±1.6; P<0.001) and abnormal (9.4±7.3, 6.5±4.8, 4.9±3.1, 3.7±2.3; P<0.001) bowels were significantly greatest on VMI40, followed by VMI55, VMI70, and PCI. When VMI40 were added to PCI, overall area-under-the-curve of the three radiologists was significantly improved from 0.891 to 0.951 for diagnosing active CD (P=0.009). CONCLUSIONS: The lowest monoenergetic images (VMI40) provided the best CNR on dlDE-CTE. Furthermore, the diagnostic performance for diagnosing active CD can be significantly improved with the addition of VMI40. KEY POINTS: • CNR for both normal and abnormal bowel walls is greatest on VMI 40 . • Subjective image quality on VMI 40 is better than those on PCI. • When VMI 40 images are added to PCI, radiologists' diagnostic performance can be improved. More... »

PAGES

2525-2534

References to SciGraph publications

  • 2009-06. CT enterography technique: theme and variations in ABDOMINAL RADIOLOGY
  • 2014-02. Dual-energy CT of the abdomen in ABDOMINAL RADIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00330-017-5215-z

    DOI

    http://dx.doi.org/10.1007/s00330-017-5215-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100152456

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29294151


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Colonoscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crohn Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Intestine, Small", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiation Dosage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiographic Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiography, Dual-Energy Scanned Projection", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radionuclide Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hallym University Sacred Heart Hospital", 
              "id": "https://www.grid.ac/institutes/grid.488421.3", 
              "name": [
                "Department of Radiology, Hallym University Sacred Heart Hospital, Anyang, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Sang Min", 
            "id": "sg:person.01315300754.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Seoul National University", 
              "id": "https://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
                "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Se Hyung", 
            "id": "sg:person.016434366660.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Seoul National University", 
              "id": "https://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
                "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ahn", 
            "givenName": "Su Joa", 
            "id": "sg:person.01065717421.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065717421.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Seoul National University", 
              "id": "https://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
                "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Hyo-Jin", 
            "id": "sg:person.01011545037.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011545037.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Seoul National University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kang", 
            "givenName": "Ji Hee", 
            "id": "sg:person.013374611605.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374611605.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Seoul National University Hospital", 
              "id": "https://www.grid.ac/institutes/grid.412484.f", 
              "name": [
                "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
                "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
                "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Han", 
            "givenName": "Joon Koo", 
            "id": "sg:person.0647723014.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.acra.2007.12.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000850042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2483071964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003629511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-008-9411-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003894513", 
              "https://doi.org/10.1007/s00261-008-9411-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-008-9411-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003894513", 
              "https://doi.org/10.1007/s00261-008-9411-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2453060798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004977396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2413051444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012600878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2332030308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012651892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004424-199209000-00015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016284651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004424-199209000-00015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016284651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/rg.243035120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021190831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/apt.12815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032298061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2016.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035529562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mib.0000000000000727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036307333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mib.0000000000000727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036307333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/rg.307105052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039261977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2382041159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050368384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-013-0033-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052519730", 
              "https://doi.org/10.1007/s00261-013-0033-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/rpd/nct242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060019486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1259/bjr/27973476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064568795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.09.2592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069300150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.10.5303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069301186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.11.6597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069301680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.169.6.9393162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069321286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.14140875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079005530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2016151281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079257218"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06", 
        "datePublishedReg": "2018-06-01", 
        "description": "OBJECTIVES: To determine the optimal keV on dual-layer, dual-energy CT enterography (dlDE-CTE) and to investigate the added value of virtual monoenergetic images (VMIs) for the diagnosis of active Crohn's disease (CD).\nMETHODS: We collected 76 patients (including 45 CD patients) who underwent dlDE-CTE. CD was diagnosed using ileocolonoscopy. Conventional polychromatic images (PCI) were reconstructed using an iterative reconstruction algorithm at 120 kVp, and VMI at 40 keV (VMI40), 55 keV (VMI55), and 70 keV (VMI70). Contrast-to-noise ratio (CNR) was compared using Kruskal-Wallis test. Three radiologists independently reviewed PCI and subsequently combined PCI and the optimized VMI for the diagnosis of active CD using a 5-point scale. Multi-reader multi-case receiver operating characteristic analysis was performed.\nRESULTS: Mean \u00b1 standard deviation of CNRs for both normal (13.6\u00b16.5, 6.1\u00b13.2, 2.0\u00b12.1, 1.9\u00b11.6; P<0.001) and abnormal (9.4\u00b17.3, 6.5\u00b14.8, 4.9\u00b13.1, 3.7\u00b12.3; P<0.001) bowels were significantly greatest on VMI40, followed by VMI55, VMI70, and PCI. When VMI40 were added to PCI, overall area-under-the-curve of the three radiologists was significantly improved from 0.891 to 0.951 for diagnosing active CD (P=0.009).\nCONCLUSIONS: The lowest monoenergetic images (VMI40) provided the best CNR on dlDE-CTE. Furthermore, the diagnostic performance for diagnosing active CD can be significantly improved with the addition of VMI40.\nKEY POINTS: \u2022 CNR for both normal and abnormal bowel walls is greatest on VMI 40 . \u2022 Subjective image quality on VMI 40 is better than those on PCI. \u2022 When VMI 40 images are added to PCI, radiologists' diagnostic performance can be improved.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00330-017-5215-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1289120", 
            "issn": [
              "0938-7994", 
              "1432-1084"
            ], 
            "name": "European Radiology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Virtual monoenergetic dual-layer, dual-energy CT enterography: optimization of keV settings and its added value for Crohn\u2019s disease", 
        "pagination": "2525-2534", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "00455a50990f9fb640176e1f8047bc307f807a3fb35021546ccf9b415dc269e9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29294151"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9114774"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00330-017-5215-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100152456"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00330-017-5215-z", 
          "https://app.dimensions.ai/details/publication/pub.1100152456"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000528.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00330-017-5215-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5215-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5215-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5215-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5215-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    249 TRIPLES      21 PREDICATES      68 URIs      38 LITERALS      26 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00330-017-5215-z schema:about N0e0c0fb40075450caa31d85651aff139
    2 N0e73292d376742a8a58fdea56686eba9
    3 N2746b0f6de4048f38981c770b4bb78d8
    4 N3a79ec71830c421e979c4fd05c524b44
    5 N48ddc695660f489e994ccee5a2094e24
    6 N49f954f8ad40495abce1e5f0b191a94c
    7 N6fac5dcc3e1645f4999f978f37b2f6a8
    8 N82e13c75e47b41d7b455e0f240e8fe53
    9 N8587b36161b14d748d5f0c6f6bad502d
    10 N94a135b64c4541c1bfdb7a675ae508d9
    11 N9fd631a8a6094c568cb0bfb5f9cef676
    12 Nb80a96d5aabc490dbe86e548db8bc94a
    13 Nc94fbf10661a438ab605d79355ed3498
    14 Ncd7dd35e5fde4330b5320fed3377fc7e
    15 Nd167986407eb4e3492ae8ebff715c63c
    16 Nf4199d175cf74e3eb015fb1e2680b70e
    17 Nf9a728157ce64dd8a62fdf31af94bc15
    18 anzsrc-for:08
    19 anzsrc-for:0801
    20 schema:author Nb6001eb5943c41be909dda863b18839b
    21 schema:citation sg:pub.10.1007/s00261-008-9411-9
    22 sg:pub.10.1007/s00261-013-0033-5
    23 https://doi.org/10.1016/j.acra.2007.12.015
    24 https://doi.org/10.1016/j.ejrad.2016.02.019
    25 https://doi.org/10.1093/rpd/nct242
    26 https://doi.org/10.1097/00004424-199209000-00015
    27 https://doi.org/10.1097/mib.0000000000000727
    28 https://doi.org/10.1111/apt.12815
    29 https://doi.org/10.1148/radiol.14140875
    30 https://doi.org/10.1148/radiol.2016151281
    31 https://doi.org/10.1148/radiol.2332030308
    32 https://doi.org/10.1148/radiol.2382041159
    33 https://doi.org/10.1148/radiol.2413051444
    34 https://doi.org/10.1148/radiol.2453060798
    35 https://doi.org/10.1148/radiol.2483071964
    36 https://doi.org/10.1148/rg.243035120
    37 https://doi.org/10.1148/rg.307105052
    38 https://doi.org/10.1259/bjr/27973476
    39 https://doi.org/10.2214/ajr.09.2592
    40 https://doi.org/10.2214/ajr.10.5303
    41 https://doi.org/10.2214/ajr.11.6597
    42 https://doi.org/10.2214/ajr.169.6.9393162
    43 schema:datePublished 2018-06
    44 schema:datePublishedReg 2018-06-01
    45 schema:description OBJECTIVES: To determine the optimal keV on dual-layer, dual-energy CT enterography (dlDE-CTE) and to investigate the added value of virtual monoenergetic images (VMIs) for the diagnosis of active Crohn's disease (CD). METHODS: We collected 76 patients (including 45 CD patients) who underwent dlDE-CTE. CD was diagnosed using ileocolonoscopy. Conventional polychromatic images (PCI) were reconstructed using an iterative reconstruction algorithm at 120 kVp, and VMI at 40 keV (VMI40), 55 keV (VMI55), and 70 keV (VMI70). Contrast-to-noise ratio (CNR) was compared using Kruskal-Wallis test. Three radiologists independently reviewed PCI and subsequently combined PCI and the optimized VMI for the diagnosis of active CD using a 5-point scale. Multi-reader multi-case receiver operating characteristic analysis was performed. RESULTS: Mean ± standard deviation of CNRs for both normal (13.6±6.5, 6.1±3.2, 2.0±2.1, 1.9±1.6; P<0.001) and abnormal (9.4±7.3, 6.5±4.8, 4.9±3.1, 3.7±2.3; P<0.001) bowels were significantly greatest on VMI40, followed by VMI55, VMI70, and PCI. When VMI40 were added to PCI, overall area-under-the-curve of the three radiologists was significantly improved from 0.891 to 0.951 for diagnosing active CD (P=0.009). CONCLUSIONS: The lowest monoenergetic images (VMI40) provided the best CNR on dlDE-CTE. Furthermore, the diagnostic performance for diagnosing active CD can be significantly improved with the addition of VMI40. KEY POINTS: • CNR for both normal and abnormal bowel walls is greatest on VMI 40 . • Subjective image quality on VMI 40 is better than those on PCI. • When VMI 40 images are added to PCI, radiologists' diagnostic performance can be improved.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf Nce12d3a0ce2a41de970f462f3b28761f
    50 Ne9bf6e9b96f640d2b7fb5f65b6887387
    51 sg:journal.1289120
    52 schema:name Virtual monoenergetic dual-layer, dual-energy CT enterography: optimization of keV settings and its added value for Crohn’s disease
    53 schema:pagination 2525-2534
    54 schema:productId N58a6b1aa42ce41e1af6b68224e42cdc9
    55 N627f48440aa048529bf3f71316ab2359
    56 N85465046da2a41c18ab236edd2eebc23
    57 Na4edbe1283a44aae9da7885b64174ed9
    58 Nfcb481544b6c4c3fbe078bc573a68725
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100152456
    60 https://doi.org/10.1007/s00330-017-5215-z
    61 schema:sdDatePublished 2019-04-10T20:00
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher N47ecf5a23b4244a8ad0b7fb5a80858da
    64 schema:url http://link.springer.com/10.1007/s00330-017-5215-z
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N0e0c0fb40075450caa31d85651aff139 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Radiography, Dual-Energy Scanned Projection
    70 rdf:type schema:DefinedTerm
    71 N0e73292d376742a8a58fdea56686eba9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Algorithms
    73 rdf:type schema:DefinedTerm
    74 N2746b0f6de4048f38981c770b4bb78d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Retrospective Studies
    76 rdf:type schema:DefinedTerm
    77 N3a79ec71830c421e979c4fd05c524b44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Female
    79 rdf:type schema:DefinedTerm
    80 N3b1115f7d3754cf2b600d9e36ea7e7be rdf:first sg:person.013374611605.56
    81 rdf:rest Nd8666e5912fc4f7b832739519428f1fe
    82 N47ecf5a23b4244a8ad0b7fb5a80858da schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 N48ddc695660f489e994ccee5a2094e24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Middle Aged
    86 rdf:type schema:DefinedTerm
    87 N49f954f8ad40495abce1e5f0b191a94c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Radiographic Image Interpretation, Computer-Assisted
    89 rdf:type schema:DefinedTerm
    90 N58a6b1aa42ce41e1af6b68224e42cdc9 schema:name readcube_id
    91 schema:value 00455a50990f9fb640176e1f8047bc307f807a3fb35021546ccf9b415dc269e9
    92 rdf:type schema:PropertyValue
    93 N5f41ee239a9746bab2cc594b9b91ac44 rdf:first sg:person.016434366660.80
    94 rdf:rest N66529629e9de45d8ab9ea3619d959558
    95 N627f48440aa048529bf3f71316ab2359 schema:name pubmed_id
    96 schema:value 29294151
    97 rdf:type schema:PropertyValue
    98 N66529629e9de45d8ab9ea3619d959558 rdf:first sg:person.01065717421.22
    99 rdf:rest N82b6a6eccded480ab60eba86a4b19976
    100 N6fac5dcc3e1645f4999f978f37b2f6a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Male
    102 rdf:type schema:DefinedTerm
    103 N82b6a6eccded480ab60eba86a4b19976 rdf:first sg:person.01011545037.83
    104 rdf:rest N3b1115f7d3754cf2b600d9e36ea7e7be
    105 N82e13c75e47b41d7b455e0f240e8fe53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Young Adult
    107 rdf:type schema:DefinedTerm
    108 N85465046da2a41c18ab236edd2eebc23 schema:name nlm_unique_id
    109 schema:value 9114774
    110 rdf:type schema:PropertyValue
    111 N8587b36161b14d748d5f0c6f6bad502d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Radionuclide Imaging
    113 rdf:type schema:DefinedTerm
    114 N94a135b64c4541c1bfdb7a675ae508d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Radiation Dosage
    116 rdf:type schema:DefinedTerm
    117 N9fd631a8a6094c568cb0bfb5f9cef676 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Colonoscopy
    119 rdf:type schema:DefinedTerm
    120 Na4edbe1283a44aae9da7885b64174ed9 schema:name doi
    121 schema:value 10.1007/s00330-017-5215-z
    122 rdf:type schema:PropertyValue
    123 Nb6001eb5943c41be909dda863b18839b rdf:first sg:person.01315300754.59
    124 rdf:rest N5f41ee239a9746bab2cc594b9b91ac44
    125 Nb80a96d5aabc490dbe86e548db8bc94a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Intestine, Small
    127 rdf:type schema:DefinedTerm
    128 Nc94fbf10661a438ab605d79355ed3498 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Humans
    130 rdf:type schema:DefinedTerm
    131 Ncd7dd35e5fde4330b5320fed3377fc7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Adult
    133 rdf:type schema:DefinedTerm
    134 Nce12d3a0ce2a41de970f462f3b28761f schema:volumeNumber 28
    135 rdf:type schema:PublicationVolume
    136 Nd167986407eb4e3492ae8ebff715c63c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Tomography, X-Ray Computed
    138 rdf:type schema:DefinedTerm
    139 Nd8666e5912fc4f7b832739519428f1fe rdf:first sg:person.0647723014.95
    140 rdf:rest rdf:nil
    141 Ne9bf6e9b96f640d2b7fb5f65b6887387 schema:issueNumber 6
    142 rdf:type schema:PublicationIssue
    143 Nf4199d175cf74e3eb015fb1e2680b70e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Crohn Disease
    145 rdf:type schema:DefinedTerm
    146 Nf9a728157ce64dd8a62fdf31af94bc15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Aged
    148 rdf:type schema:DefinedTerm
    149 Nfcb481544b6c4c3fbe078bc573a68725 schema:name dimensions_id
    150 schema:value pub.1100152456
    151 rdf:type schema:PropertyValue
    152 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Information and Computing Sciences
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Artificial Intelligence and Image Processing
    157 rdf:type schema:DefinedTerm
    158 sg:journal.1289120 schema:issn 0938-7994
    159 1432-1084
    160 schema:name European Radiology
    161 rdf:type schema:Periodical
    162 sg:person.01011545037.83 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
    163 schema:familyName Kang
    164 schema:givenName Hyo-Jin
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011545037.83
    166 rdf:type schema:Person
    167 sg:person.01065717421.22 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
    168 schema:familyName Ahn
    169 schema:givenName Su Joa
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065717421.22
    171 rdf:type schema:Person
    172 sg:person.01315300754.59 schema:affiliation https://www.grid.ac/institutes/grid.488421.3
    173 schema:familyName Lee
    174 schema:givenName Sang Min
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59
    176 rdf:type schema:Person
    177 sg:person.013374611605.56 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
    178 schema:familyName Kang
    179 schema:givenName Ji Hee
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374611605.56
    181 rdf:type schema:Person
    182 sg:person.016434366660.80 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
    183 schema:familyName Kim
    184 schema:givenName Se Hyung
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80
    186 rdf:type schema:Person
    187 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
    188 schema:familyName Han
    189 schema:givenName Joon Koo
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
    191 rdf:type schema:Person
    192 sg:pub.10.1007/s00261-008-9411-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003894513
    193 https://doi.org/10.1007/s00261-008-9411-9
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s00261-013-0033-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052519730
    196 https://doi.org/10.1007/s00261-013-0033-5
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.acra.2007.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000850042
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.ejrad.2016.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035529562
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1093/rpd/nct242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060019486
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1097/00004424-199209000-00015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016284651
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1097/mib.0000000000000727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036307333
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1111/apt.12815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032298061
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1148/radiol.14140875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079005530
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1148/radiol.2016151281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079257218
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1148/radiol.2332030308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012651892
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1148/radiol.2382041159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050368384
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1148/radiol.2413051444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012600878
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1148/radiol.2453060798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004977396
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1148/radiol.2483071964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003629511
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1148/rg.243035120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021190831
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1148/rg.307105052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039261977
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1259/bjr/27973476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064568795
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.2214/ajr.09.2592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300150
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.2214/ajr.10.5303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069301186
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.2214/ajr.11.6597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069301680
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.2214/ajr.169.6.9393162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069321286
    237 rdf:type schema:CreativeWork
    238 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
    239 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
    240 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
    241 rdf:type schema:Organization
    242 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
    243 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
    244 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
    245 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
    246 rdf:type schema:Organization
    247 https://www.grid.ac/institutes/grid.488421.3 schema:alternateName Hallym University Sacred Heart Hospital
    248 schema:name Department of Radiology, Hallym University Sacred Heart Hospital, Anyang, South Korea
    249 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...