Accuracy of computed tomography for selecting the revascularization method based on SYNTAX score II View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12-08

AUTHORS

Si Eun Lee, Kyunghwa Han, Jin Hur, Young Jin Kim, Hye-Jeong Lee, Yoo Jin Hong, Dong Jin Im, Byoung Wook Choi

ABSTRACT

ObjectivesThe application of SYNTAX score II based on coronary CT angiography (CCTA) for selecting further treatment options has not been studied. This study aimed to investigate the diagnostic performance of CCTA combined with SYNTAX score II for selecting the revascularization method compared with invasive coronary angiography (ICA) based on 2014 European Society of Cardiology (ESC)/European Association for Cardio-Thoracic Surgery (EACTS) guidelines.MethodsFrom January–May 2011, 160 patients who underwent both CCTA and ICA within 30 interval days were included. The diagnostic performance of CCTA, CCTA plus CT-SYNTAX score I and CT-SYNTAX score II was analysed using ICA counterparts as references.ResultsOverall sensitivity, specificity, positive predictive value, negative predictive value and accuracy of CCTA plus CT-SYNTAX I for selecting coronary artery bypass grafting (CABG) candidates using ICA plus ICA-SYNTAX I as reference, were 70.6 %, 95.8 %, 66.7 %, 96.5 % and 93.1 %, respectively. The diagnostic performance of CCTA plus CT-SYNTAX II showed improvement with values of 83.3 %, 97.3 %, 71.4 %, 98.6 % and 96.3 %, respectively, using ICA plus ICA-SYNTAX II as reference.ConclusionsCCTA combined with CT-SYNTAX score II is an accurate method for selecting CABG surgery candidates compared with ICA-SYNTAX score II.Key points• SYNTAX plus CCTA can be highly specific for selecting the revascularization method.• SYNTAX II was complemented by including clinical considerations to SYNTAX I.• CCTA plus CT-SYNTAX II is an accurate method for selecting CABG candidates. More... »

PAGES

2151-2158

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-5184-2

DOI

http://dx.doi.org/10.1007/s00330-017-5184-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099691986

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29222675


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computed Tomography Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Revascularization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Si Eun", 
        "id": "sg:person.014151202447.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151202447.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Kyunghwa", 
        "id": "sg:person.011475543172.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475543172.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hur", 
        "givenName": "Jin", 
        "id": "sg:person.0631275763.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young Jin", 
        "id": "sg:person.01143557676.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hye-Jeong", 
        "id": "sg:person.01160231265.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Yoo Jin", 
        "id": "sg:person.01014245442.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014245442.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Im", 
        "givenName": "Dong Jin", 
        "id": "sg:person.0724201617.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724201617.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Byoung Wook", 
        "id": "sg:person.01101305576.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-013-2935-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006656450", 
          "https://doi.org/10.1007/s00330-013-2935-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-08", 
    "datePublishedReg": "2017-12-08", 
    "description": "ObjectivesThe application of SYNTAX score II based on coronary CT angiography (CCTA) for selecting further treatment options has not been studied. This study aimed to investigate the diagnostic performance of CCTA combined with SYNTAX score II for selecting the revascularization method compared with invasive coronary angiography (ICA) based on 2014 European Society of Cardiology (ESC)/European Association for Cardio-Thoracic Surgery (EACTS) guidelines.MethodsFrom January\u2013May 2011, 160 patients who underwent both CCTA and ICA within 30 interval days were included. The diagnostic performance of CCTA, CCTA plus CT-SYNTAX score I and CT-SYNTAX score II was analysed using ICA counterparts as references.ResultsOverall sensitivity, specificity, positive predictive value, negative predictive value and accuracy of CCTA plus CT-SYNTAX I for selecting coronary artery bypass grafting (CABG) candidates using ICA plus ICA-SYNTAX I as reference, were 70.6 %, 95.8 %, 66.7 %, 96.5 % and 93.1 %, respectively. The diagnostic performance of CCTA plus CT-SYNTAX II showed improvement with values of 83.3 %, 97.3 %, 71.4 %, 98.6 % and 96.3 %, respectively, using ICA plus ICA-SYNTAX II as reference.ConclusionsCCTA combined with CT-SYNTAX score II is an accurate method for selecting CABG surgery candidates compared with ICA-SYNTAX score II.Key points\u2022 SYNTAX plus CCTA can be highly specific for selecting the revascularization method.\u2022 SYNTAX II was complemented by including clinical considerations to SYNTAX I.\u2022 CCTA plus CT-SYNTAX II is an accurate method for selecting CABG candidates.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-017-5184-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "invasive coronary angiography", 
      "coronary CT angiography", 
      "SYNTAX score II", 
      "Score II", 
      "revascularization method", 
      "diagnostic performance", 
      "predictive value", 
      "Cardio-Thoracic Surgery guidelines", 
      "coronary artery bypass", 
      "further treatment options", 
      "accuracy of CCTA", 
      "negative predictive value", 
      "positive predictive value", 
      "artery bypass", 
      "coronary angiography", 
      "Surgery guidelines", 
      "CABG candidates", 
      "treatment options", 
      "surgery candidates", 
      "CT angiography", 
      "computed tomography", 
      "ResultsOverall sensitivity", 
      "clinical considerations", 
      "score I", 
      "SYNTAX II", 
      "European Society", 
      "angiography", 
      "interval days", 
      "patients", 
      "bypass", 
      "accurate method", 
      "cardiology", 
      "tomography", 
      "association", 
      "days", 
      "guidelines", 
      "candidates", 
      "options", 
      "specificity", 
      "study", 
      "sensitivity", 
      "improvement", 
      "values", 
      "method", 
      "reference", 
      "counterparts", 
      "consideration", 
      "society", 
      "accuracy", 
      "performance", 
      "applications", 
      "syntax"
    ], 
    "name": "Accuracy of computed tomography for selecting the revascularization method based on SYNTAX score II", 
    "pagination": "2151-2158", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099691986"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-5184-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29222675"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-5184-2", 
      "https://app.dimensions.ai/details/publication/pub.1099691986"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_737.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-017-5184-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5184-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5184-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5184-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5184-2'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      92 URIs      83 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-5184-2 schema:about N08d6fc0fae0c4ab9b6ae62aa505113b7
2 N1792fc007f8240e2a47555dbe05ce557
3 N1c94df6bd92a46c2b16c32d30e968807
4 N46886dcb3bc64efc8ac48182e888c9f1
5 N473076f83d3c4ff6bc0c808502d5d460
6 N5be93538c1e04384979ee6ec1d74acd1
7 N5f61e291fcf1409b934664ba855b300f
8 N62e0ef349c354d9497410bb84684bd54
9 N7e5a8a5b13194c55997a062c2791ab52
10 N80060dab4e394fe89fafa66e9b35f90e
11 N94a874c30c944d7189ef8b7301835dd8
12 Na12eda6e29154c139858f7242110580b
13 Na98cde05fd1f44c38808e133c0a36692
14 Nd7f8c4a74810425895ba7477741a835c
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author N78a226156a9b428fadaa87a4075315b6
18 schema:citation sg:pub.10.1007/s00330-013-2935-6
19 schema:datePublished 2017-12-08
20 schema:datePublishedReg 2017-12-08
21 schema:description ObjectivesThe application of SYNTAX score II based on coronary CT angiography (CCTA) for selecting further treatment options has not been studied. This study aimed to investigate the diagnostic performance of CCTA combined with SYNTAX score II for selecting the revascularization method compared with invasive coronary angiography (ICA) based on 2014 European Society of Cardiology (ESC)/European Association for Cardio-Thoracic Surgery (EACTS) guidelines.MethodsFrom January–May 2011, 160 patients who underwent both CCTA and ICA within 30 interval days were included. The diagnostic performance of CCTA, CCTA plus CT-SYNTAX score I and CT-SYNTAX score II was analysed using ICA counterparts as references.ResultsOverall sensitivity, specificity, positive predictive value, negative predictive value and accuracy of CCTA plus CT-SYNTAX I for selecting coronary artery bypass grafting (CABG) candidates using ICA plus ICA-SYNTAX I as reference, were 70.6 %, 95.8 %, 66.7 %, 96.5 % and 93.1 %, respectively. The diagnostic performance of CCTA plus CT-SYNTAX II showed improvement with values of 83.3 %, 97.3 %, 71.4 %, 98.6 % and 96.3 %, respectively, using ICA plus ICA-SYNTAX II as reference.ConclusionsCCTA combined with CT-SYNTAX score II is an accurate method for selecting CABG surgery candidates compared with ICA-SYNTAX score II.Key points• SYNTAX plus CCTA can be highly specific for selecting the revascularization method.• SYNTAX II was complemented by including clinical considerations to SYNTAX I.• CCTA plus CT-SYNTAX II is an accurate method for selecting CABG candidates.
22 schema:genre article
23 schema:isAccessibleForFree false
24 schema:isPartOf N6b8d69a8db8d4aa984953e5b555dbaec
25 N845ae4139ac64c06b4a3407d1527dd6c
26 sg:journal.1289120
27 schema:keywords CABG candidates
28 CT angiography
29 Cardio-Thoracic Surgery guidelines
30 European Society
31 ResultsOverall sensitivity
32 SYNTAX II
33 SYNTAX score II
34 Score II
35 Surgery guidelines
36 accuracy
37 accuracy of CCTA
38 accurate method
39 angiography
40 applications
41 artery bypass
42 association
43 bypass
44 candidates
45 cardiology
46 clinical considerations
47 computed tomography
48 consideration
49 coronary CT angiography
50 coronary angiography
51 coronary artery bypass
52 counterparts
53 days
54 diagnostic performance
55 further treatment options
56 guidelines
57 improvement
58 interval days
59 invasive coronary angiography
60 method
61 negative predictive value
62 options
63 patients
64 performance
65 positive predictive value
66 predictive value
67 reference
68 revascularization method
69 score I
70 sensitivity
71 society
72 specificity
73 study
74 surgery candidates
75 syntax
76 tomography
77 treatment options
78 values
79 schema:name Accuracy of computed tomography for selecting the revascularization method based on SYNTAX score II
80 schema:pagination 2151-2158
81 schema:productId N2b363d8ba7c34cbda360d061a17ccf00
82 N6f420be008624caf957e02ee6df1f193
83 Nf1807200eacc4cd0a93c281ea6b6c5a3
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099691986
85 https://doi.org/10.1007/s00330-017-5184-2
86 schema:sdDatePublished 2022-12-01T06:36
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N785d8e94c50d40ea9e5f1809fcab1ef1
89 schema:url https://doi.org/10.1007/s00330-017-5184-2
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N08d6fc0fae0c4ab9b6ae62aa505113b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Male
95 rdf:type schema:DefinedTerm
96 N157a82e196634c71b2b5d5f0f1c6c010 rdf:first sg:person.01101305576.04
97 rdf:rest rdf:nil
98 N1792fc007f8240e2a47555dbe05ce557 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Severity of Illness Index
100 rdf:type schema:DefinedTerm
101 N1a3880f5f8af4a8f9ab352d39ddfaa8b rdf:first sg:person.01160231265.97
102 rdf:rest Nb980e5347f244efd93e7742c51c88632
103 N1c94df6bd92a46c2b16c32d30e968807 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Myocardial Revascularization
105 rdf:type schema:DefinedTerm
106 N232759572a7d4782a539a640d6e432bf rdf:first sg:person.011475543172.00
107 rdf:rest N4a3b79d860004b2bb6688c0900cf138c
108 N2b363d8ba7c34cbda360d061a17ccf00 schema:name pubmed_id
109 schema:value 29222675
110 rdf:type schema:PropertyValue
111 N46886dcb3bc64efc8ac48182e888c9f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Reproducibility of Results
113 rdf:type schema:DefinedTerm
114 N473076f83d3c4ff6bc0c808502d5d460 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Female
116 rdf:type schema:DefinedTerm
117 N4a3b79d860004b2bb6688c0900cf138c rdf:first sg:person.0631275763.56
118 rdf:rest Ncd567c8c451f4a5e99a07a1cfa0ddacd
119 N5be93538c1e04384979ee6ec1d74acd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Coronary Vessels
121 rdf:type schema:DefinedTerm
122 N5f61e291fcf1409b934664ba855b300f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Humans
124 rdf:type schema:DefinedTerm
125 N62e0ef349c354d9497410bb84684bd54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Middle Aged
127 rdf:type schema:DefinedTerm
128 N6463d602779e463b9115269ec4957286 rdf:first sg:person.0724201617.22
129 rdf:rest N157a82e196634c71b2b5d5f0f1c6c010
130 N6b8d69a8db8d4aa984953e5b555dbaec schema:issueNumber 5
131 rdf:type schema:PublicationIssue
132 N6f420be008624caf957e02ee6df1f193 schema:name dimensions_id
133 schema:value pub.1099691986
134 rdf:type schema:PropertyValue
135 N785d8e94c50d40ea9e5f1809fcab1ef1 schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 N78a226156a9b428fadaa87a4075315b6 rdf:first sg:person.014151202447.27
138 rdf:rest N232759572a7d4782a539a640d6e432bf
139 N7e5a8a5b13194c55997a062c2791ab52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Predictive Value of Tests
141 rdf:type schema:DefinedTerm
142 N80060dab4e394fe89fafa66e9b35f90e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Computed Tomography Angiography
144 rdf:type schema:DefinedTerm
145 N845ae4139ac64c06b4a3407d1527dd6c schema:volumeNumber 28
146 rdf:type schema:PublicationVolume
147 N94a874c30c944d7189ef8b7301835dd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Retrospective Studies
149 rdf:type schema:DefinedTerm
150 Na12eda6e29154c139858f7242110580b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Aged
152 rdf:type schema:DefinedTerm
153 Na98cde05fd1f44c38808e133c0a36692 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Coronary Artery Disease
155 rdf:type schema:DefinedTerm
156 Nb980e5347f244efd93e7742c51c88632 rdf:first sg:person.01014245442.81
157 rdf:rest N6463d602779e463b9115269ec4957286
158 Ncd567c8c451f4a5e99a07a1cfa0ddacd rdf:first sg:person.01143557676.31
159 rdf:rest N1a3880f5f8af4a8f9ab352d39ddfaa8b
160 Nd7f8c4a74810425895ba7477741a835c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Coronary Angiography
162 rdf:type schema:DefinedTerm
163 Nf1807200eacc4cd0a93c281ea6b6c5a3 schema:name doi
164 schema:value 10.1007/s00330-017-5184-2
165 rdf:type schema:PropertyValue
166 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
167 schema:name Medical and Health Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
170 schema:name Cardiorespiratory Medicine and Haematology
171 rdf:type schema:DefinedTerm
172 sg:journal.1289120 schema:issn 0938-7994
173 1432-1084
174 schema:name European Radiology
175 schema:publisher Springer Nature
176 rdf:type schema:Periodical
177 sg:person.01014245442.81 schema:affiliation grid-institutes:grid.415562.1
178 schema:familyName Hong
179 schema:givenName Yoo Jin
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014245442.81
181 rdf:type schema:Person
182 sg:person.01101305576.04 schema:affiliation grid-institutes:grid.415562.1
183 schema:familyName Choi
184 schema:givenName Byoung Wook
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04
186 rdf:type schema:Person
187 sg:person.01143557676.31 schema:affiliation grid-institutes:grid.415562.1
188 schema:familyName Kim
189 schema:givenName Young Jin
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31
191 rdf:type schema:Person
192 sg:person.011475543172.00 schema:affiliation grid-institutes:grid.415562.1
193 schema:familyName Han
194 schema:givenName Kyunghwa
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475543172.00
196 rdf:type schema:Person
197 sg:person.01160231265.97 schema:affiliation grid-institutes:grid.415562.1
198 schema:familyName Lee
199 schema:givenName Hye-Jeong
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97
201 rdf:type schema:Person
202 sg:person.014151202447.27 schema:affiliation grid-institutes:grid.415562.1
203 schema:familyName Lee
204 schema:givenName Si Eun
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151202447.27
206 rdf:type schema:Person
207 sg:person.0631275763.56 schema:affiliation grid-institutes:grid.415562.1
208 schema:familyName Hur
209 schema:givenName Jin
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56
211 rdf:type schema:Person
212 sg:person.0724201617.22 schema:affiliation grid-institutes:grid.415562.1
213 schema:familyName Im
214 schema:givenName Dong Jin
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724201617.22
216 rdf:type schema:Person
217 sg:pub.10.1007/s00330-013-2935-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006656450
218 https://doi.org/10.1007/s00330-013-2935-6
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.415562.1 schema:alternateName Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea
221 schema:name Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...