Accuracy of computed tomography for selecting the revascularization method based on SYNTAX score II View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12-08

AUTHORS

Si Eun Lee, Kyunghwa Han, Jin Hur, Young Jin Kim, Hye-Jeong Lee, Yoo Jin Hong, Dong Jin Im, Byoung Wook Choi

ABSTRACT

ObjectivesThe application of SYNTAX score II based on coronary CT angiography (CCTA) for selecting further treatment options has not been studied. This study aimed to investigate the diagnostic performance of CCTA combined with SYNTAX score II for selecting the revascularization method compared with invasive coronary angiography (ICA) based on 2014 European Society of Cardiology (ESC)/European Association for Cardio-Thoracic Surgery (EACTS) guidelines.MethodsFrom January–May 2011, 160 patients who underwent both CCTA and ICA within 30 interval days were included. The diagnostic performance of CCTA, CCTA plus CT-SYNTAX score I and CT-SYNTAX score II was analysed using ICA counterparts as references.ResultsOverall sensitivity, specificity, positive predictive value, negative predictive value and accuracy of CCTA plus CT-SYNTAX I for selecting coronary artery bypass grafting (CABG) candidates using ICA plus ICA-SYNTAX I as reference, were 70.6 %, 95.8 %, 66.7 %, 96.5 % and 93.1 %, respectively. The diagnostic performance of CCTA plus CT-SYNTAX II showed improvement with values of 83.3 %, 97.3 %, 71.4 %, 98.6 % and 96.3 %, respectively, using ICA plus ICA-SYNTAX II as reference.ConclusionsCCTA combined with CT-SYNTAX score II is an accurate method for selecting CABG surgery candidates compared with ICA-SYNTAX score II.Key points• SYNTAX plus CCTA can be highly specific for selecting the revascularization method.• SYNTAX II was complemented by including clinical considerations to SYNTAX I.• CCTA plus CT-SYNTAX II is an accurate method for selecting CABG candidates. More... »

PAGES

2151-2158

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-5184-2

DOI

http://dx.doi.org/10.1007/s00330-017-5184-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099691986

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29222675


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computed Tomography Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Artery Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronary Vessels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Revascularization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Si Eun", 
        "id": "sg:person.014151202447.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151202447.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Kyunghwa", 
        "id": "sg:person.011475543172.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475543172.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hur", 
        "givenName": "Jin", 
        "id": "sg:person.0631275763.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young Jin", 
        "id": "sg:person.01143557676.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hye-Jeong", 
        "id": "sg:person.01160231265.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Yoo Jin", 
        "id": "sg:person.01014245442.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014245442.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Im", 
        "givenName": "Dong Jin", 
        "id": "sg:person.0724201617.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724201617.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.415562.1", 
          "name": [
            "Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Byoung Wook", 
        "id": "sg:person.01101305576.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-013-2935-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006656450", 
          "https://doi.org/10.1007/s00330-013-2935-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-08", 
    "datePublishedReg": "2017-12-08", 
    "description": "ObjectivesThe application of SYNTAX score II based on coronary CT angiography (CCTA) for selecting further treatment options has not been studied. This study aimed to investigate the diagnostic performance of CCTA combined with SYNTAX score II for selecting the revascularization method compared with invasive coronary angiography (ICA) based on 2014 European Society of Cardiology (ESC)/European Association for Cardio-Thoracic Surgery (EACTS) guidelines.MethodsFrom January\u2013May 2011, 160 patients who underwent both CCTA and ICA within 30 interval days were included. The diagnostic performance of CCTA, CCTA plus CT-SYNTAX score I and CT-SYNTAX score II was analysed using ICA counterparts as references.ResultsOverall sensitivity, specificity, positive predictive value, negative predictive value and accuracy of CCTA plus CT-SYNTAX I for selecting coronary artery bypass grafting (CABG) candidates using ICA plus ICA-SYNTAX I as reference, were 70.6 %, 95.8 %, 66.7 %, 96.5 % and 93.1 %, respectively. The diagnostic performance of CCTA plus CT-SYNTAX II showed improvement with values of 83.3 %, 97.3 %, 71.4 %, 98.6 % and 96.3 %, respectively, using ICA plus ICA-SYNTAX II as reference.ConclusionsCCTA combined with CT-SYNTAX score II is an accurate method for selecting CABG surgery candidates compared with ICA-SYNTAX score II.Key points\u2022 SYNTAX plus CCTA can be highly specific for selecting the revascularization method.\u2022 SYNTAX II was complemented by including clinical considerations to SYNTAX I.\u2022 CCTA plus CT-SYNTAX II is an accurate method for selecting CABG candidates.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-017-5184-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "invasive coronary angiography", 
      "coronary CT angiography", 
      "SYNTAX score II", 
      "Score II", 
      "revascularization method", 
      "diagnostic performance", 
      "predictive value", 
      "Cardio-Thoracic Surgery guidelines", 
      "coronary artery bypass", 
      "further treatment options", 
      "accuracy of CCTA", 
      "negative predictive value", 
      "positive predictive value", 
      "artery bypass", 
      "coronary angiography", 
      "Surgery guidelines", 
      "CABG candidates", 
      "treatment options", 
      "surgery candidates", 
      "CT angiography", 
      "computed tomography", 
      "ResultsOverall sensitivity", 
      "clinical considerations", 
      "score I", 
      "SYNTAX II", 
      "European Society", 
      "angiography", 
      "interval days", 
      "patients", 
      "bypass", 
      "accurate method", 
      "cardiology", 
      "tomography", 
      "association", 
      "days", 
      "guidelines", 
      "candidates", 
      "options", 
      "specificity", 
      "study", 
      "sensitivity", 
      "improvement", 
      "values", 
      "method", 
      "reference", 
      "counterparts", 
      "consideration", 
      "society", 
      "accuracy", 
      "performance", 
      "applications", 
      "syntax"
    ], 
    "name": "Accuracy of computed tomography for selecting the revascularization method based on SYNTAX score II", 
    "pagination": "2151-2158", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099691986"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-5184-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29222675"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-5184-2", 
      "https://app.dimensions.ai/details/publication/pub.1099691986"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_756.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-017-5184-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5184-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5184-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5184-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5184-2'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      92 URIs      83 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-5184-2 schema:about N04fad3b9a7694b0596b5f973643f0849
2 N0eb5277b9f6d47cea8d5e46304df2ac7
3 N16e3ec6b620141c0be994a7e7888c86e
4 N19c5861f056647e1b07edb31666cc9ee
5 N200afdc2c7d24dc0a2e60742b3eed4c0
6 N23e2a25cd5ae467798d8a13d8bee3b81
7 N3572ba456c8648f68f7570fc58e5cc8a
8 N42ea4ce293ec4559bb5057f6ae61580c
9 N8463db20de6e4e238df9e7a7041a3166
10 Nac6823ceb3a945e4b883fbfd33f5fe24
11 Nc73e7d2e820f40c895e77f337a98e46c
12 Ne482a68510594e05b3e9bc1fe0d6cb86
13 Nebf29ff3538845b18c17f24a17dbea2b
14 Nf7a283fed4574251a79a37856839a656
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author Nc58bb3ea1ea84f99b362cc8e8c9a6ab0
18 schema:citation sg:pub.10.1007/s00330-013-2935-6
19 schema:datePublished 2017-12-08
20 schema:datePublishedReg 2017-12-08
21 schema:description ObjectivesThe application of SYNTAX score II based on coronary CT angiography (CCTA) for selecting further treatment options has not been studied. This study aimed to investigate the diagnostic performance of CCTA combined with SYNTAX score II for selecting the revascularization method compared with invasive coronary angiography (ICA) based on 2014 European Society of Cardiology (ESC)/European Association for Cardio-Thoracic Surgery (EACTS) guidelines.MethodsFrom January–May 2011, 160 patients who underwent both CCTA and ICA within 30 interval days were included. The diagnostic performance of CCTA, CCTA plus CT-SYNTAX score I and CT-SYNTAX score II was analysed using ICA counterparts as references.ResultsOverall sensitivity, specificity, positive predictive value, negative predictive value and accuracy of CCTA plus CT-SYNTAX I for selecting coronary artery bypass grafting (CABG) candidates using ICA plus ICA-SYNTAX I as reference, were 70.6 %, 95.8 %, 66.7 %, 96.5 % and 93.1 %, respectively. The diagnostic performance of CCTA plus CT-SYNTAX II showed improvement with values of 83.3 %, 97.3 %, 71.4 %, 98.6 % and 96.3 %, respectively, using ICA plus ICA-SYNTAX II as reference.ConclusionsCCTA combined with CT-SYNTAX score II is an accurate method for selecting CABG surgery candidates compared with ICA-SYNTAX score II.Key points• SYNTAX plus CCTA can be highly specific for selecting the revascularization method.• SYNTAX II was complemented by including clinical considerations to SYNTAX I.• CCTA plus CT-SYNTAX II is an accurate method for selecting CABG candidates.
22 schema:genre article
23 schema:isAccessibleForFree false
24 schema:isPartOf N516a49e1b6c742f4b3e015afc45664cf
25 Nbe9b9e0bb12640b5813e48183938eee1
26 sg:journal.1289120
27 schema:keywords CABG candidates
28 CT angiography
29 Cardio-Thoracic Surgery guidelines
30 European Society
31 ResultsOverall sensitivity
32 SYNTAX II
33 SYNTAX score II
34 Score II
35 Surgery guidelines
36 accuracy
37 accuracy of CCTA
38 accurate method
39 angiography
40 applications
41 artery bypass
42 association
43 bypass
44 candidates
45 cardiology
46 clinical considerations
47 computed tomography
48 consideration
49 coronary CT angiography
50 coronary angiography
51 coronary artery bypass
52 counterparts
53 days
54 diagnostic performance
55 further treatment options
56 guidelines
57 improvement
58 interval days
59 invasive coronary angiography
60 method
61 negative predictive value
62 options
63 patients
64 performance
65 positive predictive value
66 predictive value
67 reference
68 revascularization method
69 score I
70 sensitivity
71 society
72 specificity
73 study
74 surgery candidates
75 syntax
76 tomography
77 treatment options
78 values
79 schema:name Accuracy of computed tomography for selecting the revascularization method based on SYNTAX score II
80 schema:pagination 2151-2158
81 schema:productId N265d63e4f6f3405392df7ddc8e989948
82 Nbb3f61572a654b2f981226de019d3df0
83 Nca1b0ff71baa437a8c98a1ccdb71c2cf
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099691986
85 https://doi.org/10.1007/s00330-017-5184-2
86 schema:sdDatePublished 2022-10-01T06:44
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Nd1df052e1a0948c389170ace6c48b35c
89 schema:url https://doi.org/10.1007/s00330-017-5184-2
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N04fad3b9a7694b0596b5f973643f0849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Severity of Illness Index
95 rdf:type schema:DefinedTerm
96 N0eb5277b9f6d47cea8d5e46304df2ac7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Aged
98 rdf:type schema:DefinedTerm
99 N16e3ec6b620141c0be994a7e7888c86e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Myocardial Revascularization
101 rdf:type schema:DefinedTerm
102 N19c5861f056647e1b07edb31666cc9ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Computed Tomography Angiography
104 rdf:type schema:DefinedTerm
105 N200afdc2c7d24dc0a2e60742b3eed4c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Predictive Value of Tests
107 rdf:type schema:DefinedTerm
108 N23e2a25cd5ae467798d8a13d8bee3b81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Reproducibility of Results
110 rdf:type schema:DefinedTerm
111 N265d63e4f6f3405392df7ddc8e989948 schema:name pubmed_id
112 schema:value 29222675
113 rdf:type schema:PropertyValue
114 N3572ba456c8648f68f7570fc58e5cc8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Male
116 rdf:type schema:DefinedTerm
117 N35de323c172c456e996b14db1ae6ed2c rdf:first sg:person.01160231265.97
118 rdf:rest Nfe2aca97988847bcbf281b58c078838c
119 N42ea4ce293ec4559bb5057f6ae61580c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Coronary Artery Disease
121 rdf:type schema:DefinedTerm
122 N4c7285973f4347488142a52f7d7a3b56 rdf:first sg:person.011475543172.00
123 rdf:rest N8ebfd7f41790465fae8fa6c43dc5e659
124 N516a49e1b6c742f4b3e015afc45664cf schema:issueNumber 5
125 rdf:type schema:PublicationIssue
126 N5d54be09856649b784a7c9decc8d8472 rdf:first sg:person.01101305576.04
127 rdf:rest rdf:nil
128 N8463db20de6e4e238df9e7a7041a3166 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Female
130 rdf:type schema:DefinedTerm
131 N852c867c814748c6b7c1d5cea4cd0029 rdf:first sg:person.0724201617.22
132 rdf:rest N5d54be09856649b784a7c9decc8d8472
133 N8ebfd7f41790465fae8fa6c43dc5e659 rdf:first sg:person.0631275763.56
134 rdf:rest Nf0817327dea8497696ad69648e311199
135 Nac6823ceb3a945e4b883fbfd33f5fe24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Coronary Vessels
137 rdf:type schema:DefinedTerm
138 Nbb3f61572a654b2f981226de019d3df0 schema:name dimensions_id
139 schema:value pub.1099691986
140 rdf:type schema:PropertyValue
141 Nbe9b9e0bb12640b5813e48183938eee1 schema:volumeNumber 28
142 rdf:type schema:PublicationVolume
143 Nc58bb3ea1ea84f99b362cc8e8c9a6ab0 rdf:first sg:person.014151202447.27
144 rdf:rest N4c7285973f4347488142a52f7d7a3b56
145 Nc73e7d2e820f40c895e77f337a98e46c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Coronary Angiography
147 rdf:type schema:DefinedTerm
148 Nca1b0ff71baa437a8c98a1ccdb71c2cf schema:name doi
149 schema:value 10.1007/s00330-017-5184-2
150 rdf:type schema:PropertyValue
151 Nd1df052e1a0948c389170ace6c48b35c schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 Ne482a68510594e05b3e9bc1fe0d6cb86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Humans
155 rdf:type schema:DefinedTerm
156 Nebf29ff3538845b18c17f24a17dbea2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Middle Aged
158 rdf:type schema:DefinedTerm
159 Nf0817327dea8497696ad69648e311199 rdf:first sg:person.01143557676.31
160 rdf:rest N35de323c172c456e996b14db1ae6ed2c
161 Nf7a283fed4574251a79a37856839a656 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Retrospective Studies
163 rdf:type schema:DefinedTerm
164 Nfe2aca97988847bcbf281b58c078838c rdf:first sg:person.01014245442.81
165 rdf:rest N852c867c814748c6b7c1d5cea4cd0029
166 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
167 schema:name Medical and Health Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
170 schema:name Cardiorespiratory Medicine and Haematology
171 rdf:type schema:DefinedTerm
172 sg:journal.1289120 schema:issn 0938-7994
173 1432-1084
174 schema:name European Radiology
175 schema:publisher Springer Nature
176 rdf:type schema:Periodical
177 sg:person.01014245442.81 schema:affiliation grid-institutes:grid.415562.1
178 schema:familyName Hong
179 schema:givenName Yoo Jin
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014245442.81
181 rdf:type schema:Person
182 sg:person.01101305576.04 schema:affiliation grid-institutes:grid.415562.1
183 schema:familyName Choi
184 schema:givenName Byoung Wook
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04
186 rdf:type schema:Person
187 sg:person.01143557676.31 schema:affiliation grid-institutes:grid.415562.1
188 schema:familyName Kim
189 schema:givenName Young Jin
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31
191 rdf:type schema:Person
192 sg:person.011475543172.00 schema:affiliation grid-institutes:grid.415562.1
193 schema:familyName Han
194 schema:givenName Kyunghwa
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475543172.00
196 rdf:type schema:Person
197 sg:person.01160231265.97 schema:affiliation grid-institutes:grid.415562.1
198 schema:familyName Lee
199 schema:givenName Hye-Jeong
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97
201 rdf:type schema:Person
202 sg:person.014151202447.27 schema:affiliation grid-institutes:grid.415562.1
203 schema:familyName Lee
204 schema:givenName Si Eun
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151202447.27
206 rdf:type schema:Person
207 sg:person.0631275763.56 schema:affiliation grid-institutes:grid.415562.1
208 schema:familyName Hur
209 schema:givenName Jin
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56
211 rdf:type schema:Person
212 sg:person.0724201617.22 schema:affiliation grid-institutes:grid.415562.1
213 schema:familyName Im
214 schema:givenName Dong Jin
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724201617.22
216 rdf:type schema:Person
217 sg:pub.10.1007/s00330-013-2935-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006656450
218 https://doi.org/10.1007/s00330-013-2935-6
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.415562.1 schema:alternateName Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea
221 schema:name Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University, College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...