Non-invasive measurement of liver iron concentration using 3-Tesla magnetic resonance imaging: validation against biopsy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11-24

AUTHORS

Gaspard d’Assignies, Anita Paisant, Edouard Bardou-Jacquet, Anne Boulic, Elise Bannier, Fabrice Lainé, Martine Ropert, Jeff Morcet, Hervé Saint-Jalmes, Yves Gandon

ABSTRACT

ObjectivesTo evaluate the performance and limitations of the R2* and signal intensity ratio (SIR) methods for quantifying liver iron concentration (LIC) at 3 T.MethodsA total of 105 patients who underwent a liver biopsy with biochemical LIC (LICb) were included prospectively. All patients underwent a 3-T MRI scan with a breath-hold multiple-echo gradient-echo sequence (mGRE). LIC calculated by 3-T SIR algorithm (LICSIR) and by R2* (LICR2*) were correlated with LICb. Sensitivity and specificity were calculated. The comparison of methods was analysed for successive classes.ResultsLICb was strongly correlated with R2* (r = 0.95, p < 0.001) and LICSIR (r = 0.92, p < 0.001). In comparison to LICb, LICR2* and LICSIR detect liver iron overload with a sensitivity/specificity of 0.96/0.93 and 0.92/0.95, respectively, and a bias ± SD of 7.6 ± 73.4 and 14.8 ± 37.6 μmol/g, respectively. LICR2* presented the lowest differences for patients with LICb values under 130 μmol/g. Above this value, LICSIR has the lowest differences.ConclusionsAt 3 T, R2* provides precise LIC quantification for lower overload but the SIR method is recommended to overcome R2* limitations in higher overload. Our software, available at www.mrquantif.org, uses both methods jointly and selects the best one.Key points• Liver iron can be accurately quantified by MRI at 3 T• At 3 T, R2* provides precise quantification of slight liver iron overload• At 3 T, SIR method is recommended in case of high iron overload• Slight liver iron overload present in metabolic syndrome can be depicted• Treatment can be monitored with great confidence More... »

PAGES

2022-2030

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-5106-3

DOI

http://dx.doi.org/10.1007/s00330-017-5106-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092988889

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29178028


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron Overload", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "d\u2019Assignies", 
        "givenName": "Gaspard", 
        "id": "sg:person.0673552165.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673552165.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical investigation centre, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "Clinical investigation centre, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paisant", 
        "givenName": "Anita", 
        "id": "sg:person.011726357455.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726357455.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM UMR991, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "Clinical investigation centre, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "Department of Hepatology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "INSERM UMR991, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bardou-Jacquet", 
        "givenName": "Edouard", 
        "id": "sg:person.01264364006.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264364006.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boulic", 
        "givenName": "Anne", 
        "id": "sg:person.01356710473.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356710473.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VisAGeS U746 Unit/Project, INSERM/INRIA, IRISA, UMR CNRS 6074, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "VisAGeS U746 Unit/Project, INSERM/INRIA, IRISA, UMR CNRS 6074, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bannier", 
        "givenName": "Elise", 
        "id": "sg:person.0732662415.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732662415.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "Clinical investigation centre, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "Department of Hepatology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lain\u00e9", 
        "givenName": "Fabrice", 
        "id": "sg:person.01205113376.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205113376.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "INSERM UMR991, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "Department of Biochemistry, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ropert", 
        "givenName": "Martine", 
        "id": "sg:person.0771434706.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771434706.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical investigation centre, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "Clinical investigation centre, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morcet", 
        "givenName": "Jeff", 
        "id": "sg:person.01206755267.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206755267.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CRLCC, Centre Eug\u00e8ne Marquis, F-35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.417988.b", 
          "name": [
            "LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France", 
            "CRLCC, Centre Eug\u00e8ne Marquis, F-35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saint-Jalmes", 
        "givenName": "Herv\u00e9", 
        "id": "sg:person.01313601140.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313601140.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France", 
            "LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandon", 
        "givenName": "Yves", 
        "id": "sg:person.01034246047.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034246047.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00261-017-1077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083855034", 
          "https://doi.org/10.1007/s00261-017-1077-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-16-40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021796480", 
          "https://doi.org/10.1186/1532-429x-16-40"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-24", 
    "datePublishedReg": "2017-11-24", 
    "description": "ObjectivesTo evaluate the performance and limitations of the R2* and signal intensity ratio (SIR) methods for quantifying liver iron concentration (LIC) at 3 T.MethodsA total of 105 patients who underwent a liver biopsy with biochemical LIC (LICb) were included prospectively. All patients underwent a 3-T MRI scan with a breath-hold multiple-echo gradient-echo sequence (mGRE). LIC calculated by 3-T SIR algorithm (LICSIR) and by R2* (LICR2*) were correlated with LICb. Sensitivity and specificity were calculated. The comparison of methods was analysed for successive classes.ResultsLICb was strongly correlated with R2* (r = 0.95, p < 0.001) and LICSIR (r = 0.92, p < 0.001). In comparison to LICb, LICR2* and LICSIR detect liver iron overload with a sensitivity/specificity of 0.96/0.93 and 0.92/0.95, respectively, and a bias \u00b1 SD of 7.6 \u00b1 73.4 and 14.8 \u00b1 37.6 \u03bcmol/g, respectively. LICR2* presented the lowest differences for patients with LICb values under 130 \u03bcmol/g. Above this value, LICSIR has the lowest differences.ConclusionsAt 3 T, R2* provides precise LIC quantification for lower overload but the SIR method is recommended to overcome R2* limitations in higher overload. Our software, available at www.mrquantif.org, uses both methods jointly and selects the best one.Key points\u2022 Liver iron can be accurately quantified by MRI at 3 T\u2022 At 3 T, R2* provides precise quantification of slight liver iron overload\u2022 At 3 T, SIR method is recommended in case of high iron overload\u2022 Slight liver iron overload present in metabolic syndrome can be depicted\u2022 Treatment can be monitored with great confidence", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-017-5106-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "liver iron concentration", 
      "liver iron overload", 
      "iron overload", 
      "liver iron", 
      "liver biopsy", 
      "sensitivity/specificity", 
      "metabolic syndrome", 
      "non-invasive measurement", 
      "magnetic resonance imaging", 
      "patients", 
      "biopsy", 
      "MRI", 
      "gradient-echo sequence", 
      "resonance imaging", 
      "ObjectivesTo", 
      "iron concentration", 
      "overload", 
      "syndrome", 
      "concentration", 
      "total", 
      "specificity", 
      "LICR2", 
      "SD", 
      "low differences", 
      "differences", 
      "treatment", 
      "imaging", 
      "limitations", 
      "sensitivity", 
      "comparison of methods", 
      "comparison", 
      "quantification", 
      "low overload", 
      "www", 
      "precise quantification", 
      "cases", 
      "R2", 
      "method", 
      "licB", 
      "successive classes", 
      "bias", 
      "values", 
      "iron", 
      "high iron", 
      "validation", 
      "ratio method", 
      "sequence", 
      "class", 
      "SIR method", 
      "high overload", 
      "measurements", 
      "performance", 
      "software", 
      "intensity ratio method", 
      "SIR algorithm", 
      "algorithm", 
      "quantifying liver iron concentration", 
      "biochemical LIC", 
      "breath-hold multiple-echo gradient-echo sequence", 
      "multiple-echo gradient-echo sequence", 
      "ResultsLICb", 
      "LICSIR", 
      "LICb values", 
      "ConclusionsAt 3 T", 
      "precise LIC quantification", 
      "LIC quantification", 
      "slight liver iron", 
      "Slight liver iron overload", 
      "great confidence Non-invasive measurement", 
      "confidence Non-invasive measurement"
    ], 
    "name": "Non-invasive measurement of liver iron concentration using 3-Tesla magnetic resonance imaging: validation against biopsy", 
    "pagination": "2022-2030", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092988889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-5106-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29178028"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-5106-3", 
      "https://app.dimensions.ai/details/publication/pub.1092988889"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_729.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-017-5106-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5106-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5106-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5106-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-5106-3'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      22 PREDICATES      110 URIs      100 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-5106-3 schema:about N062967f1139f49f2bfaf1fb2309b8740
2 N1137a7d3c46d4513b2e5ed6d031bcdea
3 N2d141c0be4864285bd18dcfb00c7e22a
4 N2d3de6d7af0845bfb4d656bd96c8323d
5 N39585c7e43f046fba412febf4ceb3acd
6 N45d4ccdc0ec34131b89a3b23b6950a6a
7 N6f5daf7b65464d2b99e0fdd7cfb9302d
8 N70c454477b8e4eb4beadf7af11c84d51
9 Nb50b9025ac5c449f8e07929c89db4cbb
10 Nc6b2b69a04bb40fcbc69b81ab751d23a
11 Nd3af452056bd4736bc6172959366eae5
12 Ne6eb98bb0b144a2b94e098b42e567e6d
13 anzsrc-for:11
14 anzsrc-for:1103
15 schema:author N080df66a72f344a083c3888dec70ecd7
16 schema:citation sg:pub.10.1007/s00261-017-1077-8
17 sg:pub.10.1186/1532-429x-16-40
18 schema:datePublished 2017-11-24
19 schema:datePublishedReg 2017-11-24
20 schema:description ObjectivesTo evaluate the performance and limitations of the R2* and signal intensity ratio (SIR) methods for quantifying liver iron concentration (LIC) at 3 T.MethodsA total of 105 patients who underwent a liver biopsy with biochemical LIC (LICb) were included prospectively. All patients underwent a 3-T MRI scan with a breath-hold multiple-echo gradient-echo sequence (mGRE). LIC calculated by 3-T SIR algorithm (LICSIR) and by R2* (LICR2*) were correlated with LICb. Sensitivity and specificity were calculated. The comparison of methods was analysed for successive classes.ResultsLICb was strongly correlated with R2* (r = 0.95, p < 0.001) and LICSIR (r = 0.92, p < 0.001). In comparison to LICb, LICR2* and LICSIR detect liver iron overload with a sensitivity/specificity of 0.96/0.93 and 0.92/0.95, respectively, and a bias ± SD of 7.6 ± 73.4 and 14.8 ± 37.6 μmol/g, respectively. LICR2* presented the lowest differences for patients with LICb values under 130 μmol/g. Above this value, LICSIR has the lowest differences.ConclusionsAt 3 T, R2* provides precise LIC quantification for lower overload but the SIR method is recommended to overcome R2* limitations in higher overload. Our software, available at www.mrquantif.org, uses both methods jointly and selects the best one.Key points• Liver iron can be accurately quantified by MRI at 3 T• At 3 T, R2* provides precise quantification of slight liver iron overload• At 3 T, SIR method is recommended in case of high iron overload• Slight liver iron overload present in metabolic syndrome can be depicted• Treatment can be monitored with great confidence
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N3e40ab00fd7c489cab08e9405e7c3f23
25 N872515075d5d45a8a4f48ed689d20d99
26 sg:journal.1289120
27 schema:keywords ConclusionsAt 3 T
28 LIC quantification
29 LICR2
30 LICSIR
31 LICb values
32 MRI
33 ObjectivesTo
34 R2
35 ResultsLICb
36 SD
37 SIR algorithm
38 SIR method
39 Slight liver iron overload
40 algorithm
41 bias
42 biochemical LIC
43 biopsy
44 breath-hold multiple-echo gradient-echo sequence
45 cases
46 class
47 comparison
48 comparison of methods
49 concentration
50 confidence Non-invasive measurement
51 differences
52 gradient-echo sequence
53 great confidence Non-invasive measurement
54 high iron
55 high overload
56 imaging
57 intensity ratio method
58 iron
59 iron concentration
60 iron overload
61 licB
62 limitations
63 liver biopsy
64 liver iron
65 liver iron concentration
66 liver iron overload
67 low differences
68 low overload
69 magnetic resonance imaging
70 measurements
71 metabolic syndrome
72 method
73 multiple-echo gradient-echo sequence
74 non-invasive measurement
75 overload
76 patients
77 performance
78 precise LIC quantification
79 precise quantification
80 quantification
81 quantifying liver iron concentration
82 ratio method
83 resonance imaging
84 sensitivity
85 sensitivity/specificity
86 sequence
87 slight liver iron
88 software
89 specificity
90 successive classes
91 syndrome
92 total
93 treatment
94 validation
95 values
96 www
97 schema:name Non-invasive measurement of liver iron concentration using 3-Tesla magnetic resonance imaging: validation against biopsy
98 schema:pagination 2022-2030
99 schema:productId N7292433edfb84539aaaa2438ca75b57e
100 Nca6a9a66d6dd4a8db33f71d3312ad08a
101 Neab2e2cc06a04a9983dc231585527cca
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092988889
103 https://doi.org/10.1007/s00330-017-5106-3
104 schema:sdDatePublished 2021-12-01T19:39
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N6373e634906a406dabc41f655dcf723f
107 schema:url https://doi.org/10.1007/s00330-017-5106-3
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N062967f1139f49f2bfaf1fb2309b8740 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Prospective Studies
113 rdf:type schema:DefinedTerm
114 N080df66a72f344a083c3888dec70ecd7 rdf:first sg:person.0673552165.51
115 rdf:rest N58d0c7342b1c4331beb8269669e64c12
116 N0e3d93f488d3469b8c30794f77ee11ef rdf:first sg:person.01356710473.59
117 rdf:rest N2a575e94fc994433bc3b9f1aec35e441
118 N1137a7d3c46d4513b2e5ed6d031bcdea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Algorithms
120 rdf:type schema:DefinedTerm
121 N2867566437834d9ba581dcefc804b9f7 rdf:first sg:person.01313601140.96
122 rdf:rest Naa07f2836b2c4077aff384a78314ce8b
123 N2a575e94fc994433bc3b9f1aec35e441 rdf:first sg:person.0732662415.32
124 rdf:rest Naf8195c0254446d8bf03ae089267bfb7
125 N2d141c0be4864285bd18dcfb00c7e22a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Liver
127 rdf:type schema:DefinedTerm
128 N2d3de6d7af0845bfb4d656bd96c8323d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Iron Overload
130 rdf:type schema:DefinedTerm
131 N39585c7e43f046fba412febf4ceb3acd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Female
133 rdf:type schema:DefinedTerm
134 N3e40ab00fd7c489cab08e9405e7c3f23 schema:issueNumber 5
135 rdf:type schema:PublicationIssue
136 N45d4ccdc0ec34131b89a3b23b6950a6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Reproducibility of Results
138 rdf:type schema:DefinedTerm
139 N58d0c7342b1c4331beb8269669e64c12 rdf:first sg:person.011726357455.77
140 rdf:rest Nef53185189af403b81f77e826938b197
141 N6373e634906a406dabc41f655dcf723f schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 N6f5daf7b65464d2b99e0fdd7cfb9302d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Male
145 rdf:type schema:DefinedTerm
146 N70c454477b8e4eb4beadf7af11c84d51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Magnetic Resonance Imaging
148 rdf:type schema:DefinedTerm
149 N7292433edfb84539aaaa2438ca75b57e schema:name doi
150 schema:value 10.1007/s00330-017-5106-3
151 rdf:type schema:PropertyValue
152 N872515075d5d45a8a4f48ed689d20d99 schema:volumeNumber 28
153 rdf:type schema:PublicationVolume
154 Naa07f2836b2c4077aff384a78314ce8b rdf:first sg:person.01034246047.41
155 rdf:rest rdf:nil
156 Naf8195c0254446d8bf03ae089267bfb7 rdf:first sg:person.01205113376.22
157 rdf:rest Nb937acf8c16c4bac80beb12ed4a0a6b1
158 Nb50b9025ac5c449f8e07929c89db4cbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Middle Aged
160 rdf:type schema:DefinedTerm
161 Nb937acf8c16c4bac80beb12ed4a0a6b1 rdf:first sg:person.0771434706.05
162 rdf:rest Nd488480dad7645d2945e68612e6317b1
163 Nc6b2b69a04bb40fcbc69b81ab751d23a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Biopsy
165 rdf:type schema:DefinedTerm
166 Nca6a9a66d6dd4a8db33f71d3312ad08a schema:name pubmed_id
167 schema:value 29178028
168 rdf:type schema:PropertyValue
169 Nd3af452056bd4736bc6172959366eae5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Sensitivity and Specificity
171 rdf:type schema:DefinedTerm
172 Nd488480dad7645d2945e68612e6317b1 rdf:first sg:person.01206755267.95
173 rdf:rest N2867566437834d9ba581dcefc804b9f7
174 Ne6eb98bb0b144a2b94e098b42e567e6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Humans
176 rdf:type schema:DefinedTerm
177 Neab2e2cc06a04a9983dc231585527cca schema:name dimensions_id
178 schema:value pub.1092988889
179 rdf:type schema:PropertyValue
180 Nef53185189af403b81f77e826938b197 rdf:first sg:person.01264364006.16
181 rdf:rest N0e3d93f488d3469b8c30794f77ee11ef
182 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
183 schema:name Medical and Health Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
186 schema:name Clinical Sciences
187 rdf:type schema:DefinedTerm
188 sg:journal.1289120 schema:issn 0938-7994
189 1432-1084
190 schema:name European Radiology
191 schema:publisher Springer Nature
192 rdf:type schema:Periodical
193 sg:person.01034246047.41 schema:affiliation grid-institutes:grid.463996.7
194 schema:familyName Gandon
195 schema:givenName Yves
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034246047.41
197 rdf:type schema:Person
198 sg:person.011726357455.77 schema:affiliation grid-institutes:grid.411154.4
199 schema:familyName Paisant
200 schema:givenName Anita
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726357455.77
202 rdf:type schema:Person
203 sg:person.01205113376.22 schema:affiliation grid-institutes:grid.411154.4
204 schema:familyName Lainé
205 schema:givenName Fabrice
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205113376.22
207 rdf:type schema:Person
208 sg:person.01206755267.95 schema:affiliation grid-institutes:grid.411154.4
209 schema:familyName Morcet
210 schema:givenName Jeff
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206755267.95
212 rdf:type schema:Person
213 sg:person.01264364006.16 schema:affiliation grid-institutes:grid.411154.4
214 schema:familyName Bardou-Jacquet
215 schema:givenName Edouard
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264364006.16
217 rdf:type schema:Person
218 sg:person.01313601140.96 schema:affiliation grid-institutes:grid.417988.b
219 schema:familyName Saint-Jalmes
220 schema:givenName Hervé
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313601140.96
222 rdf:type schema:Person
223 sg:person.01356710473.59 schema:affiliation grid-institutes:grid.411154.4
224 schema:familyName Boulic
225 schema:givenName Anne
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356710473.59
227 rdf:type schema:Person
228 sg:person.0673552165.51 schema:affiliation grid-institutes:grid.463996.7
229 schema:familyName d’Assignies
230 schema:givenName Gaspard
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673552165.51
232 rdf:type schema:Person
233 sg:person.0732662415.32 schema:affiliation grid-institutes:grid.420225.3
234 schema:familyName Bannier
235 schema:givenName Elise
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732662415.32
237 rdf:type schema:Person
238 sg:person.0771434706.05 schema:affiliation grid-institutes:grid.411154.4
239 schema:familyName Ropert
240 schema:givenName Martine
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771434706.05
242 rdf:type schema:Person
243 sg:pub.10.1007/s00261-017-1077-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083855034
244 https://doi.org/10.1007/s00261-017-1077-8
245 rdf:type schema:CreativeWork
246 sg:pub.10.1186/1532-429x-16-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021796480
247 https://doi.org/10.1186/1532-429x-16-40
248 rdf:type schema:CreativeWork
249 grid-institutes:grid.411154.4 schema:alternateName Clinical investigation centre, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France
250 Department of Biochemistry, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
251 Department of Hepatology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
252 Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
253 INSERM UMR991, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
254 schema:name Clinical investigation centre, Rennes University Hospital, CIC INSERM 1414, 2 rue H. Le Guilloux, 35033, Rennes, France
255 Department of Biochemistry, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
256 Department of Hepatology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
257 Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
258 INSERM UMR991, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
259 rdf:type schema:Organization
260 grid-institutes:grid.417988.b schema:alternateName CRLCC, Centre Eugène Marquis, F-35000, Rennes, France
261 schema:name CRLCC, Centre Eugène Marquis, F-35000, Rennes, France
262 LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
263 rdf:type schema:Organization
264 grid-institutes:grid.420225.3 schema:alternateName VisAGeS U746 Unit/Project, INSERM/INRIA, IRISA, UMR CNRS 6074, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
265 schema:name Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
266 VisAGeS U746 Unit/Project, INSERM/INRIA, IRISA, UMR CNRS 6074, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
267 rdf:type schema:Organization
268 grid-institutes:grid.463996.7 schema:alternateName LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
269 schema:name Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
270 LTSI, INSERM U1099, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...