CT Perfusion evaluation of gastric cancer: correlation with histologic type View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

Dong Ho Lee, Se Hyung Kim, Ijin Joo, Joon Koo Han

ABSTRACT

OBJECTIVES: To prospectively evaluate if the perfusion parameters of gastric cancer can provide information on histologic subtypes of gastric cancer. METHODS: We performed preoperative perfusion CT (PCT) and curative gastrectomy in 46 patients. PCT data were analysed using a dedicated software program. Perfusion parameters were obtained by two independent radiologists and were compared according to histologic type using Kruskal-Wallis, Mann-Whitney U test and receiver operating characteristic analysis. To assess inter-reader agreement, we used intraclass correlation coefficient (ICC). RESULTS: Inter-reader agreement for perfusion parameters was moderate to substantial (ICC = 0.585-0.678). Permeability surface value of poorly cohesive carcinoma (PCC) was significantly higher than other histologic types (47.3 ml/100 g/min in PCC vs 26.5 ml/100 g/min in non-PCC, P < 0.001). Mean transit time (MTT) of PCC was also significantly longer than non-PCC (13.0 s in PCC vs 10.3 s in non-PCC, P = 0.032). The area under the curve to predict PCC was 0.891 (P < 0.001) for permeability surface and 0.697 (P = 0.015) for MTT. CONCLUSION: Obtaining perfusion parameters from PCT was feasible in gastric cancer patients and can aid in the preoperative imaging diagnosis of PCC-type gastric cancer as the permeability surface and MTT value of PCC type gastric cancer were significantly higher than those of non-PCC. KEY POINTS: • Obtaining perfusion parameters from PCT was feasible in patients with gastric cancer. • Permeability surface and MTT were significantly higher in poorly cohesive carcinoma (PCC). • Permeability surface, MTT can aid in the preoperative imaging diagnosis of PCC. More... »

PAGES

487-495

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-4979-5

DOI

http://dx.doi.org/10.1007/s00330-017-4979-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091051353

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28779403


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stomach Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Ho", 
        "id": "sg:person.0662301041.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662301041.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Se Hyung", 
        "id": "sg:person.016434366660.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joo", 
        "givenName": "Ijin", 
        "id": "sg:person.01301443145.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.2423060279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009610101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-009-9503-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013726946", 
          "https://doi.org/10.1007/s00261-009-9503-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-009-9503-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013726946", 
          "https://doi.org/10.1007/s00261-009-9503-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.gassur.2004.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014193560", 
          "https://doi.org/10.1016/j.gassur.2004.12.002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b21c7b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014485961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b21c7b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014485961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b21c7b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014485961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1445-1433.2004.03268.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015586101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14130091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017238519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2008.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017986967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-0996-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018003261", 
          "https://doi.org/10.1007/s00330-008-0996-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10120-013-0234-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018626061", 
          "https://doi.org/10.1007/s10120-013-0234-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2331031535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019838493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3600-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022512529", 
          "https://doi.org/10.1007/s00330-015-3600-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000194088.81126.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026202620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000194088.81126.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026202620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000194088.81126.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026202620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3348/kjr.2008.9.2.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027246995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2014.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027714571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.210.1.r99ja46269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029576065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000334545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030617391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-4105-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035169569", 
          "https://doi.org/10.1007/s00330-015-4105-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-7404(94)90037-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038277751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.254082000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041241440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-010-9609-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043705069", 
          "https://doi.org/10.1007/s00261-010-9609-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(10)61121-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044182432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000288703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046410580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(19810215)47:4<780::aid-cncr2820470424>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047956279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/canjclin.55.2.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048020321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/12913493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064567919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr/13564625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064567963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v19.i3.321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071369540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v20.i19.5679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071370763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076856748", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078423782", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.2078-6891.2012.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078616375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.2078-6891.2012.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078616375"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "OBJECTIVES: To prospectively evaluate if the perfusion parameters of gastric cancer can provide information on histologic subtypes of gastric cancer.\nMETHODS: We performed preoperative perfusion CT (PCT) and curative gastrectomy in 46 patients. PCT data were analysed using a dedicated software program. Perfusion parameters were obtained by two independent radiologists and were compared according to histologic type using Kruskal-Wallis, Mann-Whitney U test and receiver operating characteristic analysis. To assess inter-reader agreement, we used intraclass correlation coefficient (ICC).\nRESULTS: Inter-reader agreement for perfusion parameters was moderate to substantial (ICC\u2009=\u20090.585-0.678). Permeability surface value of poorly cohesive carcinoma (PCC) was significantly higher than other histologic types (47.3\u00a0ml/100\u00a0g/min in PCC vs 26.5\u00a0ml/100\u00a0g/min in non-PCC, P\u2009<\u20090.001). Mean transit time (MTT) of PCC was also significantly longer than non-PCC (13.0\u00a0s in PCC vs 10.3\u00a0s in non-PCC, P\u2009=\u20090.032). The area under the curve to predict PCC was 0.891 (P\u2009<\u20090.001) for permeability surface and 0.697 (P\u2009=\u20090.015) for MTT.\nCONCLUSION: Obtaining perfusion parameters from PCT was feasible in gastric cancer patients and can aid in the preoperative imaging diagnosis of PCC-type gastric cancer as the permeability surface and MTT value of PCC type gastric cancer were significantly higher than those of non-PCC.\nKEY POINTS: \u2022 Obtaining perfusion parameters from PCT was feasible in patients with gastric cancer. \u2022 Permeability surface and MTT were significantly higher in poorly cohesive carcinoma (PCC). \u2022 Permeability surface, MTT can aid in the preoperative imaging diagnosis of PCC.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-017-4979-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "CT Perfusion evaluation of gastric cancer: correlation with histologic type", 
    "pagination": "487-495", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a7309889d023705165175076f31397b31f6d61191fb52841f29c9857875dd300"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28779403"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-4979-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091051353"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-4979-5", 
      "https://app.dimensions.ai/details/publication/pub.1091051353"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54328_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-017-4979-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4979-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4979-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4979-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4979-5'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      70 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-4979-5 schema:about N0154732ceec249289578eb138cf3cfa9
2 N1c90c139de4b42f09ca662c1a0b7865a
3 N35e8ca271e6549e893ee621f1b9326be
4 N38e200994aa646838405fd4118fcc076
5 N5c84358fbe3c4c49aef12df9b3c98442
6 N8c6867b0b303471fb67060bcfa77aaef
7 Nb32624755b994ade92fa8dd9f734d6eb
8 Ne62c2f638d514cd394f2900713149ea2
9 Nf2d45cf1a2a543eb914021dafa5d8dd6
10 Nfd41f2ca0f1a4aa4a597278375af9f74
11 anzsrc-for:11
12 anzsrc-for:1112
13 schema:author Nab4a94f449f34c1cbc529c016abf3804
14 schema:citation sg:pub.10.1007/s00261-009-9503-1
15 sg:pub.10.1007/s00261-010-9609-5
16 sg:pub.10.1007/s00330-008-0996-8
17 sg:pub.10.1007/s00330-015-3600-z
18 sg:pub.10.1007/s00330-015-4105-5
19 sg:pub.10.1007/s10120-013-0234-1
20 sg:pub.10.1016/j.gassur.2004.12.002
21 https://app.dimensions.ai/details/publication/pub.1076856748
22 https://app.dimensions.ai/details/publication/pub.1078423782
23 https://doi.org/10.1002/1097-0142(19810215)47:4<780::aid-cncr2820470424>3.0.co;2-g
24 https://doi.org/10.1016/0960-7404(94)90037-x
25 https://doi.org/10.1016/j.bbrc.2014.07.025
26 https://doi.org/10.1016/j.crad.2008.06.005
27 https://doi.org/10.1016/s0140-6736(10)61121-x
28 https://doi.org/10.1097/01.sla.0000194088.81126.85
29 https://doi.org/10.1097/sla.0b013e3181b21c7b
30 https://doi.org/10.1111/j.1445-1433.2004.03268.x
31 https://doi.org/10.1148/radiol.14130091
32 https://doi.org/10.1148/radiol.2331031535
33 https://doi.org/10.1148/radiol.2423060279
34 https://doi.org/10.1148/radiol.254082000
35 https://doi.org/10.1148/radiology.210.1.r99ja46269
36 https://doi.org/10.1159/000288703
37 https://doi.org/10.1159/000334545
38 https://doi.org/10.1259/bjr/12913493
39 https://doi.org/10.1259/bjr/13564625
40 https://doi.org/10.3322/canjclin.55.2.74
41 https://doi.org/10.3348/kjr.2008.9.2.119
42 https://doi.org/10.3748/wjg.v19.i3.321
43 https://doi.org/10.3748/wjg.v20.i19.5679
44 https://doi.org/10.3978/j.issn.2078-6891.2012.021
45 schema:datePublished 2018-02
46 schema:datePublishedReg 2018-02-01
47 schema:description OBJECTIVES: To prospectively evaluate if the perfusion parameters of gastric cancer can provide information on histologic subtypes of gastric cancer. METHODS: We performed preoperative perfusion CT (PCT) and curative gastrectomy in 46 patients. PCT data were analysed using a dedicated software program. Perfusion parameters were obtained by two independent radiologists and were compared according to histologic type using Kruskal-Wallis, Mann-Whitney U test and receiver operating characteristic analysis. To assess inter-reader agreement, we used intraclass correlation coefficient (ICC). RESULTS: Inter-reader agreement for perfusion parameters was moderate to substantial (ICC = 0.585-0.678). Permeability surface value of poorly cohesive carcinoma (PCC) was significantly higher than other histologic types (47.3 ml/100 g/min in PCC vs 26.5 ml/100 g/min in non-PCC, P < 0.001). Mean transit time (MTT) of PCC was also significantly longer than non-PCC (13.0 s in PCC vs 10.3 s in non-PCC, P = 0.032). The area under the curve to predict PCC was 0.891 (P < 0.001) for permeability surface and 0.697 (P = 0.015) for MTT. CONCLUSION: Obtaining perfusion parameters from PCT was feasible in gastric cancer patients and can aid in the preoperative imaging diagnosis of PCC-type gastric cancer as the permeability surface and MTT value of PCC type gastric cancer were significantly higher than those of non-PCC. KEY POINTS: • Obtaining perfusion parameters from PCT was feasible in patients with gastric cancer. • Permeability surface and MTT were significantly higher in poorly cohesive carcinoma (PCC). • Permeability surface, MTT can aid in the preoperative imaging diagnosis of PCC.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N0d75f2268a254b1a865829150e975673
52 Nfd74438d813e4a9f9169161ec5f9b792
53 sg:journal.1289120
54 schema:name CT Perfusion evaluation of gastric cancer: correlation with histologic type
55 schema:pagination 487-495
56 schema:productId N00a33d43d8f345b083bb43af09f24bd3
57 N188187bdbefc4b6196638a2777c623d5
58 N2764dacddebe4f4b85fa7eadd5f8db34
59 N8e3e11a4d2d74b0092a037cfde1e4f5d
60 Nc2d721c2b78944a0b47d9bb15a567881
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091051353
62 https://doi.org/10.1007/s00330-017-4979-5
63 schema:sdDatePublished 2019-04-11T10:20
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nd408fe16eb0542c89e9148acc661aa55
66 schema:url https://link.springer.com/10.1007%2Fs00330-017-4979-5
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N00a33d43d8f345b083bb43af09f24bd3 schema:name readcube_id
71 schema:value a7309889d023705165175076f31397b31f6d61191fb52841f29c9857875dd300
72 rdf:type schema:PropertyValue
73 N0154732ceec249289578eb138cf3cfa9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N0d75f2268a254b1a865829150e975673 schema:volumeNumber 28
77 rdf:type schema:PublicationVolume
78 N188187bdbefc4b6196638a2777c623d5 schema:name nlm_unique_id
79 schema:value 9114774
80 rdf:type schema:PropertyValue
81 N1c90c139de4b42f09ca662c1a0b7865a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Tomography, X-Ray Computed
83 rdf:type schema:DefinedTerm
84 N2764dacddebe4f4b85fa7eadd5f8db34 schema:name doi
85 schema:value 10.1007/s00330-017-4979-5
86 rdf:type schema:PropertyValue
87 N35e8ca271e6549e893ee621f1b9326be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Female
89 rdf:type schema:DefinedTerm
90 N3646fe07d62f4460b92e5c650a3c8d6d rdf:first sg:person.0647723014.95
91 rdf:rest rdf:nil
92 N38e200994aa646838405fd4118fcc076 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Male
94 rdf:type schema:DefinedTerm
95 N5c84358fbe3c4c49aef12df9b3c98442 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Stomach Neoplasms
97 rdf:type schema:DefinedTerm
98 N8c6867b0b303471fb67060bcfa77aaef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Aged
100 rdf:type schema:DefinedTerm
101 N8e3e11a4d2d74b0092a037cfde1e4f5d schema:name pubmed_id
102 schema:value 28779403
103 rdf:type schema:PropertyValue
104 Nab4a94f449f34c1cbc529c016abf3804 rdf:first sg:person.0662301041.59
105 rdf:rest Nf9808c6f248747beb7e1f0edf8346456
106 Nb32624755b994ade92fa8dd9f734d6eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Diagnosis, Differential
108 rdf:type schema:DefinedTerm
109 Nc2d721c2b78944a0b47d9bb15a567881 schema:name dimensions_id
110 schema:value pub.1091051353
111 rdf:type schema:PropertyValue
112 Nd408fe16eb0542c89e9148acc661aa55 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Ne62c2f638d514cd394f2900713149ea2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Middle Aged
116 rdf:type schema:DefinedTerm
117 Nf2d45cf1a2a543eb914021dafa5d8dd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Neoplasm Staging
119 rdf:type schema:DefinedTerm
120 Nf7307c480ecc4b1eac67c0a1624b36c8 rdf:first sg:person.01301443145.43
121 rdf:rest N3646fe07d62f4460b92e5c650a3c8d6d
122 Nf9808c6f248747beb7e1f0edf8346456 rdf:first sg:person.016434366660.80
123 rdf:rest Nf7307c480ecc4b1eac67c0a1624b36c8
124 Nfd41f2ca0f1a4aa4a597278375af9f74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name ROC Curve
126 rdf:type schema:DefinedTerm
127 Nfd74438d813e4a9f9169161ec5f9b792 schema:issueNumber 2
128 rdf:type schema:PublicationIssue
129 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
130 schema:name Medical and Health Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
133 schema:name Oncology and Carcinogenesis
134 rdf:type schema:DefinedTerm
135 sg:journal.1289120 schema:issn 0938-7994
136 1432-1084
137 schema:name European Radiology
138 rdf:type schema:Periodical
139 sg:person.01301443145.43 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
140 schema:familyName Joo
141 schema:givenName Ijin
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43
143 rdf:type schema:Person
144 sg:person.016434366660.80 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
145 schema:familyName Kim
146 schema:givenName Se Hyung
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80
148 rdf:type schema:Person
149 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
150 schema:familyName Han
151 schema:givenName Joon Koo
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
153 rdf:type schema:Person
154 sg:person.0662301041.59 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
155 schema:familyName Lee
156 schema:givenName Dong Ho
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662301041.59
158 rdf:type schema:Person
159 sg:pub.10.1007/s00261-009-9503-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013726946
160 https://doi.org/10.1007/s00261-009-9503-1
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00261-010-9609-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043705069
163 https://doi.org/10.1007/s00261-010-9609-5
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00330-008-0996-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018003261
166 https://doi.org/10.1007/s00330-008-0996-8
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00330-015-3600-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022512529
169 https://doi.org/10.1007/s00330-015-3600-z
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00330-015-4105-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035169569
172 https://doi.org/10.1007/s00330-015-4105-5
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s10120-013-0234-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018626061
175 https://doi.org/10.1007/s10120-013-0234-1
176 rdf:type schema:CreativeWork
177 sg:pub.10.1016/j.gassur.2004.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014193560
178 https://doi.org/10.1016/j.gassur.2004.12.002
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1076856748 schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1078423782 schema:CreativeWork
182 https://doi.org/10.1002/1097-0142(19810215)47:4<780::aid-cncr2820470424>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1047956279
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/0960-7404(94)90037-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038277751
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.bbrc.2014.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027714571
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.crad.2008.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017986967
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0140-6736(10)61121-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044182432
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1097/01.sla.0000194088.81126.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026202620
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1097/sla.0b013e3181b21c7b schema:sameAs https://app.dimensions.ai/details/publication/pub.1014485961
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/j.1445-1433.2004.03268.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015586101
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1148/radiol.14130091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017238519
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1148/radiol.2331031535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019838493
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1148/radiol.2423060279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009610101
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1148/radiol.254082000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041241440
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1148/radiology.210.1.r99ja46269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029576065
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1159/000288703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046410580
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1159/000334545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030617391
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1259/bjr/12913493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064567919
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1259/bjr/13564625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064567963
215 rdf:type schema:CreativeWork
216 https://doi.org/10.3322/canjclin.55.2.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048020321
217 rdf:type schema:CreativeWork
218 https://doi.org/10.3348/kjr.2008.9.2.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027246995
219 rdf:type schema:CreativeWork
220 https://doi.org/10.3748/wjg.v19.i3.321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071369540
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3748/wjg.v20.i19.5679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071370763
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3978/j.issn.2078-6891.2012.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078616375
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
227 schema:name Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
228 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Korea
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
231 schema:name Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
232 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 110-744, Seoul, Korea
233 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...