Risk stratification of gallbladder polyps larger than 10 mm using high-resolution ultrasonography and texture analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-01

AUTHORS

Tae Won Choi, Jung Hoon Kim, Sang Joon Park, Su Joa Ahn, Ijin Joo, Joon Koo Han

ABSTRACT

OBJECTIVES: To assess important features for risk stratification of gallbladder (GB) polyps >10 mm using high-resolution ultrasonography (HRUS) and texture analysis. METHODS: We included 136 patients with GB polyps (>10 mm) who underwent both HRUS and cholecystectomy (non-neoplastic, n = 58; adenomatous, n = 32; and carcinoma, n = 46). Two radiologists retrospectively assessed HRUS findings and texture analysis. Multivariate analysis was performed to identify significant predictors for neoplastic polyps and carcinomas. RESULTS: Single polyp (OR, 3.680-3.856) and larger size (OR, 1.450-1.477) were independently associated with neoplastic polyps (p < 0.05). In a single or polyp >14 mm, sensitivity for differentiating neoplastic from non-neoplastic polyps was 92.3%. To differentiate carcinoma from adenoma, sessile shape (OR, 9.485-41.257), larger size (OR, 1.267-1.303), higher skewness (OR, 6.382) and lower grey-level co-occurrence matrices (GLCM) contrast (OR, 0.963) were significant predictors (p < 0.05). In a polyp >22 mm or sessile, sensitivity for differentiating carcinomas from adenomas was 93.5-95.7%. If a polyp demonstrated at least one HRUS finding and at least one texture feature, the specificity for diagnosing carcinoma was increased to 90.6-93.8%. CONCLUSION: In a GB polyp >10 mm, single and diameter >14 mm were useful for predicting neoplastic polyps. In neoplastic polyps, sessile shape, diameter >22 mm, higher skewness and lower GLCM contrast were useful for predicting carcinoma. KEY POINTS: • Risk of neoplastic polyp is low in <14 mm and multiple polyps • A sessile polyp or >22 mm has increased risk for GB carcinomas • Higher skewness and lower GLCM contrast are predictors of GB carcinoma • HRUS is useful for risk stratification of GB polyps >1 cm. More... »

PAGES

196-205

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-4954-1

DOI

http://dx.doi.org/10.1007/s00330-017-4954-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090376795

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28687913


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gallbladder", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gallbladder Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gallbladder Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polyps", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Tae Won", 
        "id": "sg:person.014061163511.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014061163511.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jung Hoon", 
        "id": "sg:person.014534173224.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014534173224.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sang Joon", 
        "id": "sg:person.0646222154.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Su Joa", 
        "id": "sg:person.01065717421.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065717421.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joo", 
        "givenName": "Ijin", 
        "id": "sg:person.01301443145.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.gie.2013.03.1328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001207949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.humpath.2011.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001778575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2009.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004641996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2168.2000.01363.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006391681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006992337", 
          "https://doi.org/10.1038/srep25848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.352140095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008407970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.20527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010572783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4646-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012719696", 
          "https://doi.org/10.1007/s00330-016-4646-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4646-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012719696", 
          "https://doi.org/10.1007/s00330-016-4646-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0108335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013909328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1499-3872(15)60351-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9610(97)00262-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017242980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archsurg.1988.01400250028003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021734669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3701-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022449857", 
          "https://doi.org/10.1007/s00330-015-3701-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9610(00)00526-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023271310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00423-015-1302-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030676123", 
          "https://doi.org/10.1007/s00423-015-1302-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2641-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031624481", 
          "https://doi.org/10.1007/s00330-012-2641-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13244-012-0196-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036528660", 
          "https://doi.org/10.1007/s13244-012-0196-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1440-1746.2008.05689.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037591831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/msy.2000.105870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037709526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gut.46.2.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038331965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2013.0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039340051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b5d5fc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044031519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b5d5fc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044031519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/sla.0b013e3181b5d5fc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044031519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surge.2015.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047009571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3910-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050423257", 
          "https://doi.org/10.1007/s00330-015-3910-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.1800790312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gie.2008.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052385841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1979.11328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061444219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.13.11992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v17.i17.2216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071367545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v21.i14.4248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071372399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076972142", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078456704", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078456704", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078656486", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14132187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078953021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082568880", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083170376", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "OBJECTIVES: To assess important features for risk stratification of gallbladder (GB) polyps >10\u00a0mm using high-resolution ultrasonography (HRUS) and texture analysis.\nMETHODS: We included 136 patients with GB polyps (>10\u00a0mm) who underwent both HRUS and cholecystectomy (non-neoplastic, n\u2009=\u200958; adenomatous, n\u2009=\u200932; and carcinoma, n\u2009=\u200946). Two radiologists retrospectively assessed HRUS findings and texture analysis. Multivariate analysis was performed to identify significant predictors for neoplastic polyps and carcinomas.\nRESULTS: Single polyp (OR, 3.680-3.856) and larger size (OR, 1.450-1.477) were independently associated with neoplastic polyps (p\u2009<\u20090.05). In a single or polyp >14\u00a0mm, sensitivity for differentiating neoplastic from non-neoplastic polyps was 92.3%. To differentiate carcinoma from adenoma, sessile shape (OR, 9.485-41.257), larger size (OR, 1.267-1.303), higher skewness (OR, 6.382) and lower grey-level co-occurrence matrices (GLCM) contrast (OR, 0.963) were significant predictors (p\u2009<\u20090.05). In a polyp >22\u00a0mm or sessile, sensitivity for differentiating carcinomas from adenomas was 93.5-95.7%. If a polyp demonstrated at least one HRUS finding and at least one texture feature, the specificity for diagnosing carcinoma was increased to 90.6-93.8%.\nCONCLUSION: In a GB polyp >10\u00a0mm, single and diameter >14\u00a0mm were useful for predicting neoplastic polyps. In neoplastic polyps, sessile shape, diameter >22\u00a0mm, higher skewness and lower GLCM contrast were useful for predicting carcinoma.\nKEY POINTS: \u2022 Risk of neoplastic polyp is low in <14\u00a0mm and multiple polyps \u2022 A sessile polyp or >22\u00a0mm has increased risk for GB carcinomas \u2022 Higher skewness and lower GLCM contrast are predictors of GB carcinoma \u2022 HRUS is useful for risk stratification of GB polyps >1\u00a0cm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-017-4954-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Risk stratification of gallbladder polyps larger than 10 mm using high-resolution ultrasonography and texture analysis", 
    "pagination": "196-205", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65ebd5b1da5a548122f90445c8af414a2f9cc0b752a2de92f313a746df25f636"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28687913"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-4954-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090376795"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-4954-1", 
      "https://app.dimensions.ai/details/publication/pub.1090376795"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-017-4954-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4954-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4954-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4954-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4954-1'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      81 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-4954-1 schema:about N12c59510ed30469b81bf5056316389f7
2 N29ac93e05a664cbcb399043188e34708
3 N2a8388c5c1fe40ffab62ec5cead8806a
4 N359fdea5976240c78902e8dbdf9debcb
5 N713ac7c48ad24f8fa8ac6c50480b6565
6 N78289538385c443c86b500e52ca5d229
7 N7979b7a208164218a8bb91d3302b2f29
8 N807213d33bfb4bf4a3d2ff5b20390505
9 N84c3dd73b1934630937bef04bffdd617
10 N887872620a804cc08aea9ce2109e073d
11 Nacb4fcd9af394dc6adbe775fb268daac
12 Nce0e77b8754f4330a512bf37bf15cd3e
13 Nd05dff2be3ed4f6b848daeb6c2c57729
14 Nd682163a45444d66a6b841eabf57eb7a
15 Nd8451a3fda884036b35bcf7fbaf672e0
16 Nf2fed3024f814b4a9c7bc665b7a13f3a
17 anzsrc-for:11
18 anzsrc-for:1102
19 schema:author N683532f5b7ec44aeb88bc4b2ce5439fb
20 schema:citation sg:pub.10.1007/s00330-012-2641-9
21 sg:pub.10.1007/s00330-015-3701-8
22 sg:pub.10.1007/s00330-015-3910-1
23 sg:pub.10.1007/s00330-016-4646-2
24 sg:pub.10.1007/s00423-015-1302-2
25 sg:pub.10.1007/s13244-012-0196-6
26 sg:pub.10.1038/srep25848
27 https://app.dimensions.ai/details/publication/pub.1076972142
28 https://app.dimensions.ai/details/publication/pub.1078456704
29 https://app.dimensions.ai/details/publication/pub.1078656486
30 https://app.dimensions.ai/details/publication/pub.1082568880
31 https://app.dimensions.ai/details/publication/pub.1083170376
32 https://doi.org/10.1001/archsurg.1988.01400250028003
33 https://doi.org/10.1002/bjs.1800790312
34 https://doi.org/10.1002/jso.20527
35 https://doi.org/10.1016/j.acra.2009.08.012
36 https://doi.org/10.1016/j.gie.2008.10.017
37 https://doi.org/10.1016/j.gie.2013.03.1328
38 https://doi.org/10.1016/j.humpath.2011.11.011
39 https://doi.org/10.1016/j.surge.2015.12.001
40 https://doi.org/10.1016/s0002-9610(00)00526-2
41 https://doi.org/10.1016/s0002-9610(97)00262-6
42 https://doi.org/10.1016/s1499-3872(15)60351-4
43 https://doi.org/10.1046/j.1365-2168.2000.01363.x
44 https://doi.org/10.1067/msy.2000.105870
45 https://doi.org/10.1097/sla.0b013e3181b5d5fc
46 https://doi.org/10.1102/1470-7330.2013.0015
47 https://doi.org/10.1109/proc.1979.11328
48 https://doi.org/10.1111/j.1440-1746.2008.05689.x
49 https://doi.org/10.1136/gut.46.2.250
50 https://doi.org/10.1148/radiol.14132187
51 https://doi.org/10.1148/rg.352140095
52 https://doi.org/10.1371/journal.pone.0108335
53 https://doi.org/10.2214/ajr.13.11992
54 https://doi.org/10.3748/wjg.v17.i17.2216
55 https://doi.org/10.3748/wjg.v21.i14.4248
56 schema:datePublished 2018-01
57 schema:datePublishedReg 2018-01-01
58 schema:description OBJECTIVES: To assess important features for risk stratification of gallbladder (GB) polyps >10 mm using high-resolution ultrasonography (HRUS) and texture analysis. METHODS: We included 136 patients with GB polyps (>10 mm) who underwent both HRUS and cholecystectomy (non-neoplastic, n = 58; adenomatous, n = 32; and carcinoma, n = 46). Two radiologists retrospectively assessed HRUS findings and texture analysis. Multivariate analysis was performed to identify significant predictors for neoplastic polyps and carcinomas. RESULTS: Single polyp (OR, 3.680-3.856) and larger size (OR, 1.450-1.477) were independently associated with neoplastic polyps (p < 0.05). In a single or polyp >14 mm, sensitivity for differentiating neoplastic from non-neoplastic polyps was 92.3%. To differentiate carcinoma from adenoma, sessile shape (OR, 9.485-41.257), larger size (OR, 1.267-1.303), higher skewness (OR, 6.382) and lower grey-level co-occurrence matrices (GLCM) contrast (OR, 0.963) were significant predictors (p < 0.05). In a polyp >22 mm or sessile, sensitivity for differentiating carcinomas from adenomas was 93.5-95.7%. If a polyp demonstrated at least one HRUS finding and at least one texture feature, the specificity for diagnosing carcinoma was increased to 90.6-93.8%. CONCLUSION: In a GB polyp >10 mm, single and diameter >14 mm were useful for predicting neoplastic polyps. In neoplastic polyps, sessile shape, diameter >22 mm, higher skewness and lower GLCM contrast were useful for predicting carcinoma. KEY POINTS: • Risk of neoplastic polyp is low in <14 mm and multiple polyps • A sessile polyp or >22 mm has increased risk for GB carcinomas • Higher skewness and lower GLCM contrast are predictors of GB carcinoma • HRUS is useful for risk stratification of GB polyps >1 cm.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf Nb21b30b495c745c79e6400af83dc20bd
63 Nbd82961c9b1440edbcafdb9d2e846053
64 sg:journal.1289120
65 schema:name Risk stratification of gallbladder polyps larger than 10 mm using high-resolution ultrasonography and texture analysis
66 schema:pagination 196-205
67 schema:productId N0d1134ad905c46f8aa327e14e24eeb86
68 N2b08f746216e4851b171485f3e734827
69 N5cecbfc4cb774f4aaf6965134870245b
70 N886b55ce1a0948cf80650833586efa98
71 Nce7fe1b489264397a8aab7f3be0ba143
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090376795
73 https://doi.org/10.1007/s00330-017-4954-1
74 schema:sdDatePublished 2019-04-11T09:53
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N7e505eb249744a2987eab80fabe0db18
77 schema:url https://link.springer.com/10.1007%2Fs00330-017-4954-1
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0d1134ad905c46f8aa327e14e24eeb86 schema:name nlm_unique_id
82 schema:value 9114774
83 rdf:type schema:PropertyValue
84 N12c59510ed30469b81bf5056316389f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Gallbladder
86 rdf:type schema:DefinedTerm
87 N140d97f95bbc47cc89404dba495562d1 rdf:first sg:person.014534173224.00
88 rdf:rest Nf31d96232ef94b06b7c4307f8248d17f
89 N29ac93e05a664cbcb399043188e34708 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Aged
91 rdf:type schema:DefinedTerm
92 N2a8388c5c1fe40ffab62ec5cead8806a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Gallbladder Diseases
94 rdf:type schema:DefinedTerm
95 N2b08f746216e4851b171485f3e734827 schema:name doi
96 schema:value 10.1007/s00330-017-4954-1
97 rdf:type schema:PropertyValue
98 N359fdea5976240c78902e8dbdf9debcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Ultrasonography
100 rdf:type schema:DefinedTerm
101 N5cecbfc4cb774f4aaf6965134870245b schema:name dimensions_id
102 schema:value pub.1090376795
103 rdf:type schema:PropertyValue
104 N605cf4741f1940619f1f925111e2a3ad rdf:first sg:person.01301443145.43
105 rdf:rest N9bdc549ca1664c2f8b5dccb814539264
106 N683532f5b7ec44aeb88bc4b2ce5439fb rdf:first sg:person.014061163511.34
107 rdf:rest N140d97f95bbc47cc89404dba495562d1
108 N713ac7c48ad24f8fa8ac6c50480b6565 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Male
110 rdf:type schema:DefinedTerm
111 N78289538385c443c86b500e52ca5d229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Diagnosis, Differential
113 rdf:type schema:DefinedTerm
114 N7979b7a208164218a8bb91d3302b2f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Aged, 80 and over
116 rdf:type schema:DefinedTerm
117 N7e505eb249744a2987eab80fabe0db18 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N807213d33bfb4bf4a3d2ff5b20390505 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Middle Aged
121 rdf:type schema:DefinedTerm
122 N84c3dd73b1934630937bef04bffdd617 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Risk
124 rdf:type schema:DefinedTerm
125 N886b55ce1a0948cf80650833586efa98 schema:name readcube_id
126 schema:value 65ebd5b1da5a548122f90445c8af414a2f9cc0b752a2de92f313a746df25f636
127 rdf:type schema:PropertyValue
128 N887872620a804cc08aea9ce2109e073d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Female
130 rdf:type schema:DefinedTerm
131 N9bdc549ca1664c2f8b5dccb814539264 rdf:first sg:person.0647723014.95
132 rdf:rest rdf:nil
133 Nacb4fcd9af394dc6adbe775fb268daac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Sensitivity and Specificity
135 rdf:type schema:DefinedTerm
136 Nb21b30b495c745c79e6400af83dc20bd schema:volumeNumber 28
137 rdf:type schema:PublicationVolume
138 Nbd82961c9b1440edbcafdb9d2e846053 schema:issueNumber 1
139 rdf:type schema:PublicationIssue
140 Nce0e77b8754f4330a512bf37bf15cd3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Polyps
142 rdf:type schema:DefinedTerm
143 Nce7fe1b489264397a8aab7f3be0ba143 schema:name pubmed_id
144 schema:value 28687913
145 rdf:type schema:PropertyValue
146 Nd05dff2be3ed4f6b848daeb6c2c57729 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Gallbladder Neoplasms
148 rdf:type schema:DefinedTerm
149 Nd682163a45444d66a6b841eabf57eb7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Humans
151 rdf:type schema:DefinedTerm
152 Nd8451a3fda884036b35bcf7fbaf672e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Adult
154 rdf:type schema:DefinedTerm
155 Ne9ce0c97e0544fc5aa3fdd0b28ba2ff8 rdf:first sg:person.01065717421.22
156 rdf:rest N605cf4741f1940619f1f925111e2a3ad
157 Nf2fed3024f814b4a9c7bc665b7a13f3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Retrospective Studies
159 rdf:type schema:DefinedTerm
160 Nf31d96232ef94b06b7c4307f8248d17f rdf:first sg:person.0646222154.82
161 rdf:rest Ne9ce0c97e0544fc5aa3fdd0b28ba2ff8
162 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
163 schema:name Medical and Health Sciences
164 rdf:type schema:DefinedTerm
165 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
166 schema:name Cardiorespiratory Medicine and Haematology
167 rdf:type schema:DefinedTerm
168 sg:journal.1289120 schema:issn 0938-7994
169 1432-1084
170 schema:name European Radiology
171 rdf:type schema:Periodical
172 sg:person.01065717421.22 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
173 schema:familyName Ahn
174 schema:givenName Su Joa
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065717421.22
176 rdf:type schema:Person
177 sg:person.01301443145.43 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
178 schema:familyName Joo
179 schema:givenName Ijin
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301443145.43
181 rdf:type schema:Person
182 sg:person.014061163511.34 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
183 schema:familyName Choi
184 schema:givenName Tae Won
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014061163511.34
186 rdf:type schema:Person
187 sg:person.014534173224.00 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
188 schema:familyName Kim
189 schema:givenName Jung Hoon
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014534173224.00
191 rdf:type schema:Person
192 sg:person.0646222154.82 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
193 schema:familyName Park
194 schema:givenName Sang Joon
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82
196 rdf:type schema:Person
197 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
198 schema:familyName Han
199 schema:givenName Joon Koo
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
201 rdf:type schema:Person
202 sg:pub.10.1007/s00330-012-2641-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031624481
203 https://doi.org/10.1007/s00330-012-2641-9
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00330-015-3701-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022449857
206 https://doi.org/10.1007/s00330-015-3701-8
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s00330-015-3910-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050423257
209 https://doi.org/10.1007/s00330-015-3910-1
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s00330-016-4646-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012719696
212 https://doi.org/10.1007/s00330-016-4646-2
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s00423-015-1302-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030676123
215 https://doi.org/10.1007/s00423-015-1302-2
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s13244-012-0196-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036528660
218 https://doi.org/10.1007/s13244-012-0196-6
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/srep25848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006992337
221 https://doi.org/10.1038/srep25848
222 rdf:type schema:CreativeWork
223 https://app.dimensions.ai/details/publication/pub.1076972142 schema:CreativeWork
224 https://app.dimensions.ai/details/publication/pub.1078456704 schema:CreativeWork
225 https://app.dimensions.ai/details/publication/pub.1078656486 schema:CreativeWork
226 https://app.dimensions.ai/details/publication/pub.1082568880 schema:CreativeWork
227 https://app.dimensions.ai/details/publication/pub.1083170376 schema:CreativeWork
228 https://doi.org/10.1001/archsurg.1988.01400250028003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021734669
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/bjs.1800790312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955108
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/jso.20527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010572783
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.acra.2009.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004641996
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.gie.2008.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052385841
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.gie.2013.03.1328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001207949
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.humpath.2011.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001778575
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.surge.2015.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047009571
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/s0002-9610(00)00526-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023271310
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/s0002-9610(97)00262-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017242980
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/s1499-3872(15)60351-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013920561
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1046/j.1365-2168.2000.01363.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006391681
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1067/msy.2000.105870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037709526
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1097/sla.0b013e3181b5d5fc schema:sameAs https://app.dimensions.ai/details/publication/pub.1044031519
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1102/1470-7330.2013.0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039340051
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1109/proc.1979.11328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061444219
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1111/j.1440-1746.2008.05689.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037591831
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1136/gut.46.2.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038331965
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1148/radiol.14132187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078953021
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1148/rg.352140095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008407970
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1371/journal.pone.0108335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013909328
269 rdf:type schema:CreativeWork
270 https://doi.org/10.2214/ajr.13.11992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303499
271 rdf:type schema:CreativeWork
272 https://doi.org/10.3748/wjg.v17.i17.2216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071367545
273 rdf:type schema:CreativeWork
274 https://doi.org/10.3748/wjg.v21.i14.4248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071372399
275 rdf:type schema:CreativeWork
276 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
277 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea
278 Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
281 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...