CT assessment-based direct surgical resection of part-solid nodules with solid component larger than 5 mm without preoperative biopsy: experience at ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Sang Min Lee, Chang Min Park, Yong Sub Song, Hyungjin Kim, Young Tae Kim, Young Sik Park, Jin Mo Goo

ABSTRACT

OBJECTIVES: To retrospectively evaluate the feasibility of CT assessment-based direct surgical resection of part-solid nodules (PSNs) with solid components > 5 mm without preoperative percutaneous transthoracic needle biopsies (PTNBs). METHODS: From January 2009-December 2014, 85 PSNs with solid components > 5 mm on CT were included. Preoperative PTNBs were performed for 41 PSNs (biopsy group) and CT assessment-based direct resections were performed for 44 PSNs (direct surgery group). Diagnostic accuracy and complication rates of the groups were compared. RESULTS: Pathological results of 83 PSNs excluding two indeterminate nodules included 76 adenocarcinomas (91.6%), two adenocarcinomas in situ (2.4%) and five benign lesions (6.0%). In the biopsy group, the overall sensitivity, specificity and accuracy for the diagnosis of adenocarcinoma were 78.9% (30/38), 100% (1/1) and 79.5% (31/39), respectively. Pneumothorax and haemoptysis occurred in 11 procedures (26.8%). In the direct surgery group, the respective values for the diagnosis of adenocarcinoma were 100% (38/38), 0% (0/6) and 86.4% (38/44), respectively. Seven pneumothoraces (15.9%); no haemoptysis occurred during localization procedures. There were no significant differences in diagnostic accuracy (P = 0.559) between the two groups. CONCLUSIONS: CT assessment-based direct resection can be reasonable for PSNs with solid part > 5 mm. KEY POINTS: • 91.6% of PSNs with solid component > 5 mm were adenocarcinomas. • PTNBs for PSNs with solid component > 5 mm had 79.5% accuracy. • CT-based resection for PSNs with solid component > 5 mm had 86.4% accuracy. • CT-based resection without biopsy can be a reasonable option in routine practice. More... »

PAGES

5119-5126

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-4917-6

DOI

http://dx.doi.org/10.1007/s00330-017-4917-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090278020

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28656460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenocarcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pneumothorax", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Solitary Pulmonary Nodule", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tertiary Care Centers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-no, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea", 
            "Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang Min", 
        "id": "sg:person.01315300754.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-no, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Chang Min", 
        "id": "sg:person.01111565227.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111565227.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-no, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Yong Sub", 
        "id": "sg:person.01045234676.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045234676.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-no, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyungjin", 
        "id": "sg:person.0663773004.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663773004.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young Tae", 
        "id": "sg:person.010257317720.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010257317720.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea", 
            "Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Young Sik", 
        "id": "sg:person.013145366724.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013145366724.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-no, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goo", 
        "givenName": "Jin Mo", 
        "id": "sg:person.01351124710.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351124710.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1200/jco.2015.63.4907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000343543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2015.63.4907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000343543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001337678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.12-2351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005586124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2333031018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016406589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13131265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017713611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.121.5.1464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019001393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.121.5.1464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019001393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e318206a221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020132671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e318233d7dd", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023519473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0000000000000019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024921652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0000000000000019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024921652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.272065061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026829792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015142554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027493481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041317307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2005.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043734003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-14-838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048928792", 
          "https://doi.org/10.1186/1471-2407-14-838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.2441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.08.1366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.178.5.1781053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069324682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5152/dir.2015.15297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072632972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2017161659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084494852"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "OBJECTIVES: To retrospectively evaluate the feasibility of CT assessment-based direct surgical resection of part-solid nodules (PSNs) with solid components\u2009>\u20095\u00a0mm without preoperative percutaneous transthoracic needle biopsies (PTNBs).\nMETHODS: From January 2009-December 2014, 85 PSNs with solid components\u2009>\u20095\u00a0mm on CT were included. Preoperative PTNBs were performed for 41 PSNs (biopsy group) and CT assessment-based direct resections were performed for 44 PSNs (direct surgery group). Diagnostic accuracy and complication rates of the groups were compared.\nRESULTS: Pathological results of 83 PSNs excluding two indeterminate nodules included 76 adenocarcinomas (91.6%), two adenocarcinomas in situ (2.4%) and five benign lesions (6.0%). In the biopsy group, the overall sensitivity, specificity and accuracy for the diagnosis of adenocarcinoma were 78.9% (30/38), 100% (1/1) and 79.5% (31/39), respectively. Pneumothorax and haemoptysis occurred in 11 procedures (26.8%). In the direct surgery group, the respective values for the diagnosis of adenocarcinoma were 100% (38/38), 0% (0/6) and 86.4% (38/44), respectively. Seven pneumothoraces (15.9%); no haemoptysis occurred during localization procedures. There were no significant differences in diagnostic accuracy (P\u2009=\u20090.559) between the two groups.\nCONCLUSIONS: CT assessment-based direct resection can be reasonable for PSNs with solid part\u2009>\u20095\u00a0mm.\nKEY POINTS: \u2022 91.6% of PSNs with solid component > 5\u00a0mm were adenocarcinomas. \u2022 PTNBs for PSNs with solid component > 5\u00a0mm had 79.5% accuracy. \u2022 CT-based resection for PSNs with solid component >\u20095\u00a0mm had 86.4% accuracy. \u2022 CT-based resection without biopsy can be a reasonable option in routine practice.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-017-4917-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "CT assessment-based direct surgical resection of part-solid nodules with solid component larger than 5 mm without preoperative biopsy: experience at a single tertiary hospital", 
    "pagination": "5119-5126", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "993a7cc19e89675c0bc61267cd6bad90c4e2c2ab55bdd25f23a44fe0991cca84"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28656460"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-4917-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090278020"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-4917-6", 
      "https://app.dimensions.ai/details/publication/pub.1090278020"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113644_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-017-4917-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4917-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4917-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4917-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4917-6'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      64 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-4917-6 schema:about N067bcece3a324f989b8a01b847441cc3
2 N07c30261e14e4190a404accdac477720
3 N265178b9ba604f54a5d4bb5885bacf32
4 N2e535625105240eaaadc9fc1643d6478
5 N3031cabfa59d4ecb8d2a642d7087e58e
6 N5d460bf293cb4e0ea4fcde4853c21550
7 N693bc4974fb84941a4ce78eb3485a34f
8 N6e4f2683da0745958ee74e727eca6a8f
9 Na2f74beb4510458e822279c78a1d3377
10 Na518ae3475514d35a8dba41d5aa9148f
11 Nb7bf3eac32d9456fafbe1b8cca924507
12 Nc19e8965f541472c9651122b7cfc5b8c
13 Nca7bce0852064acf883ae27dbf5b0d68
14 Ndfaffb7537b240c2a2a218770dabeca6
15 Nf37ebd4c2f6944f0846dc62f8b692a87
16 Nfae20f64c1674b96bf13dcef1ddfc8e5
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author N292c4a8a6b1d4d02a88ab0caf3c27782
20 schema:citation sg:pub.10.1186/1471-2407-14-838
21 https://doi.org/10.1016/j.lungcan.2005.10.019
22 https://doi.org/10.1097/jto.0000000000000019
23 https://doi.org/10.1097/jto.0b013e318206a221
24 https://doi.org/10.1097/jto.0b013e318233d7dd
25 https://doi.org/10.1148/radiol.09090547
26 https://doi.org/10.1148/radiol.12120628
27 https://doi.org/10.1148/radiol.13131265
28 https://doi.org/10.1148/radiol.2015142554
29 https://doi.org/10.1148/radiol.2017161659
30 https://doi.org/10.1148/radiol.2333031018
31 https://doi.org/10.1148/rg.272065061
32 https://doi.org/10.1200/jco.2015.63.4907
33 https://doi.org/10.1378/chest.12-2351
34 https://doi.org/10.1378/chest.121.5.1464
35 https://doi.org/10.2214/ajr.07.2441
36 https://doi.org/10.2214/ajr.08.1366
37 https://doi.org/10.2214/ajr.178.5.1781053
38 https://doi.org/10.5152/dir.2015.15297
39 schema:datePublished 2017-12
40 schema:datePublishedReg 2017-12-01
41 schema:description OBJECTIVES: To retrospectively evaluate the feasibility of CT assessment-based direct surgical resection of part-solid nodules (PSNs) with solid components > 5 mm without preoperative percutaneous transthoracic needle biopsies (PTNBs). METHODS: From January 2009-December 2014, 85 PSNs with solid components > 5 mm on CT were included. Preoperative PTNBs were performed for 41 PSNs (biopsy group) and CT assessment-based direct resections were performed for 44 PSNs (direct surgery group). Diagnostic accuracy and complication rates of the groups were compared. RESULTS: Pathological results of 83 PSNs excluding two indeterminate nodules included 76 adenocarcinomas (91.6%), two adenocarcinomas in situ (2.4%) and five benign lesions (6.0%). In the biopsy group, the overall sensitivity, specificity and accuracy for the diagnosis of adenocarcinoma were 78.9% (30/38), 100% (1/1) and 79.5% (31/39), respectively. Pneumothorax and haemoptysis occurred in 11 procedures (26.8%). In the direct surgery group, the respective values for the diagnosis of adenocarcinoma were 100% (38/38), 0% (0/6) and 86.4% (38/44), respectively. Seven pneumothoraces (15.9%); no haemoptysis occurred during localization procedures. There were no significant differences in diagnostic accuracy (P = 0.559) between the two groups. CONCLUSIONS: CT assessment-based direct resection can be reasonable for PSNs with solid part > 5 mm. KEY POINTS: • 91.6% of PSNs with solid component > 5 mm were adenocarcinomas. • PTNBs for PSNs with solid component > 5 mm had 79.5% accuracy. • CT-based resection for PSNs with solid component > 5 mm had 86.4% accuracy. • CT-based resection without biopsy can be a reasonable option in routine practice.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N160a2eb743194cc0ace29e046f055316
46 N35d722d7df0140adb904627ed4c3c5ed
47 sg:journal.1289120
48 schema:name CT assessment-based direct surgical resection of part-solid nodules with solid component larger than 5 mm without preoperative biopsy: experience at a single tertiary hospital
49 schema:pagination 5119-5126
50 schema:productId N612619bf107547d6a4c6b051e9703f6a
51 N71a13d8a7cc14fcf84935d1ca0617199
52 Nb06d8cd9bcbc4003a3594e5eacdc85bf
53 Nd0aba85cce1741b2b6d46a088916dadb
54 Nf1f5c2adf3e6404e9df3b28f1d0fc042
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090278020
56 https://doi.org/10.1007/s00330-017-4917-6
57 schema:sdDatePublished 2019-04-11T10:30
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N2cf7e4cad73c48b9a803b99d48f052da
60 schema:url https://link.springer.com/10.1007%2Fs00330-017-4917-6
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N067bcece3a324f989b8a01b847441cc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Middle Aged
66 rdf:type schema:DefinedTerm
67 N07c30261e14e4190a404accdac477720 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Adenocarcinoma
69 rdf:type schema:DefinedTerm
70 N160a2eb743194cc0ace29e046f055316 schema:issueNumber 12
71 rdf:type schema:PublicationIssue
72 N265178b9ba604f54a5d4bb5885bacf32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Solitary Pulmonary Nodule
74 rdf:type schema:DefinedTerm
75 N292c4a8a6b1d4d02a88ab0caf3c27782 rdf:first sg:person.01315300754.59
76 rdf:rest N44f5ead929134f2cbb98745272c66b09
77 N2cf7e4cad73c48b9a803b99d48f052da schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N2e535625105240eaaadc9fc1643d6478 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Lung Neoplasms
81 rdf:type schema:DefinedTerm
82 N3031cabfa59d4ecb8d2a642d7087e58e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Humans
84 rdf:type schema:DefinedTerm
85 N35d722d7df0140adb904627ed4c3c5ed schema:volumeNumber 27
86 rdf:type schema:PublicationVolume
87 N37a4b0e3b1d04d50a3508e679840ffcd rdf:first sg:person.010257317720.84
88 rdf:rest Ne00a2f8601f44b418b72a0ed1743b134
89 N44f5ead929134f2cbb98745272c66b09 rdf:first sg:person.01111565227.56
90 rdf:rest Na0e94239a11c4ad1836b98aa4f70544c
91 N4d42969778634150ae8e07449e6a5c67 rdf:first sg:person.0663773004.19
92 rdf:rest N37a4b0e3b1d04d50a3508e679840ffcd
93 N5d460bf293cb4e0ea4fcde4853c21550 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Aged
95 rdf:type schema:DefinedTerm
96 N612619bf107547d6a4c6b051e9703f6a schema:name readcube_id
97 schema:value 993a7cc19e89675c0bc61267cd6bad90c4e2c2ab55bdd25f23a44fe0991cca84
98 rdf:type schema:PropertyValue
99 N693bc4974fb84941a4ce78eb3485a34f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Tomography, X-Ray Computed
101 rdf:type schema:DefinedTerm
102 N6e4f2683da0745958ee74e727eca6a8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Female
104 rdf:type schema:DefinedTerm
105 N71a13d8a7cc14fcf84935d1ca0617199 schema:name pubmed_id
106 schema:value 28656460
107 rdf:type schema:PropertyValue
108 N72a61ebc565844b8b770e60f347db605 rdf:first sg:person.01351124710.13
109 rdf:rest rdf:nil
110 Na0e94239a11c4ad1836b98aa4f70544c rdf:first sg:person.01045234676.85
111 rdf:rest N4d42969778634150ae8e07449e6a5c67
112 Na2f74beb4510458e822279c78a1d3377 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Sensitivity and Specificity
114 rdf:type schema:DefinedTerm
115 Na518ae3475514d35a8dba41d5aa9148f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Feasibility Studies
117 rdf:type schema:DefinedTerm
118 Nb06d8cd9bcbc4003a3594e5eacdc85bf schema:name nlm_unique_id
119 schema:value 9114774
120 rdf:type schema:PropertyValue
121 Nb7bf3eac32d9456fafbe1b8cca924507 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Pneumothorax
123 rdf:type schema:DefinedTerm
124 Nc19e8965f541472c9651122b7cfc5b8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Tertiary Care Centers
126 rdf:type schema:DefinedTerm
127 Nca7bce0852064acf883ae27dbf5b0d68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Retrospective Studies
129 rdf:type schema:DefinedTerm
130 Nd0aba85cce1741b2b6d46a088916dadb schema:name dimensions_id
131 schema:value pub.1090278020
132 rdf:type schema:PropertyValue
133 Ndfaffb7537b240c2a2a218770dabeca6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Aged, 80 and over
135 rdf:type schema:DefinedTerm
136 Ne00a2f8601f44b418b72a0ed1743b134 rdf:first sg:person.013145366724.20
137 rdf:rest N72a61ebc565844b8b770e60f347db605
138 Nf1f5c2adf3e6404e9df3b28f1d0fc042 schema:name doi
139 schema:value 10.1007/s00330-017-4917-6
140 rdf:type schema:PropertyValue
141 Nf37ebd4c2f6944f0846dc62f8b692a87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Adult
143 rdf:type schema:DefinedTerm
144 Nfae20f64c1674b96bf13dcef1ddfc8e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Male
146 rdf:type schema:DefinedTerm
147 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
148 schema:name Medical and Health Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
151 schema:name Clinical Sciences
152 rdf:type schema:DefinedTerm
153 sg:journal.1289120 schema:issn 0938-7994
154 1432-1084
155 schema:name European Radiology
156 rdf:type schema:Periodical
157 sg:person.010257317720.84 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
158 schema:familyName Kim
159 schema:givenName Young Tae
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010257317720.84
161 rdf:type schema:Person
162 sg:person.01045234676.85 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
163 schema:familyName Song
164 schema:givenName Yong Sub
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045234676.85
166 rdf:type schema:Person
167 sg:person.01111565227.56 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
168 schema:familyName Park
169 schema:givenName Chang Min
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111565227.56
171 rdf:type schema:Person
172 sg:person.013145366724.20 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
173 schema:familyName Park
174 schema:givenName Young Sik
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013145366724.20
176 rdf:type schema:Person
177 sg:person.01315300754.59 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
178 schema:familyName Lee
179 schema:givenName Sang Min
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59
181 rdf:type schema:Person
182 sg:person.01351124710.13 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
183 schema:familyName Goo
184 schema:givenName Jin Mo
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351124710.13
186 rdf:type schema:Person
187 sg:person.0663773004.19 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
188 schema:familyName Kim
189 schema:givenName Hyungjin
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663773004.19
191 rdf:type schema:Person
192 sg:pub.10.1186/1471-2407-14-838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048928792
193 https://doi.org/10.1186/1471-2407-14-838
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.lungcan.2005.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043734003
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1097/jto.0000000000000019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024921652
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1097/jto.0b013e318206a221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020132671
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1097/jto.0b013e318233d7dd schema:sameAs https://app.dimensions.ai/details/publication/pub.1023519473
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1148/radiol.09090547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001337678
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1148/radiol.12120628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041317307
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1148/radiol.13131265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017713611
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1148/radiol.2015142554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027493481
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1148/radiol.2017161659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084494852
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1148/radiol.2333031018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016406589
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1148/rg.272065061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026829792
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1200/jco.2015.63.4907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000343543
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1378/chest.12-2351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005586124
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1378/chest.121.5.1464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019001393
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2214/ajr.07.2441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298683
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2214/ajr.08.1366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299660
226 rdf:type schema:CreativeWork
227 https://doi.org/10.2214/ajr.178.5.1781053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069324682
228 rdf:type schema:CreativeWork
229 https://doi.org/10.5152/dir.2015.15297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072632972
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
232 schema:name Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
233 Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, South Korea
234 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
237 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehak-no, Jongno-gu, 110-744, Seoul, South Korea
238 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.413967.e schema:alternateName Asan Medical Center
241 schema:name Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
242 Department of Radiology, Seoul National University College of Medicine, 101 Daehak-no, Jongno-gu, 110-744, Seoul, South Korea
243 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, South Korea
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...