FLAIR* to visualize veins in white matter lesions: A new tool for the diagnosis of multiple sclerosis? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10

AUTHORS

T. Campion, R. J. P. Smith, D. R. Altmann, G. C. Brito, B. P. Turner, J. Evanson, I. C. George, P. Sati, D. S. Reich, M. E. Miquel, K. Schmierer

ABSTRACT

OBJECTIVE: To explore the potential of a post-processing technique combining FLAIR and T2* (FLAIR*) to distinguish between lesions caused by multiple sclerosis (MS) from cerebral small vessel disease (SVD) in a clinical setting. METHODS: FLAIR and T2* head datasets acquired at 3T of 25 people with relapsing MS (pwRMS) and ten with pwSVD were used. After post-processing, FLAIR* maps were used to determine the proportion of white matter lesions (WML) showing the 'vein in lesion' sign (VIL), a characteristic histopathological feature of MS plaques. Sensitivity and specificity of MS diagnosis were examined on the basis of >45% VIL+ and >60% VIL+ WML, and compared with current dissemination in space (DIS) MRI criteria. RESULTS: All pwRMS had >45% VIL+ WML (range 58-100%) whilst in pwSVD the proportion of VIL+ WML was significantly lower (0-64%; mean 32±20%). Sensitivity based on >45% VIL+ was 100% and specificity 80% whilst with >60% VIL+ as the criterion, sensitivity was 96% and specificity 90%. DIS criteria had 96% sensitivity and 40% specificity. CONCLUSION: FLAIR* enables VIL+ WML detection in a clinical setting, facilitating differentiation of MS from SVD based on brain MRI. KEY POINTS: • FLAIR* in a clinical setting allows visualization of veins in white matter lesions. • Significant proportions of MS lesions demonstrate a vein in lesion on MRI. • Microangiopathic lesions demonstrate a lower proportion of intralesional veins than MS lesions. • Intralesional vein-based criteria may complement current MRI criteria for MS diagnosis. More... »

PAGES

4257-4263

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-4822-z

DOI

http://dx.doi.org/10.1007/s00330-017-4822-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084819962

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28409356


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Ischemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Small Vessel Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multiple Sclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuroimaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Veins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "White Matter", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal London Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416041.6", 
          "name": [
            "Blizard Institute (Neuroscience), Queen Mary University of London, London, UK", 
            "Barts Health NHS Trust, Emergency Care and Acute Medicine Clinical Academic Group Neuroscience, The Royal London Hospital, Whitechapel Road, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campion", 
        "givenName": "T.", 
        "id": "sg:person.013457554135.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013457554135.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gloucestershire Hospitals NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.434530.5", 
          "name": [
            "Blizard Institute (Neuroscience), Queen Mary University of London, London, UK", 
            "Gloucestershire Hospitals NHS Trust, Cheltenham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "R. J. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London School of Hygiene & Tropical Medicine", 
          "id": "https://www.grid.ac/institutes/grid.8991.9", 
          "name": [
            "Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Altmann", 
        "givenName": "D. R.", 
        "id": "sg:person.010644625464.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644625464.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London", 
          "id": "https://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Blizard Institute (Neuroscience), Queen Mary University of London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brito", 
        "givenName": "G. C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal London Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416041.6", 
          "name": [
            "Blizard Institute (Neuroscience), Queen Mary University of London, London, UK", 
            "Barts Health NHS Trust, Emergency Care and Acute Medicine Clinical Academic Group Neuroscience, The Royal London Hospital, Whitechapel Road, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turner", 
        "givenName": "B. P.", 
        "id": "sg:person.0645041155.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645041155.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal London Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416041.6", 
          "name": [
            "Barts Health NHS Trust, Emergency Care and Acute Medicine Clinical Academic Group Neuroscience, The Royal London Hospital, Whitechapel Road, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evanson", 
        "givenName": "J.", 
        "id": "sg:person.01065052145.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065052145.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA", 
            "Department of Neurology, Yale School of Medicine, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "George", 
        "givenName": "I. C.", 
        "id": "sg:person.0606452723.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606452723.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sati", 
        "givenName": "P.", 
        "id": "sg:person.01301014523.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301014523.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reich", 
        "givenName": "D. S.", 
        "id": "sg:person.013120176052.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013120176052.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London", 
          "id": "https://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Barts Health NHS Trust, Emergency Care and Acute Medicine Clinical Academic Group Neuroscience, The Royal London Hospital, Whitechapel Road, London, UK", 
            "William Harvey Research Institute (Cardiovascular Biomedical Research Unit), Queen Mary University of London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miquel", 
        "givenName": "M. E.", 
        "id": "sg:person.01232511460.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232511460.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal London Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416041.6", 
          "name": [
            "Blizard Institute (Neuroscience), Queen Mary University of London, London, UK", 
            "Barts Health NHS Trust, Emergency Care and Acute Medicine Clinical Academic Group Neuroscience, The Royal London Hospital, Whitechapel Road, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmierer", 
        "givenName": "K.", 
        "id": "sg:person.0670402210.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670402210.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.12120208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000475867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(07)61194-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003292376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458515616700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003717997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458515616700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003717997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458515616700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003717997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458514525868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004072090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458514525868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004072090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458514525868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004072090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bpa.12460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009827622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrneurol.2016.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010157948", 
          "https://doi.org/10.1038/nrneurol.2016.166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(06)70572-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015933976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1750-3639.2005.tb00523.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016334962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(14)70005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022385151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-3080-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022589751", 
          "https://doi.org/10.1007/s00330-013-3080-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-010-0736-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024022356", 
          "https://doi.org/10.1007/s00234-010-0736-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b4c144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027012244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b4c144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027012244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3181b4c144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027012244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/acn3.273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028293911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(07)70176-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034068056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000000837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036241915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000000837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036241915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037163707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458515624975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037959210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458515624975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037959210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458515624975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037959210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458510362441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041590891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458510362441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041590891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1352458510362441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041590891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msard.2015.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043695250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045442226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045442226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamaneurol.2013.1405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048697268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.22366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052372006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00415-005-0934-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053438904", 
          "https://doi.org/10.1007/s00415-005-0934-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00415-005-0934-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053438904", 
          "https://doi.org/10.1007/s00415-005-0934-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11613/bm.2012.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063347969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e31820b7630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e31820b7630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e31820b7630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074659651", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "OBJECTIVE: To explore the potential of a post-processing technique combining FLAIR and T2* (FLAIR*) to distinguish between lesions caused by multiple sclerosis (MS) from cerebral small vessel disease (SVD) in a clinical setting.\nMETHODS: FLAIR and T2* head datasets acquired at 3T of 25 people with relapsing MS (pwRMS) and ten with pwSVD were used. After post-processing, FLAIR* maps were used to determine the proportion of white matter lesions (WML) showing the 'vein in lesion' sign (VIL), a characteristic histopathological feature of MS plaques. Sensitivity and specificity of MS diagnosis were examined on the basis of >45% VIL+ and >60% VIL+ WML, and compared with current dissemination in space (DIS) MRI criteria.\nRESULTS: All pwRMS had >45% VIL+ WML (range 58-100%) whilst in pwSVD the proportion of VIL+ WML was significantly lower (0-64%; mean 32\u00b120%). Sensitivity based on >45% VIL+ was 100% and specificity 80% whilst with >60% VIL+ as the criterion, sensitivity was 96% and specificity 90%. DIS criteria had 96% sensitivity and 40% specificity.\nCONCLUSION: FLAIR* enables VIL+ WML detection in a clinical setting, facilitating differentiation of MS from SVD based on brain MRI.\nKEY POINTS: \u2022 FLAIR* in a clinical setting allows visualization of veins in white matter lesions. \u2022 Significant proportions of MS lesions demonstrate a vein in lesion on MRI. \u2022 Microangiopathic lesions demonstrate a lower proportion of intralesional veins than MS lesions. \u2022 Intralesional vein-based criteria may complement current MRI criteria\u00a0for MS diagnosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-017-4822-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2726329", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "FLAIR* to visualize veins in white matter lesions: A new tool for the diagnosis of multiple sclerosis?", 
    "pagination": "4257-4263", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e516e258cf9a1c06dfd128288cbde7bd08bdafda580adad1b086d6c18dfc30d2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28409356"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-4822-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084819962"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-4822-z", 
      "https://app.dimensions.ai/details/publication/pub.1084819962"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54338_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-017-4822-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4822-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4822-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4822-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4822-z'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      21 PREDICATES      70 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-4822-z schema:about N1a1c08530d664f5fb188a77d0932efaf
2 N357ccf5935944006a46debc1f4824b86
3 N478b7daa553f4109b393b6845990dad8
4 N56e8754660eb4b9f9ef3f46b49a77de0
5 N6fe0a7e2df8542ca8f4f22769f4c1603
6 N70b0606eb0c74392bce22406b8fc27c4
7 N725db3785b7a4d4396226ebe495023ea
8 N77663010b1f54880a64ba92754e41e4e
9 N782c7d62786049b995916111f07814a5
10 Nc122b63bf1374fcdb305c972861f13ea
11 Nc492e99ea5914b5e84f78d253f48d024
12 Ncf6f81d504f94ed2ab96bb0cade94658
13 Ne7ba3bb1ad6948c691dc7f71c1c39820
14 Nee4a17556f9040b3920db6eca1e0adbb
15 Nffbc262c31ac470aacceb31f9c853272
16 anzsrc-for:11
17 anzsrc-for:1109
18 schema:author Ne994c6be45674416b98a5d2e76b3fbc9
19 schema:citation sg:pub.10.1007/s00234-010-0736-z
20 sg:pub.10.1007/s00330-013-3080-y
21 sg:pub.10.1007/s00415-005-0934-5
22 sg:pub.10.1038/nrneurol.2016.166
23 https://app.dimensions.ai/details/publication/pub.1074659651
24 https://doi.org/10.1001/jamaneurol.2013.1405
25 https://doi.org/10.1002/acn3.273
26 https://doi.org/10.1002/ana.22366
27 https://doi.org/10.1016/j.msard.2015.04.006
28 https://doi.org/10.1016/s0140-6736(07)61194-5
29 https://doi.org/10.1016/s1474-4422(06)70572-5
30 https://doi.org/10.1016/s1474-4422(07)70176-x
31 https://doi.org/10.1016/s1474-4422(14)70005-5
32 https://doi.org/10.1097/rct.0000000000000233
33 https://doi.org/10.1097/rli.0b013e3181b4c144
34 https://doi.org/10.1111/bpa.12460
35 https://doi.org/10.1111/j.1750-3639.2005.tb00523.x
36 https://doi.org/10.1148/radiol.12120208
37 https://doi.org/10.11613/bm.2012.031
38 https://doi.org/10.1177/1352458510362441
39 https://doi.org/10.1177/1352458514525868
40 https://doi.org/10.1177/1352458515616700
41 https://doi.org/10.1177/1352458515624975
42 https://doi.org/10.1212/wnl.0000000000000837
43 https://doi.org/10.1212/wnl.0b013e31820b7630
44 https://doi.org/10.3174/ajnr.a1461
45 schema:datePublished 2017-10
46 schema:datePublishedReg 2017-10-01
47 schema:description OBJECTIVE: To explore the potential of a post-processing technique combining FLAIR and T2* (FLAIR*) to distinguish between lesions caused by multiple sclerosis (MS) from cerebral small vessel disease (SVD) in a clinical setting. METHODS: FLAIR and T2* head datasets acquired at 3T of 25 people with relapsing MS (pwRMS) and ten with pwSVD were used. After post-processing, FLAIR* maps were used to determine the proportion of white matter lesions (WML) showing the 'vein in lesion' sign (VIL), a characteristic histopathological feature of MS plaques. Sensitivity and specificity of MS diagnosis were examined on the basis of >45% VIL+ and >60% VIL+ WML, and compared with current dissemination in space (DIS) MRI criteria. RESULTS: All pwRMS had >45% VIL+ WML (range 58-100%) whilst in pwSVD the proportion of VIL+ WML was significantly lower (0-64%; mean 32±20%). Sensitivity based on >45% VIL+ was 100% and specificity 80% whilst with >60% VIL+ as the criterion, sensitivity was 96% and specificity 90%. DIS criteria had 96% sensitivity and 40% specificity. CONCLUSION: FLAIR* enables VIL+ WML detection in a clinical setting, facilitating differentiation of MS from SVD based on brain MRI. KEY POINTS: • FLAIR* in a clinical setting allows visualization of veins in white matter lesions. • Significant proportions of MS lesions demonstrate a vein in lesion on MRI. • Microangiopathic lesions demonstrate a lower proportion of intralesional veins than MS lesions. • Intralesional vein-based criteria may complement current MRI criteria for MS diagnosis.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N7369420f5af442d68c4afa95144f1ff1
52 Ndccd1a3098604f10a6f0f73ff8d8291d
53 sg:journal.1289120
54 schema:name FLAIR* to visualize veins in white matter lesions: A new tool for the diagnosis of multiple sclerosis?
55 schema:pagination 4257-4263
56 schema:productId N186c799b3d8e44debe7238ade66efabe
57 N18ee1ef48b28473485380ee4e9ce5f55
58 N50c04f7f50d7457ca72d6d3a3a05e717
59 Nc3a85b7e2d9d409bb2feaa202d3a8d14
60 Nff635d9740ea4d2d8c29a9d934ab4bad
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084819962
62 https://doi.org/10.1007/s00330-017-4822-z
63 schema:sdDatePublished 2019-04-11T10:21
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Ne6c31eb679364877a7e6c59b589fa46e
66 schema:url https://link.springer.com/10.1007%2Fs00330-017-4822-z
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N10d927ae6a1244388ff25d471cc50831 rdf:first N81f316e6508c4097b73746f7bd6909cd
71 rdf:rest N51458935802b4441a2a156f1c0024331
72 N145b601d033d4b339b777d9c45df51d4 rdf:first sg:person.01232511460.37
73 rdf:rest N536df15aa5034cc894ad5c8516ba0b4c
74 N186c799b3d8e44debe7238ade66efabe schema:name doi
75 schema:value 10.1007/s00330-017-4822-z
76 rdf:type schema:PropertyValue
77 N18ee1ef48b28473485380ee4e9ce5f55 schema:name readcube_id
78 schema:value e516e258cf9a1c06dfd128288cbde7bd08bdafda580adad1b086d6c18dfc30d2
79 rdf:type schema:PropertyValue
80 N1a1c08530d664f5fb188a77d0932efaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Sensitivity and Specificity
82 rdf:type schema:DefinedTerm
83 N357ccf5935944006a46debc1f4824b86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Brain Ischemia
85 rdf:type schema:DefinedTerm
86 N3820ef0722bb4765ad4a7c7a7769cb06 rdf:first sg:person.0606452723.48
87 rdf:rest N49e996c31b82453daea07c1ac83ede8f
88 N478b7daa553f4109b393b6845990dad8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Male
90 rdf:type schema:DefinedTerm
91 N49e996c31b82453daea07c1ac83ede8f rdf:first sg:person.01301014523.26
92 rdf:rest Neef6021e0af24eee90106566e50eeb2d
93 N4b55bbe1a9164c25bfe6585ad30ed791 rdf:first N6627f0a4aa8042ebad34af822d5c316b
94 rdf:rest N9d1caf1ade954dc3a2a4623da86c08f1
95 N50c04f7f50d7457ca72d6d3a3a05e717 schema:name dimensions_id
96 schema:value pub.1084819962
97 rdf:type schema:PropertyValue
98 N51458935802b4441a2a156f1c0024331 rdf:first sg:person.0645041155.23
99 rdf:rest N5af8456e13554c2fb5636d74ca41183a
100 N536df15aa5034cc894ad5c8516ba0b4c rdf:first sg:person.0670402210.06
101 rdf:rest rdf:nil
102 N56e8754660eb4b9f9ef3f46b49a77de0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Aged
104 rdf:type schema:DefinedTerm
105 N5af8456e13554c2fb5636d74ca41183a rdf:first sg:person.01065052145.15
106 rdf:rest N3820ef0722bb4765ad4a7c7a7769cb06
107 N6627f0a4aa8042ebad34af822d5c316b schema:affiliation https://www.grid.ac/institutes/grid.434530.5
108 schema:familyName Smith
109 schema:givenName R. J. P.
110 rdf:type schema:Person
111 N6fe0a7e2df8542ca8f4f22769f4c1603 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Magnetic Resonance Imaging
113 rdf:type schema:DefinedTerm
114 N70b0606eb0c74392bce22406b8fc27c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Neuroimaging
116 rdf:type schema:DefinedTerm
117 N7175aa55ebb14a5c9a04c6f911cfc842 schema:name Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
118 rdf:type schema:Organization
119 N725db3785b7a4d4396226ebe495023ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Adult
121 rdf:type schema:DefinedTerm
122 N7369420f5af442d68c4afa95144f1ff1 schema:issueNumber 10
123 rdf:type schema:PublicationIssue
124 N77663010b1f54880a64ba92754e41e4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Middle Aged
126 rdf:type schema:DefinedTerm
127 N782c7d62786049b995916111f07814a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Multiple Sclerosis
129 rdf:type schema:DefinedTerm
130 N81f316e6508c4097b73746f7bd6909cd schema:affiliation https://www.grid.ac/institutes/grid.4868.2
131 schema:familyName Brito
132 schema:givenName G. C.
133 rdf:type schema:Person
134 N9d1caf1ade954dc3a2a4623da86c08f1 rdf:first sg:person.010644625464.86
135 rdf:rest N10d927ae6a1244388ff25d471cc50831
136 Na538084917b34b3f9cc1d3343c6d9177 schema:name Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
137 rdf:type schema:Organization
138 Nc122b63bf1374fcdb305c972861f13ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Cerebral Small Vessel Diseases
140 rdf:type schema:DefinedTerm
141 Nc3a85b7e2d9d409bb2feaa202d3a8d14 schema:name nlm_unique_id
142 schema:value 9114774
143 rdf:type schema:PropertyValue
144 Nc492e99ea5914b5e84f78d253f48d024 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Veins
146 rdf:type schema:DefinedTerm
147 Ncf6f81d504f94ed2ab96bb0cade94658 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Brain
149 rdf:type schema:DefinedTerm
150 Ndccd1a3098604f10a6f0f73ff8d8291d schema:volumeNumber 27
151 rdf:type schema:PublicationVolume
152 Ne6c31eb679364877a7e6c59b589fa46e schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 Ne7ba3bb1ad6948c691dc7f71c1c39820 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Female
156 rdf:type schema:DefinedTerm
157 Ne994c6be45674416b98a5d2e76b3fbc9 rdf:first sg:person.013457554135.52
158 rdf:rest N4b55bbe1a9164c25bfe6585ad30ed791
159 Nee4a17556f9040b3920db6eca1e0adbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 Neef6021e0af24eee90106566e50eeb2d rdf:first sg:person.013120176052.10
163 rdf:rest N145b601d033d4b339b777d9c45df51d4
164 Nff635d9740ea4d2d8c29a9d934ab4bad schema:name pubmed_id
165 schema:value 28409356
166 rdf:type schema:PropertyValue
167 Nffbc262c31ac470aacceb31f9c853272 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name White Matter
169 rdf:type schema:DefinedTerm
170 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
171 schema:name Medical and Health Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
174 schema:name Neurosciences
175 rdf:type schema:DefinedTerm
176 sg:grant.2726329 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-017-4822-z
177 rdf:type schema:MonetaryGrant
178 sg:journal.1289120 schema:issn 0938-7994
179 1432-1084
180 schema:name European Radiology
181 rdf:type schema:Periodical
182 sg:person.010644625464.86 schema:affiliation https://www.grid.ac/institutes/grid.8991.9
183 schema:familyName Altmann
184 schema:givenName D. R.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644625464.86
186 rdf:type schema:Person
187 sg:person.01065052145.15 schema:affiliation https://www.grid.ac/institutes/grid.416041.6
188 schema:familyName Evanson
189 schema:givenName J.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065052145.15
191 rdf:type schema:Person
192 sg:person.01232511460.37 schema:affiliation https://www.grid.ac/institutes/grid.4868.2
193 schema:familyName Miquel
194 schema:givenName M. E.
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232511460.37
196 rdf:type schema:Person
197 sg:person.01301014523.26 schema:affiliation N7175aa55ebb14a5c9a04c6f911cfc842
198 schema:familyName Sati
199 schema:givenName P.
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301014523.26
201 rdf:type schema:Person
202 sg:person.013120176052.10 schema:affiliation Na538084917b34b3f9cc1d3343c6d9177
203 schema:familyName Reich
204 schema:givenName D. S.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013120176052.10
206 rdf:type schema:Person
207 sg:person.013457554135.52 schema:affiliation https://www.grid.ac/institutes/grid.416041.6
208 schema:familyName Campion
209 schema:givenName T.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013457554135.52
211 rdf:type schema:Person
212 sg:person.0606452723.48 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
213 schema:familyName George
214 schema:givenName I. C.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606452723.48
216 rdf:type schema:Person
217 sg:person.0645041155.23 schema:affiliation https://www.grid.ac/institutes/grid.416041.6
218 schema:familyName Turner
219 schema:givenName B. P.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645041155.23
221 rdf:type schema:Person
222 sg:person.0670402210.06 schema:affiliation https://www.grid.ac/institutes/grid.416041.6
223 schema:familyName Schmierer
224 schema:givenName K.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670402210.06
226 rdf:type schema:Person
227 sg:pub.10.1007/s00234-010-0736-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024022356
228 https://doi.org/10.1007/s00234-010-0736-z
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s00330-013-3080-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022589751
231 https://doi.org/10.1007/s00330-013-3080-y
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s00415-005-0934-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053438904
234 https://doi.org/10.1007/s00415-005-0934-5
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nrneurol.2016.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010157948
237 https://doi.org/10.1038/nrneurol.2016.166
238 rdf:type schema:CreativeWork
239 https://app.dimensions.ai/details/publication/pub.1074659651 schema:CreativeWork
240 https://doi.org/10.1001/jamaneurol.2013.1405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048697268
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/acn3.273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028293911
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1002/ana.22366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052372006
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.msard.2015.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043695250
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/s0140-6736(07)61194-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003292376
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/s1474-4422(06)70572-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015933976
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/s1474-4422(07)70176-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034068056
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/s1474-4422(14)70005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022385151
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1097/rct.0000000000000233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045442226
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1097/rli.0b013e3181b4c144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027012244
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1111/bpa.12460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009827622
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1111/j.1750-3639.2005.tb00523.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016334962
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1148/radiol.12120208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000475867
265 rdf:type schema:CreativeWork
266 https://doi.org/10.11613/bm.2012.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063347969
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1177/1352458510362441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041590891
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1177/1352458514525868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004072090
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1177/1352458515616700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003717997
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1177/1352458515624975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037959210
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1212/wnl.0000000000000837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036241915
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1212/wnl.0b013e31820b7630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064355922
279 rdf:type schema:CreativeWork
280 https://doi.org/10.3174/ajnr.a1461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037163707
281 rdf:type schema:CreativeWork
282 https://www.grid.ac/institutes/grid.416041.6 schema:alternateName Royal London Hospital
283 schema:name Barts Health NHS Trust, Emergency Care and Acute Medicine Clinical Academic Group Neuroscience, The Royal London Hospital, Whitechapel Road, London, UK
284 Blizard Institute (Neuroscience), Queen Mary University of London, London, UK
285 rdf:type schema:Organization
286 https://www.grid.ac/institutes/grid.434530.5 schema:alternateName Gloucestershire Hospitals NHS Foundation Trust
287 schema:name Blizard Institute (Neuroscience), Queen Mary University of London, London, UK
288 Gloucestershire Hospitals NHS Trust, Cheltenham, UK
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
291 schema:name Department of Neurology, Yale School of Medicine, New Haven, CT, USA
292 Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.4868.2 schema:alternateName Queen Mary University of London
295 schema:name Barts Health NHS Trust, Emergency Care and Acute Medicine Clinical Academic Group Neuroscience, The Royal London Hospital, Whitechapel Road, London, UK
296 Blizard Institute (Neuroscience), Queen Mary University of London, London, UK
297 William Harvey Research Institute (Cardiovascular Biomedical Research Unit), Queen Mary University of London, London, UK
298 rdf:type schema:Organization
299 https://www.grid.ac/institutes/grid.8991.9 schema:alternateName London School of Hygiene & Tropical Medicine
300 schema:name Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...