Poorly-differentiated colorectal neuroendocrine tumour: CT differentiation from well-differentiated neuroendocrine tumour and poorly-differentiated adenocarcinomas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

Ji Hee Kang, Se Hyung Kim, Joon Koo Han

ABSTRACT

OBJECTIVE: The differentiation of poorly-differentiated neuroendocrine tumours (PD-NETs), well-differentiated NETs (WD-NETs), and adenocarcinomas (ADCs) is important due to different management options and prognoses. This study is to find the differential CT features of colorectal PD-NETs from WD-NETs and ADCs. MATERIALS AND METHODS: CT features of 25 colorectal WD-NETs, 36 PD-NETs, and 36 ADCs were retrospectively reviewed. Significant variables were assessed using univariate and multivariate analyses. Receiver operating characteristics analysis determined the optimal cut-off value of tumour and lymph node (LN) size. RESULTS: Large size, rectum location, ulceroinfiltrative morphology without intact overlying mucosa, heterogeneous attenuation with necrosis, presence of ≥3 enlarged LNs, and metastasis were significant variables to differentiate PD-NETs from WD-NETs (P < 0.05). High attenuation on arterial phase, persistently high enhancement pattern, presence of ≥6 enlarged LNs, large LN size, and wash-in/wash-out enhancement pattern of liver metastasis were significant variables to differentiate PD-NETs from ADCs (P < 0.05). CONCLUSIONS: Compared to WD-NETs, colorectal PD-NETs are usually large, heterogeneous, and ulceroinfiltrative mass without intact overlying mucosa involving enlarged LNs and metastasis. High attenuation on arterial phase, presence of enlarged LNs with larger size and greater number, and wash-in/wash-out enhancement pattern of liver metastasis can be useful CT discriminators of PD-NETs from ADCs. KEY POINTS: • Compared to WD-NETs, PD-NETs more frequently accompany enlarged LNs and metastases. • Metastatic LNs from PD-NETs are significantly larger than those from ADCs. • Hepatic metastases from PD-NETs usually show early enhancement and delayed washout. More... »

PAGES

3867-3876

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-017-4764-5

DOI

http://dx.doi.org/10.1007/s00330-017-4764-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083845597

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28210802


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenocarcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Transformation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuroendocrine Tumors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Ji Hee", 
        "id": "sg:person.013374611605.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374611605.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Se Hyung", 
        "id": "sg:person.016434366660.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-016-4394-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007170196", 
          "https://doi.org/10.1007/s00330-016-4394-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02053521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008188030", 
          "https://doi.org/10.1007/bf02053521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/bf02053521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008188030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/bf02053521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008188030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1102/1470-7330.2006.9037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013230761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00428-006-0250-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017988295", 
          "https://doi.org/10.1007/s00428-006-0250-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2003.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018330267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mpa.0b013e3181ebb56f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021858102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mpa.0b013e3181ebb56f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021858102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3600-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022512529", 
          "https://doi.org/10.1007/s00330-015-3600-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.15.4377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037736197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12112512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041435638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/dcr.0000000000000298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045123485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/dcr.0000000000000298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045123485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.05.0575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045407617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2009.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046379412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.180.1.1800121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v16.i14.1713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071366610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4240/wjgs.v2.i5.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072397779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078893365", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "OBJECTIVE: The differentiation of poorly-differentiated neuroendocrine tumours (PD-NETs), well-differentiated NETs (WD-NETs), and adenocarcinomas (ADCs) is important due to different management options and prognoses. This study is to find the differential CT features of colorectal PD-NETs from WD-NETs and ADCs.\nMATERIALS AND METHODS: CT features of 25 colorectal WD-NETs, 36 PD-NETs, and 36 ADCs were retrospectively reviewed. Significant variables were assessed using univariate and multivariate analyses. Receiver operating characteristics analysis determined the optimal cut-off value of tumour and lymph node (LN) size.\nRESULTS: Large size, rectum location, ulceroinfiltrative morphology without intact overlying mucosa, heterogeneous attenuation with necrosis, presence of \u22653 enlarged LNs, and metastasis were significant variables to differentiate PD-NETs from WD-NETs (P\u2009<\u20090.05). High attenuation on arterial phase, persistently high enhancement pattern, presence of \u22656 enlarged LNs, large LN size, and wash-in/wash-out enhancement pattern of liver metastasis were significant variables to differentiate PD-NETs from ADCs (P\u2009<\u20090.05).\nCONCLUSIONS: Compared to WD-NETs, colorectal PD-NETs are usually large, heterogeneous, and ulceroinfiltrative mass without intact overlying mucosa involving enlarged LNs and metastasis. High attenuation on arterial phase, presence of enlarged LNs with larger size and greater number, and wash-in/wash-out enhancement pattern of liver metastasis can be useful CT discriminators of PD-NETs from ADCs.\nKEY POINTS: \u2022 Compared to WD-NETs, PD-NETs more frequently accompany enlarged LNs and metastases. \u2022 Metastatic LNs from PD-NETs are significantly larger than those from ADCs. \u2022 Hepatic metastases from PD-NETs usually show early enhancement and delayed washout.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-017-4764-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Poorly-differentiated colorectal neuroendocrine tumour: CT differentiation from well-differentiated neuroendocrine tumour and poorly-differentiated adenocarcinomas", 
    "pagination": "3867-3876", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c21da5b4dcde2ab72dc2a7e6e5827117a16a52b5dad13bb11c99019f385b1823"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28210802"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-017-4764-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083845597"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-017-4764-5", 
      "https://app.dimensions.ai/details/publication/pub.1083845597"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54301_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-017-4764-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4764-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4764-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4764-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-017-4764-5'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      64 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-017-4764-5 schema:about N0073c7aacb0049808612e218c17ad73d
2 N054e25bf0cdf4cd5903f0dcb859ef70e
3 N0e225de9e478426bbe158fdfedf3797c
4 N1f046fb63fd8469fb93449e9bd6af65e
5 N36a1c0a77253436c8d161b75239dedba
6 N53c5065b96484c78a5c95bce65f83dda
7 N5490c4ad72a246bb946935c6d1c6e98d
8 N54f46307695e49a4b05f808b75f52c3d
9 N598e02d14fb24a69a40ecbe0ada3deb2
10 N5e0161949a104005ab51d42cb169fcf9
11 N620b824c6e844813ad843278c1fd5ecf
12 N65ec193fddf54afea100618476895548
13 Na2ce27fa8bd041828092709341e2065c
14 Nbab108043cda48cfbe28e7a1c7f8feab
15 Nca0d10eb59634f85a303a443667865d9
16 Ndac291217231466584f57d578296e199
17 Ndd02086df8d644379d30521976e02e2f
18 anzsrc-for:11
19 anzsrc-for:1112
20 schema:author N28ce770b72664e868c17c23a7ffd9993
21 schema:citation sg:pub.10.1007/bf02053521
22 sg:pub.10.1007/s00330-015-3600-z
23 sg:pub.10.1007/s00330-016-4394-3
24 sg:pub.10.1007/s00428-006-0250-1
25 https://app.dimensions.ai/details/publication/pub.1078893365
26 https://doi.org/10.1007/bf02053521
27 https://doi.org/10.1016/j.ejrad.2003.12.005
28 https://doi.org/10.1016/j.ejrad.2009.09.016
29 https://doi.org/10.1097/dcr.0000000000000298
30 https://doi.org/10.1097/mpa.0b013e3181ebb56f
31 https://doi.org/10.1102/1470-7330.2006.9037
32 https://doi.org/10.1148/radiol.12112512
33 https://doi.org/10.1200/jco.2005.05.0575
34 https://doi.org/10.1200/jco.2007.15.4377
35 https://doi.org/10.2214/ajr.12.9758
36 https://doi.org/10.2214/ajr.180.1.1800121
37 https://doi.org/10.3748/wjg.v16.i14.1713
38 https://doi.org/10.4240/wjgs.v2.i5.153
39 schema:datePublished 2017-09
40 schema:datePublishedReg 2017-09-01
41 schema:description OBJECTIVE: The differentiation of poorly-differentiated neuroendocrine tumours (PD-NETs), well-differentiated NETs (WD-NETs), and adenocarcinomas (ADCs) is important due to different management options and prognoses. This study is to find the differential CT features of colorectal PD-NETs from WD-NETs and ADCs. MATERIALS AND METHODS: CT features of 25 colorectal WD-NETs, 36 PD-NETs, and 36 ADCs were retrospectively reviewed. Significant variables were assessed using univariate and multivariate analyses. Receiver operating characteristics analysis determined the optimal cut-off value of tumour and lymph node (LN) size. RESULTS: Large size, rectum location, ulceroinfiltrative morphology without intact overlying mucosa, heterogeneous attenuation with necrosis, presence of ≥3 enlarged LNs, and metastasis were significant variables to differentiate PD-NETs from WD-NETs (P < 0.05). High attenuation on arterial phase, persistently high enhancement pattern, presence of ≥6 enlarged LNs, large LN size, and wash-in/wash-out enhancement pattern of liver metastasis were significant variables to differentiate PD-NETs from ADCs (P < 0.05). CONCLUSIONS: Compared to WD-NETs, colorectal PD-NETs are usually large, heterogeneous, and ulceroinfiltrative mass without intact overlying mucosa involving enlarged LNs and metastasis. High attenuation on arterial phase, presence of enlarged LNs with larger size and greater number, and wash-in/wash-out enhancement pattern of liver metastasis can be useful CT discriminators of PD-NETs from ADCs. KEY POINTS: • Compared to WD-NETs, PD-NETs more frequently accompany enlarged LNs and metastases. • Metastatic LNs from PD-NETs are significantly larger than those from ADCs. • Hepatic metastases from PD-NETs usually show early enhancement and delayed washout.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N3a59e491f17448089fd6058119fe5e02
46 Nd9360ce914954a84b65edce209a34633
47 sg:journal.1289120
48 schema:name Poorly-differentiated colorectal neuroendocrine tumour: CT differentiation from well-differentiated neuroendocrine tumour and poorly-differentiated adenocarcinomas
49 schema:pagination 3867-3876
50 schema:productId N56567e933b4643468d35160bfbeeed8e
51 N81bdf0f5efdb48518cb09fc195ed1768
52 Nbc57f299eb014cd2be1a9fedc47a15d7
53 Nd10454ff6a0840258f5885959a0796c8
54 Nd4a8e32352c8491a859f79c55e9c8d70
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083845597
56 https://doi.org/10.1007/s00330-017-4764-5
57 schema:sdDatePublished 2019-04-11T10:16
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N2868a33fe78b4abda751ac4aa3f5133c
60 schema:url https://link.springer.com/10.1007%2Fs00330-017-4764-5
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0073c7aacb0049808612e218c17ad73d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Female
66 rdf:type schema:DefinedTerm
67 N054e25bf0cdf4cd5903f0dcb859ef70e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Prognosis
69 rdf:type schema:DefinedTerm
70 N0e225de9e478426bbe158fdfedf3797c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Adenocarcinoma
72 rdf:type schema:DefinedTerm
73 N1f046fb63fd8469fb93449e9bd6af65e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Male
75 rdf:type schema:DefinedTerm
76 N2868a33fe78b4abda751ac4aa3f5133c schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N28ce770b72664e868c17c23a7ffd9993 rdf:first sg:person.013374611605.56
79 rdf:rest N64056e8ddd354307b3243b5cbca5c3eb
80 N36a1c0a77253436c8d161b75239dedba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Liver Neoplasms
82 rdf:type schema:DefinedTerm
83 N3a59e491f17448089fd6058119fe5e02 schema:issueNumber 9
84 rdf:type schema:PublicationIssue
85 N53c5065b96484c78a5c95bce65f83dda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Tomography, X-Ray Computed
87 rdf:type schema:DefinedTerm
88 N5490c4ad72a246bb946935c6d1c6e98d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name ROC Curve
90 rdf:type schema:DefinedTerm
91 N54f46307695e49a4b05f808b75f52c3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Colorectal Neoplasms
93 rdf:type schema:DefinedTerm
94 N56567e933b4643468d35160bfbeeed8e schema:name doi
95 schema:value 10.1007/s00330-017-4764-5
96 rdf:type schema:PropertyValue
97 N598e02d14fb24a69a40ecbe0ada3deb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Cell Transformation, Neoplastic
99 rdf:type schema:DefinedTerm
100 N5e0161949a104005ab51d42cb169fcf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Retrospective Studies
102 rdf:type schema:DefinedTerm
103 N620b824c6e844813ad843278c1fd5ecf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Middle Aged
105 rdf:type schema:DefinedTerm
106 N64056e8ddd354307b3243b5cbca5c3eb rdf:first sg:person.016434366660.80
107 rdf:rest N93933f7eebab40e5b9fc980b4551f1fd
108 N65ec193fddf54afea100618476895548 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Neuroendocrine Tumors
110 rdf:type schema:DefinedTerm
111 N81bdf0f5efdb48518cb09fc195ed1768 schema:name dimensions_id
112 schema:value pub.1083845597
113 rdf:type schema:PropertyValue
114 N93933f7eebab40e5b9fc980b4551f1fd rdf:first sg:person.0647723014.95
115 rdf:rest rdf:nil
116 Na2ce27fa8bd041828092709341e2065c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Humans
118 rdf:type schema:DefinedTerm
119 Nbab108043cda48cfbe28e7a1c7f8feab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Diagnosis, Differential
121 rdf:type schema:DefinedTerm
122 Nbc57f299eb014cd2be1a9fedc47a15d7 schema:name readcube_id
123 schema:value c21da5b4dcde2ab72dc2a7e6e5827117a16a52b5dad13bb11c99019f385b1823
124 rdf:type schema:PropertyValue
125 Nca0d10eb59634f85a303a443667865d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Aged, 80 and over
127 rdf:type schema:DefinedTerm
128 Nd10454ff6a0840258f5885959a0796c8 schema:name pubmed_id
129 schema:value 28210802
130 rdf:type schema:PropertyValue
131 Nd4a8e32352c8491a859f79c55e9c8d70 schema:name nlm_unique_id
132 schema:value 9114774
133 rdf:type schema:PropertyValue
134 Nd9360ce914954a84b65edce209a34633 schema:volumeNumber 27
135 rdf:type schema:PublicationVolume
136 Ndac291217231466584f57d578296e199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Adult
138 rdf:type schema:DefinedTerm
139 Ndd02086df8d644379d30521976e02e2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Aged
141 rdf:type schema:DefinedTerm
142 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
143 schema:name Medical and Health Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
146 schema:name Oncology and Carcinogenesis
147 rdf:type schema:DefinedTerm
148 sg:journal.1289120 schema:issn 0938-7994
149 1432-1084
150 schema:name European Radiology
151 rdf:type schema:Periodical
152 sg:person.013374611605.56 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
153 schema:familyName Kang
154 schema:givenName Ji Hee
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013374611605.56
156 rdf:type schema:Person
157 sg:person.016434366660.80 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
158 schema:familyName Kim
159 schema:givenName Se Hyung
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80
161 rdf:type schema:Person
162 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
163 schema:familyName Han
164 schema:givenName Joon Koo
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
166 rdf:type schema:Person
167 sg:pub.10.1007/bf02053521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008188030
168 https://doi.org/10.1007/bf02053521
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s00330-015-3600-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022512529
171 https://doi.org/10.1007/s00330-015-3600-z
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s00330-016-4394-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007170196
174 https://doi.org/10.1007/s00330-016-4394-3
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00428-006-0250-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017988295
177 https://doi.org/10.1007/s00428-006-0250-1
178 rdf:type schema:CreativeWork
179 https://app.dimensions.ai/details/publication/pub.1078893365 schema:CreativeWork
180 https://doi.org/10.1007/bf02053521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008188030
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ejrad.2003.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018330267
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.ejrad.2009.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046379412
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1097/dcr.0000000000000298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045123485
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1097/mpa.0b013e3181ebb56f schema:sameAs https://app.dimensions.ai/details/publication/pub.1021858102
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1102/1470-7330.2006.9037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013230761
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1148/radiol.12112512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041435638
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1200/jco.2005.05.0575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045407617
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1200/jco.2007.15.4377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037736197
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2214/ajr.12.9758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302978
199 rdf:type schema:CreativeWork
200 https://doi.org/10.2214/ajr.180.1.1800121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325180
201 rdf:type schema:CreativeWork
202 https://doi.org/10.3748/wjg.v16.i14.1713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071366610
203 rdf:type schema:CreativeWork
204 https://doi.org/10.4240/wjgs.v2.i5.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072397779
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
207 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
208 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
211 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
212 Department of Radiology, Seoul National University Hospital, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
213 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...