Development and validation of a prediction model for measurement variability of lung nodule volumetry in patients with pulmonary metastases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-03

AUTHORS

Eui Jin Hwang, Jin Mo Goo, Jihye Kim, Sang Joon Park, Soyeon Ahn, Chang Min Park, Yeong-Gil Shin

ABSTRACT

ObjectivesTo develop a prediction model for the variability range of lung nodule volumetry and validate the model in detecting nodule growth.Materials and methodsFor model development, 50 patients with metastatic nodules were prospectively included. Two consecutive CT scans were performed to assess volumetry for 1,586 nodules. Nodule volume, surface voxel proportion (SVP), attachment proportion (AP) and absolute percentage error (APE) were calculated for each nodule and quantile regression analyses were performed to model the 95% percentile of APE. For validation, 41 patients who underwent metastasectomy were included. After volumetry of resected nodules, sensitivity and specificity for diagnosis of metastatic nodules were compared between two different thresholds of nodule growth determination: uniform 25% volume change threshold and individualized threshold calculated from the model (estimated 95% percentile APE).ResultsSVP and AP were included in the final model: Estimated 95% percentile APE = 37.82 · SVP + 48.60 · AP-10.87. In the validation session, the individualized threshold showed significantly higher sensitivity for diagnosis of metastatic nodules than the uniform 25% threshold (75.0% vs. 66.0%, P = 0.004)ConclusionEstimated 95% percentile APE as an individualized threshold of nodule growth showed greater sensitivity in diagnosing metastatic nodules than a global 25% threshold.Key Points• The 95 % percentile APE of a particular nodule can be predicted.• Estimated 95 % percentile APE can be utilized as an individualized threshold.• More sensitive diagnosis of metastasis can be made with an individualized threshold.• Tailored nodule management can be provided during nodule growth follow-up. More... »

PAGES

3257-3265

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-016-4713-8

DOI

http://dx.doi.org/10.1007/s00330-016-4713-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039679830

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28050697


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Solitary Pulmonary Nodule", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Deparment of Radiology, Armed Forces Seoul Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
            "Deparment of Radiology, Armed Forces Seoul Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Eui Jin", 
        "id": "sg:person.0654224120.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654224120.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
            "Cancer Research Institute, Seoul National University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goo", 
        "givenName": "Jin Mo", 
        "id": "sg:person.01351124710.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351124710.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Engineering, Seoul National University, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, Seoul National University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jihye", 
        "id": "sg:person.0745731553.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745731553.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
            "Cancer Research Institute, Seoul National University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sang Joon", 
        "id": "sg:person.0646222154.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Soyeon", 
        "id": "sg:person.0612662613.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea", 
            "Cancer Research Institute, Seoul National University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Chang Min", 
        "id": "sg:person.01111565227.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111565227.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Engineering, Seoul National University, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "School of Computer Science and Engineering, Seoul National University, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Yeong-Gil", 
        "id": "sg:person.01224015576.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224015576.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-003-2132-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038425080", 
          "https://doi.org/10.1007/s00330-003-2132-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-008-1229-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001882570", 
          "https://doi.org/10.1007/s00330-008-1229-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0562-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053478334", 
          "https://doi.org/10.1007/s00330-006-0562-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-03", 
    "datePublishedReg": "2017-01-03", 
    "description": "ObjectivesTo develop a prediction model for the variability range of lung nodule volumetry and validate the model in detecting nodule growth.Materials and methodsFor model development, 50 patients with metastatic nodules were prospectively included. Two consecutive CT scans were performed to assess volumetry for 1,586 nodules. Nodule volume, surface voxel proportion (SVP), attachment proportion (AP) and absolute percentage error (APE) were calculated for each nodule and quantile regression analyses were performed to model the 95% percentile of APE. For validation, 41 patients who underwent metastasectomy were included. After volumetry of resected nodules, sensitivity and specificity for diagnosis of metastatic nodules were compared between two different thresholds of nodule growth determination: uniform 25% volume change threshold and individualized threshold calculated from the model (estimated 95% percentile APE).ResultsSVP and AP were included in the final model: Estimated 95% percentile APE\u2009=\u200937.82\u2009\u00b7\u2009SVP\u2009+\u200948.60\u2009\u00b7\u2009AP-10.87. In the validation session, the individualized threshold showed significantly higher sensitivity for diagnosis of metastatic nodules than the uniform 25% threshold (75.0% vs. 66.0%, P\u2009=\u20090.004)ConclusionEstimated 95% percentile APE as an individualized threshold of nodule growth showed greater sensitivity in diagnosing metastatic nodules than a global 25% threshold.Key Points\u2022 The 95\u2009% percentile APE of a particular nodule can be predicted.\u2022 Estimated 95\u2009% percentile APE can be utilized as an individualized threshold.\u2022 More sensitive diagnosis of metastasis can be made with an individualized threshold.\u2022 Tailored nodule management can be provided during nodule growth follow-up.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-016-4713-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "metastatic nodules", 
      "lung nodule volumetry", 
      "consecutive CT scans", 
      "nodule volumetry", 
      "pulmonary metastases", 
      "CT scan", 
      "patients", 
      "nodule management", 
      "nodule volume", 
      "volumetry", 
      "diagnosis", 
      "particular nodule", 
      "regression analysis", 
      "metastasis", 
      "nodules", 
      "sensitive diagnosis", 
      "measurement variability", 
      "nodule growth", 
      "final model", 
      "metastasectomy", 
      "greater sensitivity", 
      "ObjectivesTo", 
      "proportion", 
      "sensitivity", 
      "scans", 
      "different thresholds", 
      "change threshold", 
      "percentile", 
      "threshold", 
      "validation sessions", 
      "sessions", 
      "quantile regression analysis", 
      "high sensitivity", 
      "specificity", 
      "management", 
      "development", 
      "prediction model", 
      "growth", 
      "volume", 
      "growth determination", 
      "validation", 
      "variability range", 
      "model", 
      "variability", 
      "analysis", 
      "percentage error", 
      "materials", 
      "range", 
      "determination", 
      "absolute percentage error", 
      "error", 
      "model development", 
      "methodsFor model development", 
      "SVP", 
      "voxel proportion", 
      "AP", 
      "percentile of APE", 
      "nodule growth determination", 
      "volume change threshold", 
      "ResultsSVP", 
      "percentile APE"
    ], 
    "name": "Development and validation of a prediction model for measurement variability of lung nodule volumetry in patients with pulmonary metastases", 
    "pagination": "3257-3265", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039679830"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-016-4713-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28050697"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-016-4713-8", 
      "https://app.dimensions.ai/details/publication/pub.1039679830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_747.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-016-4713-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4713-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4713-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4713-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4713-8'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      22 PREDICATES      105 URIs      94 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-016-4713-8 schema:about N129485b14c684bb4aa7c36bc1825e6a2
2 N195bb7c201f144909ee4276b37746f57
3 N347d15ac3983420d8573c494f8320d36
4 N5def9df4379841cda9fbe1ca429ca6e4
5 N695b240ac6ad4fb8aeaf33bcfd1ca634
6 N6c7b949d42fb4e1b8d822f02bec2625d
7 N8198b6684fc94a27884cbc259f5bd8f9
8 N85a359cfb72b4d2ab6189b6e0e2fa8af
9 N8a940bad3599481cacbbc5c96bd98bea
10 N9faacca0af434cd7a86eeb06a72a62fc
11 Na4713a278f134fef907f538c9c55a69c
12 Nacb68344bb9e4a69ba4a10100b55ffc0
13 Nc12e0d128a994667ada8456eb6640995
14 Nf70e6cab2da5443690f0bc7f7a7d52c3
15 Nf76b7b2ab35342129a8760840558ca83
16 anzsrc-for:11
17 anzsrc-for:1102
18 schema:author N4788cf63d9204a1484e973c929fabd72
19 schema:citation sg:pub.10.1007/s00330-003-2132-0
20 sg:pub.10.1007/s00330-006-0562-1
21 sg:pub.10.1007/s00330-008-1229-x
22 schema:datePublished 2017-01-03
23 schema:datePublishedReg 2017-01-03
24 schema:description ObjectivesTo develop a prediction model for the variability range of lung nodule volumetry and validate the model in detecting nodule growth.Materials and methodsFor model development, 50 patients with metastatic nodules were prospectively included. Two consecutive CT scans were performed to assess volumetry for 1,586 nodules. Nodule volume, surface voxel proportion (SVP), attachment proportion (AP) and absolute percentage error (APE) were calculated for each nodule and quantile regression analyses were performed to model the 95% percentile of APE. For validation, 41 patients who underwent metastasectomy were included. After volumetry of resected nodules, sensitivity and specificity for diagnosis of metastatic nodules were compared between two different thresholds of nodule growth determination: uniform 25% volume change threshold and individualized threshold calculated from the model (estimated 95% percentile APE).ResultsSVP and AP were included in the final model: Estimated 95% percentile APE = 37.82 · SVP + 48.60 · AP-10.87. In the validation session, the individualized threshold showed significantly higher sensitivity for diagnosis of metastatic nodules than the uniform 25% threshold (75.0% vs. 66.0%, P = 0.004)ConclusionEstimated 95% percentile APE as an individualized threshold of nodule growth showed greater sensitivity in diagnosing metastatic nodules than a global 25% threshold.Key Points• The 95 % percentile APE of a particular nodule can be predicted.• Estimated 95 % percentile APE can be utilized as an individualized threshold.• More sensitive diagnosis of metastasis can be made with an individualized threshold.• Tailored nodule management can be provided during nodule growth follow-up.
25 schema:genre article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N240fcd758f6a4297bed84125d58651b5
29 N51070f6844ff4d11ac2bb85fb1553682
30 sg:journal.1289120
31 schema:keywords AP
32 CT scan
33 ObjectivesTo
34 ResultsSVP
35 SVP
36 absolute percentage error
37 analysis
38 change threshold
39 consecutive CT scans
40 determination
41 development
42 diagnosis
43 different thresholds
44 error
45 final model
46 greater sensitivity
47 growth
48 growth determination
49 high sensitivity
50 lung nodule volumetry
51 management
52 materials
53 measurement variability
54 metastasectomy
55 metastasis
56 metastatic nodules
57 methodsFor model development
58 model
59 model development
60 nodule growth
61 nodule growth determination
62 nodule management
63 nodule volume
64 nodule volumetry
65 nodules
66 particular nodule
67 patients
68 percentage error
69 percentile
70 percentile APE
71 percentile of APE
72 prediction model
73 proportion
74 pulmonary metastases
75 quantile regression analysis
76 range
77 regression analysis
78 scans
79 sensitive diagnosis
80 sensitivity
81 sessions
82 specificity
83 threshold
84 validation
85 validation sessions
86 variability
87 variability range
88 volume
89 volume change threshold
90 volumetry
91 voxel proportion
92 schema:name Development and validation of a prediction model for measurement variability of lung nodule volumetry in patients with pulmonary metastases
93 schema:pagination 3257-3265
94 schema:productId N6a1b36421ee445f38460aca0df9c83f8
95 N8f873d4f0dbd40b984087b0693e0f795
96 Nf8877cb7bf0e4a268a68379ef9ce905c
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039679830
98 https://doi.org/10.1007/s00330-016-4713-8
99 schema:sdDatePublished 2022-01-01T18:46
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N4d73cea26113463f83ab68b2888160df
102 schema:url https://doi.org/10.1007/s00330-016-4713-8
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N129485b14c684bb4aa7c36bc1825e6a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Reproducibility of Results
108 rdf:type schema:DefinedTerm
109 N195bb7c201f144909ee4276b37746f57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Solitary Pulmonary Nodule
111 rdf:type schema:DefinedTerm
112 N240fcd758f6a4297bed84125d58651b5 schema:volumeNumber 27
113 rdf:type schema:PublicationVolume
114 N347d15ac3983420d8573c494f8320d36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Male
116 rdf:type schema:DefinedTerm
117 N358b829d685a41ef8ba141dca699a937 rdf:first sg:person.01351124710.13
118 rdf:rest Ne5ca7ef3fb874a878b9c8b27cc56d2e2
119 N3b60a916309647af909f0fcc8db27cde rdf:first sg:person.0612662613.04
120 rdf:rest N9664b592fd2b4152b43e2ede6a5525d3
121 N4788cf63d9204a1484e973c929fabd72 rdf:first sg:person.0654224120.11
122 rdf:rest N358b829d685a41ef8ba141dca699a937
123 N4d73cea26113463f83ab68b2888160df schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 N51070f6844ff4d11ac2bb85fb1553682 schema:issueNumber 8
126 rdf:type schema:PublicationIssue
127 N5aadb64c05654067b31a2b58003ce390 rdf:first sg:person.0646222154.82
128 rdf:rest N3b60a916309647af909f0fcc8db27cde
129 N5def9df4379841cda9fbe1ca429ca6e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Female
131 rdf:type schema:DefinedTerm
132 N695b240ac6ad4fb8aeaf33bcfd1ca634 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Aged, 80 and over
134 rdf:type schema:DefinedTerm
135 N6a1b36421ee445f38460aca0df9c83f8 schema:name pubmed_id
136 schema:value 28050697
137 rdf:type schema:PropertyValue
138 N6c7b949d42fb4e1b8d822f02bec2625d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Sensitivity and Specificity
140 rdf:type schema:DefinedTerm
141 N8198b6684fc94a27884cbc259f5bd8f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Tomography, X-Ray Computed
143 rdf:type schema:DefinedTerm
144 N85a359cfb72b4d2ab6189b6e0e2fa8af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Lung Neoplasms
146 rdf:type schema:DefinedTerm
147 N8a940bad3599481cacbbc5c96bd98bea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Humans
149 rdf:type schema:DefinedTerm
150 N8f873d4f0dbd40b984087b0693e0f795 schema:name doi
151 schema:value 10.1007/s00330-016-4713-8
152 rdf:type schema:PropertyValue
153 N9664b592fd2b4152b43e2ede6a5525d3 rdf:first sg:person.01111565227.56
154 rdf:rest Nb6d585a35ed24dd18c430f82e6474fc8
155 N9faacca0af434cd7a86eeb06a72a62fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Adult
157 rdf:type schema:DefinedTerm
158 Na4713a278f134fef907f538c9c55a69c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Models, Theoretical
160 rdf:type schema:DefinedTerm
161 Nacb68344bb9e4a69ba4a10100b55ffc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Aged
163 rdf:type schema:DefinedTerm
164 Nb6d585a35ed24dd18c430f82e6474fc8 rdf:first sg:person.01224015576.81
165 rdf:rest rdf:nil
166 Nc12e0d128a994667ada8456eb6640995 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Regression Analysis
168 rdf:type schema:DefinedTerm
169 Ne5ca7ef3fb874a878b9c8b27cc56d2e2 rdf:first sg:person.0745731553.85
170 rdf:rest N5aadb64c05654067b31a2b58003ce390
171 Nf70e6cab2da5443690f0bc7f7a7d52c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Middle Aged
173 rdf:type schema:DefinedTerm
174 Nf76b7b2ab35342129a8760840558ca83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Prospective Studies
176 rdf:type schema:DefinedTerm
177 Nf8877cb7bf0e4a268a68379ef9ce905c schema:name dimensions_id
178 schema:value pub.1039679830
179 rdf:type schema:PropertyValue
180 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
181 schema:name Medical and Health Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
184 schema:name Cardiorespiratory Medicine and Haematology
185 rdf:type schema:DefinedTerm
186 sg:journal.1289120 schema:issn 0938-7994
187 1432-1084
188 schema:name European Radiology
189 schema:publisher Springer Nature
190 rdf:type schema:Periodical
191 sg:person.01111565227.56 schema:affiliation grid-institutes:grid.31501.36
192 schema:familyName Park
193 schema:givenName Chang Min
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111565227.56
195 rdf:type schema:Person
196 sg:person.01224015576.81 schema:affiliation grid-institutes:grid.31501.36
197 schema:familyName Shin
198 schema:givenName Yeong-Gil
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224015576.81
200 rdf:type schema:Person
201 sg:person.01351124710.13 schema:affiliation grid-institutes:grid.31501.36
202 schema:familyName Goo
203 schema:givenName Jin Mo
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351124710.13
205 rdf:type schema:Person
206 sg:person.0612662613.04 schema:affiliation grid-institutes:grid.412480.b
207 schema:familyName Ahn
208 schema:givenName Soyeon
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04
210 rdf:type schema:Person
211 sg:person.0646222154.82 schema:affiliation grid-institutes:grid.31501.36
212 schema:familyName Park
213 schema:givenName Sang Joon
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82
215 rdf:type schema:Person
216 sg:person.0654224120.11 schema:affiliation grid-institutes:None
217 schema:familyName Hwang
218 schema:givenName Eui Jin
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654224120.11
220 rdf:type schema:Person
221 sg:person.0745731553.85 schema:affiliation grid-institutes:grid.31501.36
222 schema:familyName Kim
223 schema:givenName Jihye
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745731553.85
225 rdf:type schema:Person
226 sg:pub.10.1007/s00330-003-2132-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038425080
227 https://doi.org/10.1007/s00330-003-2132-0
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s00330-006-0562-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053478334
230 https://doi.org/10.1007/s00330-006-0562-1
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s00330-008-1229-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001882570
233 https://doi.org/10.1007/s00330-008-1229-x
234 rdf:type schema:CreativeWork
235 grid-institutes:None schema:alternateName Deparment of Radiology, Armed Forces Seoul Hospital, Seoul, Korea
236 schema:name Deparment of Radiology, Armed Forces Seoul Hospital, Seoul, Korea
237 Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
238 rdf:type schema:Organization
239 grid-institutes:grid.31501.36 schema:alternateName Cancer Research Institute, Seoul National University, Seoul, Korea
240 School of Computer Science and Engineering, Seoul National University, Seoul, Korea
241 schema:name Cancer Research Institute, Seoul National University, Seoul, Korea
242 Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
243 School of Computer Science and Engineering, Seoul National University, Seoul, Korea
244 rdf:type schema:Organization
245 grid-institutes:grid.412480.b schema:alternateName Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
246 schema:name Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...