Radiology research in mainland China in the past 10 years: a survey of original articles published in Radiology and European ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-22

AUTHORS

Long Jiang Zhang, Yun Fei Wang, Zhen Lu Yang, U. Joseph Schoepf, Jiaqian Xu, Guang Ming Lu, Enzhong Li

ABSTRACT

PurposeTo evaluate the features and trends of Radiology research in Mainland China through bibliometric analysis of the original articles published in Radiology and European Radiology (ER) between 2006 and 2015.Materials and methodsWe reviewed the original articles published in Radiology and ER between 2006 and 2015. The following information was abstracted: imaging subspecialty, imaging technique(s) used, research type, sample size, study design, statistical analysis, study results, funding declarations, international collaborations, number of authors, department and province of the first author. All variables were examined longitudinally over time.ResultsRadiology research in Mainland China saw a substantial increase in original research articles published, especially in the last 5 years (P < 0.001). Within Mainland China’s Radiology research, neuroradiology, vascular/interventional Radiology, and abdominal Radiology were the most productive fields; MR imaging was the most used modality, and a distinct geographic provenience was observed for articles published in Radiology and ER.ConclusionRadiology research in Mainland China has seen substantial growth in the past 5 years with neuroradiology, vascular/interventional Radiology, and abdominal Radiology as the most productive fields. MR imaging is the most used modality. Article provenience shows a distinct geographical pattern.Key points• Radiology research in Mainland China saw a substantial increase.• Neuroradiology, vascular/interventional Radiology, and abdominal Radiology are the most productive fields.• MRI is the most used modality in Mainland China’s Radiology research.• Guangdong, Shanghai, and Beijing are the most productive provinces. More... »

PAGES

4379-4382

References to SciGraph publications

  • 2015-12-16. The rapid rise of a research nation in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00330-016-4689-4

    DOI

    http://dx.doi.org/10.1007/s00330-016-4689-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084020724

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28332016


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bibliometrics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomedical Research", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "China", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuroradiography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Periodicals as Topic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiography, Abdominal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiology, Interventional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Long Jiang", 
            "id": "sg:person.01263164160.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263164160.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yun Fei", 
            "id": "sg:person.014351275221.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014351275221.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Zhen Lu", 
            "id": "sg:person.012361456755.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012361456755.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, 29401, Charleston, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.259828.c", 
              "name": [
                "Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China", 
                "Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, 29401, Charleston, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schoepf", 
            "givenName": "U. Joseph", 
            "id": "sg:person.0601357112.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601357112.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, 29401, Charleston, SC, USA", 
              "id": "http://www.grid.ac/institutes/grid.259828.c", 
              "name": [
                "Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, 29401, Charleston, SC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Jiaqian", 
            "id": "sg:person.016675604433.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016675604433.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Guang Ming", 
            "id": "sg:person.0671033341.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671033341.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medical Science, National Natural Science Foundation of China, 100085, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.419696.5", 
              "name": [
                "Department of Medical Science, National Natural Science Foundation of China, 100085, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Enzhong", 
            "id": "sg:person.01205063242.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205063242.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/528s170a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052647436", 
              "https://doi.org/10.1038/528s170a"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-22", 
        "datePublishedReg": "2017-03-22", 
        "description": "PurposeTo evaluate the features and trends of Radiology research in Mainland China through bibliometric analysis of the original articles published in Radiology and European Radiology (ER) between 2006 and 2015.Materials and methodsWe reviewed the original articles published in Radiology and ER between 2006 and 2015. The following information was abstracted: imaging subspecialty, imaging technique(s) used, research type, sample size, study design, statistical analysis, study results, funding declarations, international collaborations, number of authors, department and province of the first author. All variables were examined longitudinally over time.ResultsRadiology research in Mainland China saw a substantial increase in original research articles published, especially in the last 5\u00a0years (P\u2009<\u20090.001). Within Mainland China\u2019s Radiology research, neuroradiology, vascular/interventional Radiology, and abdominal Radiology were the most productive fields; MR imaging was the most used modality, and a distinct geographic provenience was observed for articles published in Radiology and ER.ConclusionRadiology research in Mainland China has seen substantial growth in the past 5\u00a0years with neuroradiology, vascular/interventional Radiology, and abdominal Radiology as the most productive fields. MR imaging is the most used modality. Article provenience shows a distinct geographical pattern.Key points\u2022 Radiology research in Mainland China saw a substantial increase.\u2022 Neuroradiology, vascular/interventional Radiology, and abdominal Radiology are the most productive fields.\u2022 MRI is the most used modality in Mainland China\u2019s Radiology research.\u2022 Guangdong, Shanghai, and Beijing are the most productive provinces.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00330-016-4689-4", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1289120", 
            "issn": [
              "0938-7994", 
              "1432-1084"
            ], 
            "name": "European Radiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "interventional radiology", 
          "Abdominal Radiology", 
          "used modality", 
          "MR imaging", 
          "original articles", 
          "number of authors", 
          "original research articles", 
          "study design", 
          "statistical analysis", 
          "field", 
          "radiology", 
          "following information", 
          "neuroradiology", 
          "radiology research", 
          "first author", 
          "modalities", 
          "European Radiology", 
          "sample size", 
          "mainland China", 
          "substantial increase", 
          "years", 
          "imaging", 
          "PurposeTo", 
          "study results", 
          "MethodsWe", 
          "MRI", 
          "subspecialty", 
          "Department", 
          "variables", 
          "increase", 
          "international collaboration", 
          "analysis", 
          "number", 
          "research articles", 
          "productive field", 
          "design", 
          "article", 
          "results", 
          "authors", 
          "survey", 
          "research", 
          "size", 
          "features", 
          "Province", 
          "patterns", 
          "information", 
          "research type", 
          "time", 
          "types", 
          "China", 
          "substantial growth", 
          "distinct geographical patterns", 
          "Shanghai", 
          "trends", 
          "collaboration", 
          "growth", 
          "Declaration", 
          "geographical patterns", 
          "Guangdong", 
          "Beijing", 
          "bibliometric analysis", 
          "geographic provenience", 
          "provenience", 
          "productive provinces"
        ], 
        "name": "Radiology research in mainland China in the past 10 years: a survey of original articles published in Radiology and European Radiology", 
        "pagination": "4379-4382", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084020724"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00330-016-4689-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28332016"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00330-016-4689-4", 
          "https://app.dimensions.ai/details/publication/pub.1084020724"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_747.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00330-016-4689-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4689-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4689-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4689-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4689-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    218 TRIPLES      21 PREDICATES      99 URIs      90 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00330-016-4689-4 schema:about N229a3177b7c14bd0b7af469ae5a15372
    2 N24872c7474814402bd952b47f965821d
    3 N25a3db6f196144158d278dd09cbaf371
    4 N3abd47ea1c1242a2b5a7826fc4ff0ad1
    5 N66518270c1e24ddf9d64562bcd80fcfa
    6 N8d0cfa78cf084d679128e021fcaa475d
    7 Na36eeb64e89143eb8e59c7fa9c564875
    8 Nabdf3ace321b4f20a42085cad76c97a3
    9 Nad18843f29d046a9bc1d7982c3623383
    10 Nb4086e797da349c599e73127194583aa
    11 anzsrc-for:11
    12 anzsrc-for:1103
    13 schema:author N965fb6baf9e34408bbf11b54169361f2
    14 schema:citation sg:pub.10.1038/528s170a
    15 schema:datePublished 2017-03-22
    16 schema:datePublishedReg 2017-03-22
    17 schema:description PurposeTo evaluate the features and trends of Radiology research in Mainland China through bibliometric analysis of the original articles published in Radiology and European Radiology (ER) between 2006 and 2015.Materials and methodsWe reviewed the original articles published in Radiology and ER between 2006 and 2015. The following information was abstracted: imaging subspecialty, imaging technique(s) used, research type, sample size, study design, statistical analysis, study results, funding declarations, international collaborations, number of authors, department and province of the first author. All variables were examined longitudinally over time.ResultsRadiology research in Mainland China saw a substantial increase in original research articles published, especially in the last 5 years (P < 0.001). Within Mainland China’s Radiology research, neuroradiology, vascular/interventional Radiology, and abdominal Radiology were the most productive fields; MR imaging was the most used modality, and a distinct geographic provenience was observed for articles published in Radiology and ER.ConclusionRadiology research in Mainland China has seen substantial growth in the past 5 years with neuroradiology, vascular/interventional Radiology, and abdominal Radiology as the most productive fields. MR imaging is the most used modality. Article provenience shows a distinct geographical pattern.Key points• Radiology research in Mainland China saw a substantial increase.• Neuroradiology, vascular/interventional Radiology, and abdominal Radiology are the most productive fields.• MRI is the most used modality in Mainland China’s Radiology research.• Guangdong, Shanghai, and Beijing are the most productive provinces.
    18 schema:genre article
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N6edef4495691415b9887986464006554
    21 Nf2cb60a5b9fc432abaf34906049eaa31
    22 sg:journal.1289120
    23 schema:keywords Abdominal Radiology
    24 Beijing
    25 China
    26 Declaration
    27 Department
    28 European Radiology
    29 Guangdong
    30 MR imaging
    31 MRI
    32 MethodsWe
    33 Province
    34 PurposeTo
    35 Shanghai
    36 analysis
    37 article
    38 authors
    39 bibliometric analysis
    40 collaboration
    41 design
    42 distinct geographical patterns
    43 features
    44 field
    45 first author
    46 following information
    47 geographic provenience
    48 geographical patterns
    49 growth
    50 imaging
    51 increase
    52 information
    53 international collaboration
    54 interventional radiology
    55 mainland China
    56 modalities
    57 neuroradiology
    58 number
    59 number of authors
    60 original articles
    61 original research articles
    62 patterns
    63 productive field
    64 productive provinces
    65 provenience
    66 radiology
    67 radiology research
    68 research
    69 research articles
    70 research type
    71 results
    72 sample size
    73 size
    74 statistical analysis
    75 study design
    76 study results
    77 subspecialty
    78 substantial growth
    79 substantial increase
    80 survey
    81 time
    82 trends
    83 types
    84 used modality
    85 variables
    86 years
    87 schema:name Radiology research in mainland China in the past 10 years: a survey of original articles published in Radiology and European Radiology
    88 schema:pagination 4379-4382
    89 schema:productId N82c93882be1d4032bf8d12c2236abecc
    90 N95a8dd0b4d9c41d1b30eca4f960c02a1
    91 Nf433d3f9f5574190a3269c607ce81fe6
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084020724
    93 https://doi.org/10.1007/s00330-016-4689-4
    94 schema:sdDatePublished 2022-11-24T21:02
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher Ncc8c3e2e98bd47529e56eda49850db40
    97 schema:url https://doi.org/10.1007/s00330-016-4689-4
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N058228fc1eb442f1b4536f89b2d350e1 rdf:first sg:person.014351275221.57
    102 rdf:rest N2dcd11d91c004aa3886589b79b53a54a
    103 N229a3177b7c14bd0b7af469ae5a15372 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Periodicals as Topic
    105 rdf:type schema:DefinedTerm
    106 N23aa19e21d2a4476b6c6e9c671f81c8f rdf:first sg:person.0601357112.86
    107 rdf:rest N8a4e9a7eb8f845e2808ad5aa1cac655f
    108 N24872c7474814402bd952b47f965821d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Biomedical Research
    110 rdf:type schema:DefinedTerm
    111 N25a3db6f196144158d278dd09cbaf371 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Bibliometrics
    113 rdf:type schema:DefinedTerm
    114 N2dcd11d91c004aa3886589b79b53a54a rdf:first sg:person.012361456755.63
    115 rdf:rest N23aa19e21d2a4476b6c6e9c671f81c8f
    116 N2e6cfe46a50e44f9bb7342cabec2e543 rdf:first sg:person.01205063242.65
    117 rdf:rest rdf:nil
    118 N3abd47ea1c1242a2b5a7826fc4ff0ad1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Humans
    120 rdf:type schema:DefinedTerm
    121 N66518270c1e24ddf9d64562bcd80fcfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Radiology
    123 rdf:type schema:DefinedTerm
    124 N6edef4495691415b9887986464006554 schema:issueNumber 10
    125 rdf:type schema:PublicationIssue
    126 N82c93882be1d4032bf8d12c2236abecc schema:name pubmed_id
    127 schema:value 28332016
    128 rdf:type schema:PropertyValue
    129 N8a4e9a7eb8f845e2808ad5aa1cac655f rdf:first sg:person.016675604433.28
    130 rdf:rest Nb6fde84b2b21443b8f7ada367b72df89
    131 N8d0cfa78cf084d679128e021fcaa475d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name China
    133 rdf:type schema:DefinedTerm
    134 N95a8dd0b4d9c41d1b30eca4f960c02a1 schema:name doi
    135 schema:value 10.1007/s00330-016-4689-4
    136 rdf:type schema:PropertyValue
    137 N965fb6baf9e34408bbf11b54169361f2 rdf:first sg:person.01263164160.87
    138 rdf:rest N058228fc1eb442f1b4536f89b2d350e1
    139 Na36eeb64e89143eb8e59c7fa9c564875 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Radiography, Abdominal
    141 rdf:type schema:DefinedTerm
    142 Nabdf3ace321b4f20a42085cad76c97a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Retrospective Studies
    144 rdf:type schema:DefinedTerm
    145 Nad18843f29d046a9bc1d7982c3623383 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Neuroradiography
    147 rdf:type schema:DefinedTerm
    148 Nb4086e797da349c599e73127194583aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Radiology, Interventional
    150 rdf:type schema:DefinedTerm
    151 Nb6fde84b2b21443b8f7ada367b72df89 rdf:first sg:person.0671033341.01
    152 rdf:rest N2e6cfe46a50e44f9bb7342cabec2e543
    153 Ncc8c3e2e98bd47529e56eda49850db40 schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 Nf2cb60a5b9fc432abaf34906049eaa31 schema:volumeNumber 27
    156 rdf:type schema:PublicationVolume
    157 Nf433d3f9f5574190a3269c607ce81fe6 schema:name dimensions_id
    158 schema:value pub.1084020724
    159 rdf:type schema:PropertyValue
    160 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Medical and Health Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Clinical Sciences
    165 rdf:type schema:DefinedTerm
    166 sg:journal.1289120 schema:issn 0938-7994
    167 1432-1084
    168 schema:name European Radiology
    169 schema:publisher Springer Nature
    170 rdf:type schema:Periodical
    171 sg:person.01205063242.65 schema:affiliation grid-institutes:grid.419696.5
    172 schema:familyName Li
    173 schema:givenName Enzhong
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205063242.65
    175 rdf:type schema:Person
    176 sg:person.012361456755.63 schema:affiliation grid-institutes:None
    177 schema:familyName Yang
    178 schema:givenName Zhen Lu
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012361456755.63
    180 rdf:type schema:Person
    181 sg:person.01263164160.87 schema:affiliation grid-institutes:None
    182 schema:familyName Zhang
    183 schema:givenName Long Jiang
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263164160.87
    185 rdf:type schema:Person
    186 sg:person.014351275221.57 schema:affiliation grid-institutes:None
    187 schema:familyName Wang
    188 schema:givenName Yun Fei
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014351275221.57
    190 rdf:type schema:Person
    191 sg:person.016675604433.28 schema:affiliation grid-institutes:grid.259828.c
    192 schema:familyName Xu
    193 schema:givenName Jiaqian
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016675604433.28
    195 rdf:type schema:Person
    196 sg:person.0601357112.86 schema:affiliation grid-institutes:grid.259828.c
    197 schema:familyName Schoepf
    198 schema:givenName U. Joseph
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601357112.86
    200 rdf:type schema:Person
    201 sg:person.0671033341.01 schema:affiliation grid-institutes:None
    202 schema:familyName Lu
    203 schema:givenName Guang Ming
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671033341.01
    205 rdf:type schema:Person
    206 sg:pub.10.1038/528s170a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052647436
    207 https://doi.org/10.1038/528s170a
    208 rdf:type schema:CreativeWork
    209 grid-institutes:None schema:alternateName Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
    210 schema:name Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
    211 rdf:type schema:Organization
    212 grid-institutes:grid.259828.c schema:alternateName Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, 29401, Charleston, SC, USA
    213 schema:name Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
    214 Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, 29401, Charleston, SC, USA
    215 rdf:type schema:Organization
    216 grid-institutes:grid.419696.5 schema:alternateName Department of Medical Science, National Natural Science Foundation of China, 100085, Beijing, China
    217 schema:name Department of Medical Science, National Natural Science Foundation of China, 100085, Beijing, China
    218 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...