Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

Sang Min Lee, Joon Beom Seo, Hye Jeon Hwang, Namkug Kim, Sang Young Oh, Jae Seung Lee, Sei Won Lee, Yeon-Mok Oh, Tae Hoon Kim

ABSTRACT

OBJECTIVES: To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. METHODS: 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. RESULTS: EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). CONCLUSIONS: The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. KEY POINTS: • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs. More... »

PAGES

2818-2827

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-016-4657-z

DOI

http://dx.doi.org/10.1007/s00330-016-4657-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008522865

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27882425


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Administration, Inhalation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anesthetics, Inhalation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exhalation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Disease, Chronic Obstructive", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Emphysema", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Dual-Energy Scanned Projection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration, Artificial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Function Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vital Capacity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Xenon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea", 
            "Department of Radiology, Research Istitute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital, 221, Eonju-ro, Gangnam-gu, 06273, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang Min", 
        "id": "sg:person.01315300754.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Joon Beom", 
        "id": "sg:person.01075642451.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075642451.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hallym University Sacred Heart Hospital", 
          "id": "https://www.grid.ac/institutes/grid.488421.3", 
          "name": [
            "Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea", 
            "Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, 14068, Anyang-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Hye Jeon", 
        "id": "sg:person.0620310313.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620310313.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Namkug", 
        "id": "sg:person.01071703113.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071703113.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Sang Young", 
        "id": "sg:person.0756344234.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756344234.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jae Seung", 
        "id": "sg:person.0716450027.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716450027.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sei Won", 
        "id": "sg:person.01034703676.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034703676.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Yeon-Mok", 
        "id": "sg:person.01051561270.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051561270.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiology, Research Istitute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital, 221, Eonju-ro, Gangnam-gu, 06273, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae Hoon", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3348/kjr.2014.15.2.286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002722666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-010-1645-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003715685", 
          "https://doi.org/10.1007/s00247-010-1645-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-010-1645-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003715685", 
          "https://doi.org/10.1007/s00247-010-1645-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e318228359a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008238275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e318228359a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008238275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.216.3.r00se21768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010726431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e318298733c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012486445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e318298733c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012486445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4736808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014406986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.12-1766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021333726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa032158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025267661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027017704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-008-0914-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033659137", 
          "https://doi.org/10.1007/s00247-008-0914-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-008-0914-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033659137", 
          "https://doi.org/10.1007/s00247-008-0914-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035067197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035067197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00113.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037677622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-4070-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041664654", 
          "https://doi.org/10.1007/s00330-015-4070-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e318274b0df", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045208342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e318274b0df", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045208342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10091502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049227218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2005.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049331116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2005.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049331116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3687891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049433737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3418-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051549659", 
          "https://doi.org/10.1007/s00330-014-3418-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.11.7624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.170.5.9574614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069321624"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "OBJECTIVES: To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs.\nMETHODS: 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed.\nRESULTS: EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R\u2009=\u2009-.744, -.562, -.737; GTI R\u2009=\u2009-.621, -.442, -.629; ATI R\u2009=\u2009-.600, -.421, -.610, respectively, p\u2009<\u20090.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p\u2009<\u20090.01).\nCONCLUSIONS: The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema.\nKEY POINTS: \u2022 The xenon ventilation change correlates with the parenchymal attenuation change. \u2022 The xenon ventilation change shows the difference between three lung areas. \u2022 The combination of attenuation and xenon can predict more accurate PFTs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-016-4657-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients", 
    "pagination": "2818-2827", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "289ad6da205d5b4a5c7c283a6f162bb669face5886f991b469e992916703ec98"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27882425"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-016-4657-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008522865"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-016-4657-z", 
      "https://app.dimensions.ai/details/publication/pub.1008522865"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-016-4657-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4657-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4657-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4657-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4657-z'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      69 URIs      40 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-016-4657-z schema:about N1436ab5b25834988ac66bd3229ec937c
2 N150aab98de1a49069dc8f6e187c4afa1
3 N1bf30d5bdb6243b9bb32d2248b107cbe
4 N370d36667ad646f293eb64a9f55d86f7
5 N3bd3c50e7cb947dca9a3b7fc18b39f12
6 N45cb86608cae47ad90e3f6e6e26cf18c
7 N4fed2aa45d6e49cd81f38ebe7b371a40
8 N571018cc30d841ae8702bfe623f3705d
9 N593d35ddb571415384f76091a204ecda
10 N5b37822ba46c46f19b890aaa838400e2
11 N61dc0f0c6e834287832fb76a2f85a0a2
12 N753e335a4ec947a7bf2596f92b8b25b8
13 N8bce3ca33e12461eb6c0284cfa9746ed
14 Na715c2bd6d5745709b0645ff0a2ee85f
15 Nacac208cb2784bf6917c8ef426d2d407
16 Nbf728774ddbc4445b8c6e7923040a38b
17 Nc7d0fc177bea44eea5b2033a07e99c4c
18 Ncdb5ab85855541f59551dbb3dd437bd4
19 Neb4d0e23406b4af495c34a1071898cbc
20 anzsrc-for:11
21 anzsrc-for:1102
22 schema:author N15dd17e4d82a41b4936c4693b6dff8b2
23 schema:citation sg:pub.10.1007/s00247-008-0914-x
24 sg:pub.10.1007/s00247-010-1645-3
25 sg:pub.10.1007/s00330-014-3418-0
26 sg:pub.10.1007/s00330-015-4070-z
27 https://doi.org/10.1016/j.acra.2005.07.009
28 https://doi.org/10.1056/nejmoa032158
29 https://doi.org/10.1097/rli.0000000000000239
30 https://doi.org/10.1097/rli.0b013e318228359a
31 https://doi.org/10.1097/rli.0b013e318274b0df
32 https://doi.org/10.1097/rti.0b013e318298733c
33 https://doi.org/10.1118/1.3687891
34 https://doi.org/10.1118/1.4736808
35 https://doi.org/10.1148/radiol.10091502
36 https://doi.org/10.1148/radiol.11110569
37 https://doi.org/10.1148/radiology.216.3.r00se21768
38 https://doi.org/10.1152/japplphysiol.00113.2013
39 https://doi.org/10.1378/chest.12-1766
40 https://doi.org/10.2214/ajr.11.7624
41 https://doi.org/10.2214/ajr.12.9843
42 https://doi.org/10.2214/ajr.170.5.9574614
43 https://doi.org/10.3348/kjr.2014.15.2.286
44 schema:datePublished 2017-07
45 schema:datePublishedReg 2017-07-01
46 schema:description OBJECTIVES: To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. METHODS: 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. RESULTS: EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). CONCLUSIONS: The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. KEY POINTS: • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N2e7d5c4038bb481f86a002cc802e35ca
51 N363d8531be224b9d8f969947995d1d5e
52 sg:journal.1289120
53 schema:name Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients
54 schema:pagination 2818-2827
55 schema:productId N0daba43cc8a248fc89b200235c0e5a9b
56 N3a008a6a291241139db5f92c976a6eb8
57 Ne16eaf1d77e84e19b6f001326b56ba68
58 Nf08960a442f84c1393f20d275566ce5c
59 Nffa99d68683a4bf6b77b763c13301eb2
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008522865
61 https://doi.org/10.1007/s00330-016-4657-z
62 schema:sdDatePublished 2019-04-11T12:27
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N17cbca7865434b55bf1c528a66ab7448
65 schema:url https://link.springer.com/10.1007%2Fs00330-016-4657-z
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0daba43cc8a248fc89b200235c0e5a9b schema:name readcube_id
70 schema:value 289ad6da205d5b4a5c7c283a6f162bb669face5886f991b469e992916703ec98
71 rdf:type schema:PropertyValue
72 N1436ab5b25834988ac66bd3229ec937c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Male
74 rdf:type schema:DefinedTerm
75 N150aab98de1a49069dc8f6e187c4afa1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Pulmonary Emphysema
77 rdf:type schema:DefinedTerm
78 N15dd17e4d82a41b4936c4693b6dff8b2 rdf:first sg:person.01315300754.59
79 rdf:rest N80e582b882c3477a955a3f2857e7a7e3
80 N172e3558198a4f71aa3f947c03f1c559 rdf:first sg:person.01071703113.37
81 rdf:rest N66fcd125398c40a1baf80c2f0438f68a
82 N17cbca7865434b55bf1c528a66ab7448 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N1a48e86ad65e47a0a9c15dcbf11f43a3 rdf:first sg:person.01051561270.25
85 rdf:rest N3dc4924bb12241d99e7598f685e08029
86 N1bf30d5bdb6243b9bb32d2248b107cbe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Middle Aged
88 rdf:type schema:DefinedTerm
89 N2e7d5c4038bb481f86a002cc802e35ca schema:issueNumber 7
90 rdf:type schema:PublicationIssue
91 N363d8531be224b9d8f969947995d1d5e schema:volumeNumber 27
92 rdf:type schema:PublicationVolume
93 N370d36667ad646f293eb64a9f55d86f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Air
95 rdf:type schema:DefinedTerm
96 N3a008a6a291241139db5f92c976a6eb8 schema:name doi
97 schema:value 10.1007/s00330-016-4657-z
98 rdf:type schema:PropertyValue
99 N3bd3c50e7cb947dca9a3b7fc18b39f12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Radiography, Dual-Energy Scanned Projection
101 rdf:type schema:DefinedTerm
102 N3dc4924bb12241d99e7598f685e08029 rdf:first N9a7ae6b75e2d438690eed9f113d6b12d
103 rdf:rest rdf:nil
104 N45cb86608cae47ad90e3f6e6e26cf18c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Aged
106 rdf:type schema:DefinedTerm
107 N4fed2aa45d6e49cd81f38ebe7b371a40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Respiratory Function Tests
109 rdf:type schema:DefinedTerm
110 N571018cc30d841ae8702bfe623f3705d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Anesthetics, Inhalation
112 rdf:type schema:DefinedTerm
113 N593d35ddb571415384f76091a204ecda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Prospective Studies
115 rdf:type schema:DefinedTerm
116 N5b37822ba46c46f19b890aaa838400e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Xenon
118 rdf:type schema:DefinedTerm
119 N61dc0f0c6e834287832fb76a2f85a0a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Exhalation
121 rdf:type schema:DefinedTerm
122 N66fcd125398c40a1baf80c2f0438f68a rdf:first sg:person.0756344234.57
123 rdf:rest N6ca84f5d7bdc43878df7d2f7acdae5da
124 N6ca84f5d7bdc43878df7d2f7acdae5da rdf:first sg:person.0716450027.12
125 rdf:rest Nad7bcfd6a9bf40b3a6dbe4bed99cf69c
126 N753e335a4ec947a7bf2596f92b8b25b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Vital Capacity
128 rdf:type schema:DefinedTerm
129 N80e582b882c3477a955a3f2857e7a7e3 rdf:first sg:person.01075642451.63
130 rdf:rest Ne931b50608624d69be3bee086ab9ede2
131 N8bce3ca33e12461eb6c0284cfa9746ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Tomography, X-Ray Computed
133 rdf:type schema:DefinedTerm
134 N9a7ae6b75e2d438690eed9f113d6b12d schema:affiliation https://www.grid.ac/institutes/grid.15444.30
135 schema:familyName Kim
136 schema:givenName Tae Hoon
137 rdf:type schema:Person
138 Na715c2bd6d5745709b0645ff0a2ee85f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Administration, Inhalation
140 rdf:type schema:DefinedTerm
141 Nacac208cb2784bf6917c8ef426d2d407 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Pulmonary Disease, Chronic Obstructive
143 rdf:type schema:DefinedTerm
144 Nad7bcfd6a9bf40b3a6dbe4bed99cf69c rdf:first sg:person.01034703676.66
145 rdf:rest N1a48e86ad65e47a0a9c15dcbf11f43a3
146 Nbf728774ddbc4445b8c6e7923040a38b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Lung
148 rdf:type schema:DefinedTerm
149 Nc7d0fc177bea44eea5b2033a07e99c4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Respiration, Artificial
151 rdf:type schema:DefinedTerm
152 Ncdb5ab85855541f59551dbb3dd437bd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Female
154 rdf:type schema:DefinedTerm
155 Ne16eaf1d77e84e19b6f001326b56ba68 schema:name dimensions_id
156 schema:value pub.1008522865
157 rdf:type schema:PropertyValue
158 Ne931b50608624d69be3bee086ab9ede2 rdf:first sg:person.0620310313.15
159 rdf:rest N172e3558198a4f71aa3f947c03f1c559
160 Neb4d0e23406b4af495c34a1071898cbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Humans
162 rdf:type schema:DefinedTerm
163 Nf08960a442f84c1393f20d275566ce5c schema:name pubmed_id
164 schema:value 27882425
165 rdf:type schema:PropertyValue
166 Nffa99d68683a4bf6b77b763c13301eb2 schema:name nlm_unique_id
167 schema:value 9114774
168 rdf:type schema:PropertyValue
169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
170 schema:name Medical and Health Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
173 schema:name Cardiorespiratory Medicine and Haematology
174 rdf:type schema:DefinedTerm
175 sg:journal.1289120 schema:issn 0938-7994
176 1432-1084
177 schema:name European Radiology
178 rdf:type schema:Periodical
179 sg:person.01034703676.66 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
180 schema:familyName Lee
181 schema:givenName Sei Won
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034703676.66
183 rdf:type schema:Person
184 sg:person.01051561270.25 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
185 schema:familyName Oh
186 schema:givenName Yeon-Mok
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051561270.25
188 rdf:type schema:Person
189 sg:person.01071703113.37 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
190 schema:familyName Kim
191 schema:givenName Namkug
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071703113.37
193 rdf:type schema:Person
194 sg:person.01075642451.63 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
195 schema:familyName Seo
196 schema:givenName Joon Beom
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075642451.63
198 rdf:type schema:Person
199 sg:person.01315300754.59 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
200 schema:familyName Lee
201 schema:givenName Sang Min
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59
203 rdf:type schema:Person
204 sg:person.0620310313.15 schema:affiliation https://www.grid.ac/institutes/grid.488421.3
205 schema:familyName Hwang
206 schema:givenName Hye Jeon
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620310313.15
208 rdf:type schema:Person
209 sg:person.0716450027.12 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
210 schema:familyName Lee
211 schema:givenName Jae Seung
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716450027.12
213 rdf:type schema:Person
214 sg:person.0756344234.57 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
215 schema:familyName Oh
216 schema:givenName Sang Young
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756344234.57
218 rdf:type schema:Person
219 sg:pub.10.1007/s00247-008-0914-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033659137
220 https://doi.org/10.1007/s00247-008-0914-x
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00247-010-1645-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003715685
223 https://doi.org/10.1007/s00247-010-1645-3
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00330-014-3418-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051549659
226 https://doi.org/10.1007/s00330-014-3418-0
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00330-015-4070-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041664654
229 https://doi.org/10.1007/s00330-015-4070-z
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.acra.2005.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049331116
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1056/nejmoa032158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025267661
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1097/rli.0000000000000239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035067197
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1097/rli.0b013e318228359a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008238275
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1097/rli.0b013e318274b0df schema:sameAs https://app.dimensions.ai/details/publication/pub.1045208342
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1097/rti.0b013e318298733c schema:sameAs https://app.dimensions.ai/details/publication/pub.1012486445
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1118/1.3687891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049433737
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1118/1.4736808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014406986
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1148/radiol.10091502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049227218
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1148/radiol.11110569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027017704
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1148/radiology.216.3.r00se21768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010726431
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1152/japplphysiol.00113.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037677622
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1378/chest.12-1766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021333726
256 rdf:type schema:CreativeWork
257 https://doi.org/10.2214/ajr.11.7624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302065
258 rdf:type schema:CreativeWork
259 https://doi.org/10.2214/ajr.12.9843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303000
260 rdf:type schema:CreativeWork
261 https://doi.org/10.2214/ajr.170.5.9574614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069321624
262 rdf:type schema:CreativeWork
263 https://doi.org/10.3348/kjr.2014.15.2.286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002722666
264 rdf:type schema:CreativeWork
265 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
266 schema:name Department of Radiology, Research Istitute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital, 221, Eonju-ro, Gangnam-gu, 06273, Seoul, Republic of Korea
267 Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.413967.e schema:alternateName Asan Medical Center
270 schema:name Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
271 Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
272 rdf:type schema:Organization
273 https://www.grid.ac/institutes/grid.488421.3 schema:alternateName Hallym University Sacred Heart Hospital
274 schema:name Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, 14068, Anyang-si, Gyeonggi-do, Republic of Korea
275 Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...