Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

Sang Min Lee, Joon Beom Seo, Hye Jeon Hwang, Namkug Kim, Sang Young Oh, Jae Seung Lee, Sei Won Lee, Yeon-Mok Oh, Tae Hoon Kim

ABSTRACT

OBJECTIVES: To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. METHODS: 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. RESULTS: EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). CONCLUSIONS: The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. KEY POINTS: • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs. More... »

PAGES

2818-2827

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-016-4657-z

DOI

http://dx.doi.org/10.1007/s00330-016-4657-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008522865

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27882425


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Administration, Inhalation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anesthetics, Inhalation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exhalation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Disease, Chronic Obstructive", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Emphysema", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Dual-Energy Scanned Projection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiration, Artificial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Respiratory Function Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vital Capacity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Xenon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea", 
            "Department of Radiology, Research Istitute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital, 221, Eonju-ro, Gangnam-gu, 06273, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang Min", 
        "id": "sg:person.01315300754.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seo", 
        "givenName": "Joon Beom", 
        "id": "sg:person.01075642451.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075642451.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hallym University Sacred Heart Hospital", 
          "id": "https://www.grid.ac/institutes/grid.488421.3", 
          "name": [
            "Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea", 
            "Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, 14068, Anyang-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Hye Jeon", 
        "id": "sg:person.0620310313.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620310313.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Namkug", 
        "id": "sg:person.01071703113.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071703113.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Sang Young", 
        "id": "sg:person.0756344234.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756344234.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jae Seung", 
        "id": "sg:person.0716450027.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716450027.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sei Won", 
        "id": "sg:person.01034703676.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034703676.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Asan Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Yeon-Mok", 
        "id": "sg:person.01051561270.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051561270.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiology, Research Istitute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital, 221, Eonju-ro, Gangnam-gu, 06273, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae Hoon", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3348/kjr.2014.15.2.286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002722666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-010-1645-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003715685", 
          "https://doi.org/10.1007/s00247-010-1645-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-010-1645-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003715685", 
          "https://doi.org/10.1007/s00247-010-1645-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e318228359a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008238275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e318228359a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008238275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.216.3.r00se21768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010726431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e318298733c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012486445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e318298733c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012486445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4736808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014406986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.12-1766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021333726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa032158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025267661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11110569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027017704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-008-0914-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033659137", 
          "https://doi.org/10.1007/s00247-008-0914-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-008-0914-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033659137", 
          "https://doi.org/10.1007/s00247-008-0914-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035067197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035067197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00113.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037677622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-4070-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041664654", 
          "https://doi.org/10.1007/s00330-015-4070-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e318274b0df", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045208342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e318274b0df", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045208342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10091502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049227218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2005.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049331116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2005.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049331116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3687891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049433737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3418-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051549659", 
          "https://doi.org/10.1007/s00330-014-3418-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.11.7624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069303000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.170.5.9574614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069321624"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "OBJECTIVES: To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs.\nMETHODS: 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed.\nRESULTS: EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R\u2009=\u2009-.744, -.562, -.737; GTI R\u2009=\u2009-.621, -.442, -.629; ATI R\u2009=\u2009-.600, -.421, -.610, respectively, p\u2009<\u20090.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p\u2009<\u20090.01).\nCONCLUSIONS: The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema.\nKEY POINTS: \u2022 The xenon ventilation change correlates with the parenchymal attenuation change. \u2022 The xenon ventilation change shows the difference between three lung areas. \u2022 The combination of attenuation and xenon can predict more accurate PFTs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-016-4657-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients", 
    "pagination": "2818-2827", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "289ad6da205d5b4a5c7c283a6f162bb669face5886f991b469e992916703ec98"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27882425"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-016-4657-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008522865"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-016-4657-z", 
      "https://app.dimensions.ai/details/publication/pub.1008522865"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-016-4657-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4657-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4657-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4657-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4657-z'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      69 URIs      40 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-016-4657-z schema:about N09fe88b977c64a3ebfeef6fbacc6cb68
2 N16f18d51f62540498775a5d83986854d
3 N1f445dac86d4473b948cb1efb020642b
4 N228f62c52f4a464587a09018ee7c0253
5 N26c167683ca0487db263491b81a07444
6 N3b5812b5e47a4c4dba95da675d1c447a
7 N3c3df3ee41d84ae9a82c4df6fefeace0
8 N4a9ef2373cfa4f4980727e933361ce4c
9 N51eeca13ceac4e89b61d1a5d9ff91205
10 N5dbc2c8fd2d546d7b40da72303429854
11 N6065b075e0d7496db2499896af4ee6a6
12 N622904c7817749b9987c299c9335d65a
13 N69f2938171f446958a56dfd04d6ad823
14 N70c7102198684578979c3c132b386925
15 N8ff778c9188c494f887890aa063a2351
16 N9950371be88e4ed39c99f09310fa5bec
17 Naa843ed1db044c2b93b3da3181208568
18 Nadcd29692e5644699b6991ae4046ae8c
19 Nd11b80960a8a4414ac141a87fde300c1
20 anzsrc-for:11
21 anzsrc-for:1102
22 schema:author N13fcb811ddef4d5a85bb27de1ad96dc0
23 schema:citation sg:pub.10.1007/s00247-008-0914-x
24 sg:pub.10.1007/s00247-010-1645-3
25 sg:pub.10.1007/s00330-014-3418-0
26 sg:pub.10.1007/s00330-015-4070-z
27 https://doi.org/10.1016/j.acra.2005.07.009
28 https://doi.org/10.1056/nejmoa032158
29 https://doi.org/10.1097/rli.0000000000000239
30 https://doi.org/10.1097/rli.0b013e318228359a
31 https://doi.org/10.1097/rli.0b013e318274b0df
32 https://doi.org/10.1097/rti.0b013e318298733c
33 https://doi.org/10.1118/1.3687891
34 https://doi.org/10.1118/1.4736808
35 https://doi.org/10.1148/radiol.10091502
36 https://doi.org/10.1148/radiol.11110569
37 https://doi.org/10.1148/radiology.216.3.r00se21768
38 https://doi.org/10.1152/japplphysiol.00113.2013
39 https://doi.org/10.1378/chest.12-1766
40 https://doi.org/10.2214/ajr.11.7624
41 https://doi.org/10.2214/ajr.12.9843
42 https://doi.org/10.2214/ajr.170.5.9574614
43 https://doi.org/10.3348/kjr.2014.15.2.286
44 schema:datePublished 2017-07
45 schema:datePublishedReg 2017-07-01
46 schema:description OBJECTIVES: To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. METHODS: 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. RESULTS: EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). CONCLUSIONS: The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. KEY POINTS: • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf Nb5a9ea7375604ddcbaca170c14ba18cb
51 Ne61fcb35c33841d0917f19965f3a288d
52 sg:journal.1289120
53 schema:name Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients
54 schema:pagination 2818-2827
55 schema:productId N0dfefcefb77944b78477a23c46093164
56 N1b8352f498014707bbc42dc19c88b28c
57 N56150293e4784d27997a9d23c80b1c90
58 Nb604a338d6fb4319b8c711e50342c72f
59 Nc62cbd8797e040f6a565463375bf7da6
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008522865
61 https://doi.org/10.1007/s00330-016-4657-z
62 schema:sdDatePublished 2019-04-11T12:27
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Ndbffca9023db443cac2819eafe2e8bcb
65 schema:url https://link.springer.com/10.1007%2Fs00330-016-4657-z
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N09fe88b977c64a3ebfeef6fbacc6cb68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Respiration, Artificial
71 rdf:type schema:DefinedTerm
72 N0dfefcefb77944b78477a23c46093164 schema:name pubmed_id
73 schema:value 27882425
74 rdf:type schema:PropertyValue
75 N12887b1710bc46c1b5b4ef8c5bca040c rdf:first sg:person.0756344234.57
76 rdf:rest Nb29474328f2247e38e0c3a8d59399334
77 N13fcb811ddef4d5a85bb27de1ad96dc0 rdf:first sg:person.01315300754.59
78 rdf:rest N8529650371354371b28ce8ca3a0152b4
79 N16f18d51f62540498775a5d83986854d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Respiratory Function Tests
81 rdf:type schema:DefinedTerm
82 N1ad0633ab30541b7b0b1cbf391adec37 rdf:first sg:person.01034703676.66
83 rdf:rest N79e73b66fabd43cd87667bc9c4498cfa
84 N1b8352f498014707bbc42dc19c88b28c schema:name nlm_unique_id
85 schema:value 9114774
86 rdf:type schema:PropertyValue
87 N1f445dac86d4473b948cb1efb020642b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Middle Aged
89 rdf:type schema:DefinedTerm
90 N1f5e71a207034eb484fb0e44c4f8ed05 rdf:first N94894dedcffb4c89913a1a78c99be04c
91 rdf:rest rdf:nil
92 N228f62c52f4a464587a09018ee7c0253 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Exhalation
94 rdf:type schema:DefinedTerm
95 N26c167683ca0487db263491b81a07444 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Pulmonary Emphysema
97 rdf:type schema:DefinedTerm
98 N3b5812b5e47a4c4dba95da675d1c447a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Air
100 rdf:type schema:DefinedTerm
101 N3c3df3ee41d84ae9a82c4df6fefeace0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Pulmonary Disease, Chronic Obstructive
103 rdf:type schema:DefinedTerm
104 N4a9ef2373cfa4f4980727e933361ce4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Xenon
106 rdf:type schema:DefinedTerm
107 N51eeca13ceac4e89b61d1a5d9ff91205 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Prospective Studies
109 rdf:type schema:DefinedTerm
110 N5412df008544477b95e99ded11a80f45 rdf:first sg:person.01071703113.37
111 rdf:rest N12887b1710bc46c1b5b4ef8c5bca040c
112 N56150293e4784d27997a9d23c80b1c90 schema:name readcube_id
113 schema:value 289ad6da205d5b4a5c7c283a6f162bb669face5886f991b469e992916703ec98
114 rdf:type schema:PropertyValue
115 N5dbc2c8fd2d546d7b40da72303429854 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Radiography, Dual-Energy Scanned Projection
117 rdf:type schema:DefinedTerm
118 N6065b075e0d7496db2499896af4ee6a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Tomography, X-Ray Computed
120 rdf:type schema:DefinedTerm
121 N622904c7817749b9987c299c9335d65a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Aged
123 rdf:type schema:DefinedTerm
124 N69f2938171f446958a56dfd04d6ad823 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Lung
126 rdf:type schema:DefinedTerm
127 N70c7102198684578979c3c132b386925 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Vital Capacity
129 rdf:type schema:DefinedTerm
130 N79e73b66fabd43cd87667bc9c4498cfa rdf:first sg:person.01051561270.25
131 rdf:rest N1f5e71a207034eb484fb0e44c4f8ed05
132 N8529650371354371b28ce8ca3a0152b4 rdf:first sg:person.01075642451.63
133 rdf:rest Nb7c921d0eda548988b2c25631dfe675b
134 N8ff778c9188c494f887890aa063a2351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Female
136 rdf:type schema:DefinedTerm
137 N94894dedcffb4c89913a1a78c99be04c schema:affiliation https://www.grid.ac/institutes/grid.15444.30
138 schema:familyName Kim
139 schema:givenName Tae Hoon
140 rdf:type schema:Person
141 N9950371be88e4ed39c99f09310fa5bec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Anesthetics, Inhalation
143 rdf:type schema:DefinedTerm
144 Naa843ed1db044c2b93b3da3181208568 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 Nadcd29692e5644699b6991ae4046ae8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Administration, Inhalation
149 rdf:type schema:DefinedTerm
150 Nb29474328f2247e38e0c3a8d59399334 rdf:first sg:person.0716450027.12
151 rdf:rest N1ad0633ab30541b7b0b1cbf391adec37
152 Nb5a9ea7375604ddcbaca170c14ba18cb schema:volumeNumber 27
153 rdf:type schema:PublicationVolume
154 Nb604a338d6fb4319b8c711e50342c72f schema:name doi
155 schema:value 10.1007/s00330-016-4657-z
156 rdf:type schema:PropertyValue
157 Nb7c921d0eda548988b2c25631dfe675b rdf:first sg:person.0620310313.15
158 rdf:rest N5412df008544477b95e99ded11a80f45
159 Nc62cbd8797e040f6a565463375bf7da6 schema:name dimensions_id
160 schema:value pub.1008522865
161 rdf:type schema:PropertyValue
162 Nd11b80960a8a4414ac141a87fde300c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Male
164 rdf:type schema:DefinedTerm
165 Ndbffca9023db443cac2819eafe2e8bcb schema:name Springer Nature - SN SciGraph project
166 rdf:type schema:Organization
167 Ne61fcb35c33841d0917f19965f3a288d schema:issueNumber 7
168 rdf:type schema:PublicationIssue
169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
170 schema:name Medical and Health Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
173 schema:name Cardiorespiratory Medicine and Haematology
174 rdf:type schema:DefinedTerm
175 sg:journal.1289120 schema:issn 0938-7994
176 1432-1084
177 schema:name European Radiology
178 rdf:type schema:Periodical
179 sg:person.01034703676.66 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
180 schema:familyName Lee
181 schema:givenName Sei Won
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034703676.66
183 rdf:type schema:Person
184 sg:person.01051561270.25 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
185 schema:familyName Oh
186 schema:givenName Yeon-Mok
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051561270.25
188 rdf:type schema:Person
189 sg:person.01071703113.37 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
190 schema:familyName Kim
191 schema:givenName Namkug
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071703113.37
193 rdf:type schema:Person
194 sg:person.01075642451.63 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
195 schema:familyName Seo
196 schema:givenName Joon Beom
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075642451.63
198 rdf:type schema:Person
199 sg:person.01315300754.59 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
200 schema:familyName Lee
201 schema:givenName Sang Min
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59
203 rdf:type schema:Person
204 sg:person.0620310313.15 schema:affiliation https://www.grid.ac/institutes/grid.488421.3
205 schema:familyName Hwang
206 schema:givenName Hye Jeon
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620310313.15
208 rdf:type schema:Person
209 sg:person.0716450027.12 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
210 schema:familyName Lee
211 schema:givenName Jae Seung
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716450027.12
213 rdf:type schema:Person
214 sg:person.0756344234.57 schema:affiliation https://www.grid.ac/institutes/grid.413967.e
215 schema:familyName Oh
216 schema:givenName Sang Young
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756344234.57
218 rdf:type schema:Person
219 sg:pub.10.1007/s00247-008-0914-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033659137
220 https://doi.org/10.1007/s00247-008-0914-x
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00247-010-1645-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003715685
223 https://doi.org/10.1007/s00247-010-1645-3
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00330-014-3418-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051549659
226 https://doi.org/10.1007/s00330-014-3418-0
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00330-015-4070-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041664654
229 https://doi.org/10.1007/s00330-015-4070-z
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.acra.2005.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049331116
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1056/nejmoa032158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025267661
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1097/rli.0000000000000239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035067197
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1097/rli.0b013e318228359a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008238275
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1097/rli.0b013e318274b0df schema:sameAs https://app.dimensions.ai/details/publication/pub.1045208342
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1097/rti.0b013e318298733c schema:sameAs https://app.dimensions.ai/details/publication/pub.1012486445
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1118/1.3687891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049433737
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1118/1.4736808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014406986
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1148/radiol.10091502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049227218
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1148/radiol.11110569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027017704
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1148/radiology.216.3.r00se21768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010726431
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1152/japplphysiol.00113.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037677622
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1378/chest.12-1766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021333726
256 rdf:type schema:CreativeWork
257 https://doi.org/10.2214/ajr.11.7624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302065
258 rdf:type schema:CreativeWork
259 https://doi.org/10.2214/ajr.12.9843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069303000
260 rdf:type schema:CreativeWork
261 https://doi.org/10.2214/ajr.170.5.9574614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069321624
262 rdf:type schema:CreativeWork
263 https://doi.org/10.3348/kjr.2014.15.2.286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002722666
264 rdf:type schema:CreativeWork
265 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
266 schema:name Department of Radiology, Research Istitute of Radiological Science, Yonsei University College of Medicine, Gangnam Severance Hospital, 221, Eonju-ro, Gangnam-gu, 06273, Seoul, Republic of Korea
267 Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.413967.e schema:alternateName Asan Medical Center
270 schema:name Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
271 Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
272 rdf:type schema:Organization
273 https://www.grid.ac/institutes/grid.488421.3 schema:alternateName Hallym University Sacred Heart Hospital
274 schema:name Department of Radiology, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, 22, Gwanpyeong-ro 170beon-gil, Dongan-gu, 14068, Anyang-si, Gyeonggi-do, Republic of Korea
275 Division of Cardiothoracic Radiology, Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Republic of Korea
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...