Ontology type: schema:ScholarlyArticle
2017-04
AUTHORSEmad Lotfalizadeh, Maxime Ronot, Mathilde Wagner, Jérôme Cros, Anne Couvelard, Marie-Pierre Vullierme, Wassim Allaham, Olivia Hentic, Philippe Ruzniewski, Valérie Vilgrain
ABSTRACTOBJECTIVES: To evaluate the value of MR imaging including diffusion-weighted imaging (DWI) for the grading of pancreatic neuroendocrine tumours (pNET). MATERIAL AND METHODS: Between 2006 and 2014, all resected pNETs with preoperative MR imaging including DWI were included. Tumour grading was based on the 2010 WHO classification. MR imaging features included size, T1-w, and T2-w signal intensity, enhancement pattern, apparent (ADC) and true diffusion (D) coefficients. RESULTS: One hundred and eight pNETs (mean 40 ± 33 mm) were evaluated in 94 patients (48 women, 51 %, mean age 52 ± 12). Fifty-five (51 %), 42 (39 %), and 11 (10 %) tumours were given the following grades (G): G1, G2, and G3. Mean ADC and D values were significantly lower as grade increased (ADC: 2.13 ± 0.70, 1.78 ± 0.72, and 0.86 ± 0.22 10-3 mm2/s, and D: 1.92 ± 0.70, 1.75 ± 0.74, and 0.82 ± 0.19 10-3 mm2/s G1, G2, and G3, all p < 0.001). A higher grade was associated with larger sized tumours (p < 0.001). The AUROC of ADC and D to differentiate G3 and G1-2 were 0.96 ± 0.02 and 0.95 ± 0.02. Optimal cut-off values for the identification of G3 were 1.19 10-3 mm2/s for ADC (sensitivity 100 %, specificity 92 %) and 1.04 10-3 mm2/s for D (sensitivity 82 %, specificity 92 %). CONCLUSION: Morphological/functional MRI features of pNETS depend on tumour grade. DWI is useful for the identification of high-grade tumours. KEY POINTS: • Morphological and functional MRI features of pNETs depend on tumour grade. • Their combination has a high predictive value for grade. • All pNETs should be explored by MR imaging including DWI. • DWI is helpful for identification of high-grade and poorly-differentiated tumours. More... »
PAGES1748-1759
http://scigraph.springernature.com/pub.10.1007/s00330-016-4539-4
DOIhttp://dx.doi.org/10.1007/s00330-016-4539-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1043979657
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/27543074
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oncology and Carcinogenesis",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Adult",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Diffusion Magnetic Resonance Imaging",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Female",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Magnetic Resonance Imaging",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Male",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Middle Aged",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neoplasm Grading",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neuroendocrine Tumors",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Pancreatic Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Retrospective Studies",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sensitivity and Specificity",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
],
"type": "Organization"
},
"familyName": "Lotfalizadeh",
"givenName": "Emad",
"id": "sg:person.0773101051.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773101051.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Research on Inflammation",
"id": "https://www.grid.ac/institutes/grid.462374.0",
"name": [
"Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France",
"University Paris Diderot, Sorbonne Paris Cit\u00e9, Paris, France",
"INSERM U1149, Centre de Recherche Biom\u00e9dicale Bichat-Beaujon, CRB3, Paris, France"
],
"type": "Organization"
},
"familyName": "Ronot",
"givenName": "Maxime",
"id": "sg:person.01025534354.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025534354.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Research on Inflammation",
"id": "https://www.grid.ac/institutes/grid.462374.0",
"name": [
"Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France",
"INSERM U1149, Centre de Recherche Biom\u00e9dicale Bichat-Beaujon, CRB3, Paris, France"
],
"type": "Organization"
},
"familyName": "Wagner",
"givenName": "Mathilde",
"id": "sg:person.01034526661.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034526661.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"University Paris Diderot, Sorbonne Paris Cit\u00e9, Paris, France",
"Department of Pathology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
],
"type": "Organization"
},
"familyName": "Cros",
"givenName": "J\u00e9r\u00f4me",
"id": "sg:person.01362452660.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362452660.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"University Paris Diderot, Sorbonne Paris Cit\u00e9, Paris, France",
"Department of Pathology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
],
"type": "Organization"
},
"familyName": "Couvelard",
"givenName": "Anne",
"id": "sg:person.0751137045.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751137045.27"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
],
"type": "Organization"
},
"familyName": "Vullierme",
"givenName": "Marie-Pierre",
"id": "sg:person.01231224366.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231224366.16"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
],
"type": "Organization"
},
"familyName": "Allaham",
"givenName": "Wassim",
"id": "sg:person.016703273335.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016703273335.19"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Gastroenterology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
],
"type": "Organization"
},
"familyName": "Hentic",
"givenName": "Olivia",
"id": "sg:person.0736275266.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736275266.26"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Gastroenterology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
],
"type": "Organization"
},
"familyName": "Ruzniewski",
"givenName": "Philippe",
"id": "sg:person.01370250556.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370250556.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Research on Inflammation",
"id": "https://www.grid.ac/institutes/grid.462374.0",
"name": [
"Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France",
"University Paris Diderot, Sorbonne Paris Cit\u00e9, Paris, France",
"INSERM U1149, Centre de Recherche Biom\u00e9dicale Bichat-Beaujon, CRB3, Paris, France"
],
"type": "Organization"
},
"familyName": "Vilgrain",
"givenName": "Val\u00e9rie",
"id": "sg:person.0761705775.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1111/cyt.12111",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000418889"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-014-3532-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000685045",
"https://doi.org/10.1007/s00330-014-3532-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.2501080291",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002751825"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-015-3961-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007889033",
"https://doi.org/10.1007/s00330-015-3961-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1159/000085237",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008013264"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/rli.0000000000000187",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010617710"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/rli.0000000000000187",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010617710"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/rli.0000000000000187",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010617710"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/rli.0000000000000028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013917191"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/rli.0000000000000028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013917191"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/rli.0000000000000028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013917191"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/annonc/mdm552",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014219345"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1245/s10434-014-3701-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014658536",
"https://doi.org/10.1245/s10434-014-3701-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-014-3317-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014739166",
"https://doi.org/10.1007/s00330-014-3317-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/jmri.22541",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015968638"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1245/s10434-014-3769-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019003592",
"https://doi.org/10.1245/s10434-014-3769-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.surg.2013.08.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019620856"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/raon-2015-0032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021086359"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-015-3941-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021218941",
"https://doi.org/10.1007/s00330-015-3941-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/modpathol.2010.58",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030906016",
"https://doi.org/10.1038/modpathol.2010.58"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002619900194",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030979490",
"https://doi.org/10.1007/s002619900194"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1530/erc-11-0013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033637039"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ajg.2009.747",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033943859",
"https://doi.org/10.1038/ajg.2009.747"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ajg.2009.747",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033943859",
"https://doi.org/10.1038/ajg.2009.747"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ajg.2009.747",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033943859",
"https://doi.org/10.1038/ajg.2009.747"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1136/gutjnl-2011-300831",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035811611"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-013-2929-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036947735",
"https://doi.org/10.1007/s00330-013-2929-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.surg.2011.02.022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037711853"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1200/jco.2007.15.4377",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037736197"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/mpa.0b013e3181ec124e",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038077233"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/mpa.0b013e3181ec124e",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038077233"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1159/000090026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038545312"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cncy.20014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040238673"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.13121628",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040364972"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.13122712",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040711156"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11605-007-0263-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041158307",
"https://doi.org/10.1007/s11605-007-0263-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.diii.2013.02.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042041027"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ejrad.2012.01.032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042365499"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-014-3485-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045924330",
"https://doi.org/10.1007/s00330-014-3485-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00428-010-0924-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046405040",
"https://doi.org/10.1007/s00428-010-0924-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00428-010-0924-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046405040",
"https://doi.org/10.1007/s00428-010-0924-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-015-3943-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048517747",
"https://doi.org/10.1007/s00330-015-3943-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00261-015-0524-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048532470",
"https://doi.org/10.1007/s00261-015-0524-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.dld.2015.06.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052332693"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1055/s-0033-1344958",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057289079"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1055/s-0033-1359133",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057300623"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1210/jc.2013-2604",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064294490"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0284185113494982",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1078763216"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0284185113494982",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1078763216"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1079189605",
"type": "CreativeWork"
}
],
"datePublished": "2017-04",
"datePublishedReg": "2017-04-01",
"description": "OBJECTIVES: To evaluate the value of MR imaging including diffusion-weighted imaging (DWI) for the grading of pancreatic neuroendocrine tumours (pNET).\nMATERIAL AND METHODS: Between 2006 and 2014, all resected pNETs with preoperative MR imaging including DWI were included. Tumour grading was based on the 2010 WHO classification. MR imaging features included size, T1-w, and T2-w signal intensity, enhancement pattern, apparent (ADC) and true diffusion (D) coefficients.\nRESULTS: One hundred and eight pNETs (mean 40\u2009\u00b1\u200933\u00a0mm) were evaluated in 94 patients (48 women, 51\u00a0%, mean age 52\u2009\u00b1\u200912). Fifty-five (51\u00a0%), 42 (39\u00a0%), and 11 (10\u00a0%) tumours were given the following grades (G): G1, G2, and G3. Mean ADC and D values were significantly lower as grade increased (ADC: 2.13\u2009\u00b1\u20090.70, 1.78\u2009\u00b1\u20090.72, and 0.86\u2009\u00b1\u20090.22 10-3 mm2/s, and D: 1.92\u2009\u00b1\u20090.70, 1.75\u2009\u00b1\u20090.74, and 0.82\u2009\u00b1\u20090.19 10-3 mm2/s G1, G2, and G3, all p\u2009<\u20090.001). A higher grade was associated with larger sized tumours (p\u2009<\u20090.001). The AUROC of ADC and D to differentiate G3 and G1-2 were 0.96\u2009\u00b1\u20090.02 and 0.95\u2009\u00b1\u20090.02. Optimal cut-off values for the identification of G3 were 1.19 10-3 mm2/s for ADC (sensitivity 100\u00a0%, specificity 92\u00a0%) and 1.04 10-3 mm2/s for D (sensitivity 82\u00a0%, specificity 92\u00a0%).\nCONCLUSION: Morphological/functional MRI features of pNETS depend on tumour grade. DWI is useful for the identification of high-grade tumours.\nKEY POINTS: \u2022 Morphological and functional MRI features of pNETs depend on tumour grade. \u2022 Their combination has a high predictive value for grade. \u2022 All pNETs should be explored by MR imaging including DWI. \u2022 DWI is helpful for identification of high-grade and poorly-differentiated tumours.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00330-016-4539-4",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1289120",
"issn": [
"0938-7994",
"1432-1084"
],
"name": "European Radiology",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "27"
}
],
"name": "Prediction of pancreatic neuroendocrine tumour grade with MR imaging features: added value of diffusion-weighted imaging",
"pagination": "1748-1759",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"d17d71204d5fde07dc085813913aafe16e7503349a7dd56f74c377e62e9ae792"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"27543074"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"9114774"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00330-016-4539-4"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1043979657"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00330-016-4539-4",
"https://app.dimensions.ai/details/publication/pub.1043979657"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00330-016-4539-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4539-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4539-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4539-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4539-4'
This table displays all metadata directly associated to this object as RDF triples.
337 TRIPLES
21 PREDICATES
83 URIs
34 LITERALS
22 BLANK NODES