Prediction of pancreatic neuroendocrine tumour grade with MR imaging features: added value of diffusion-weighted imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04

AUTHORS

Emad Lotfalizadeh, Maxime Ronot, Mathilde Wagner, Jérôme Cros, Anne Couvelard, Marie-Pierre Vullierme, Wassim Allaham, Olivia Hentic, Philippe Ruzniewski, Valérie Vilgrain

ABSTRACT

OBJECTIVES: To evaluate the value of MR imaging including diffusion-weighted imaging (DWI) for the grading of pancreatic neuroendocrine tumours (pNET). MATERIAL AND METHODS: Between 2006 and 2014, all resected pNETs with preoperative MR imaging including DWI were included. Tumour grading was based on the 2010 WHO classification. MR imaging features included size, T1-w, and T2-w signal intensity, enhancement pattern, apparent (ADC) and true diffusion (D) coefficients. RESULTS: One hundred and eight pNETs (mean 40 ± 33 mm) were evaluated in 94 patients (48 women, 51 %, mean age 52 ± 12). Fifty-five (51 %), 42 (39 %), and 11 (10 %) tumours were given the following grades (G): G1, G2, and G3. Mean ADC and D values were significantly lower as grade increased (ADC: 2.13 ± 0.70, 1.78 ± 0.72, and 0.86 ± 0.22 10-3 mm2/s, and D: 1.92 ± 0.70, 1.75 ± 0.74, and 0.82 ± 0.19 10-3 mm2/s G1, G2, and G3, all p < 0.001). A higher grade was associated with larger sized tumours (p < 0.001). The AUROC of ADC and D to differentiate G3 and G1-2 were 0.96 ± 0.02 and 0.95 ± 0.02. Optimal cut-off values for the identification of G3 were 1.19 10-3 mm2/s for ADC (sensitivity 100 %, specificity 92 %) and 1.04 10-3 mm2/s for D (sensitivity 82 %, specificity 92 %). CONCLUSION: Morphological/functional MRI features of pNETS depend on tumour grade. DWI is useful for the identification of high-grade tumours. KEY POINTS: • Morphological and functional MRI features of pNETs depend on tumour grade. • Their combination has a high predictive value for grade. • All pNETs should be explored by MR imaging including DWI. • DWI is helpful for identification of high-grade and poorly-differentiated tumours. More... »

PAGES

1748-1759

References to SciGraph publications

  • 2015-05. Neuroendocrine neoplasms of the pancreas at dynamic enhanced CT: comparison between grade 3 neuroendocrine carcinoma and grade 1/2 neuroendocrine tumour in EUROPEAN RADIOLOGY
  • 2015-03. Contrast enhancement pattern on multidetector CT predicts malignancy in pancreatic endocrine tumours in EUROPEAN RADIOLOGY
  • 2013-11. Non-hyperfunctioning neuroendocrine tumours of the pancreas: MR imaging appearance and correlation with their biological behaviour in EUROPEAN RADIOLOGY
  • 2010-06. Clinicopathological Features of Pancreatic Endocrine Tumors: A Prospective Multicenter Study in Italy of 297 Sporadic Cases in THE AMERICAN JOURNAL OF GASTROENTEROLOGY
  • 1997-03. Delayed enhancement of islet cell carcinomaon dynamic computed tomography: a sign of its malignancy in ABDOMINAL RADIOLOGY
  • 2010-06. The ENETS and AJCC/UICC TNM classifications of the neuroendocrine tumors of the gastrointestinal tract and the pancreas: a statement in VIRCHOWS ARCHIV
  • 2015-10. Pancreatic neuroendocrine tumors: correlation between histogram analysis of apparent diffusion coefficient maps and tumor grade in ABDOMINAL RADIOLOGY
  • 2014-09. Basing Treatment Strategy for Non-functional Pancreatic Neuroendocrine Tumors on Tumor Size in ANNALS OF SURGICAL ONCOLOGY
  • 2016-05. Prognostic value of CT findings to predict survival outcomes in patients with pancreatic neuroendocrine neoplasms: a single institutional study of 161 patients in EUROPEAN RADIOLOGY
  • 2016-05. Hypervascular solid-appearing serous cystic neoplasms of the pancreas: Differential diagnosis with neuroendocrine tumours in EUROPEAN RADIOLOGY
  • 2016-05. Pancreatic neuroendocrine tumour (PNET): Staging accuracy of MDCT and its diagnostic performance for the differentiation of PNET with uncommon CT findings from pancreatic adenocarcinoma in EUROPEAN RADIOLOGY
  • 2014-10. Impact of Extent of Surgery on Survival in Patients with Small Nonfunctional Pancreatic Neuroendocrine Tumors in the United States in ANNALS OF SURGICAL ONCOLOGY
  • 2007-11. Clinicopathologic Features and Treatment Trends of Pancreatic Neuroendocrine Tumors: Analysis of 9,821 Patients in JOURNAL OF GASTROINTESTINAL SURGERY
  • 2014-11. Pancreatic neuroendocrine tumours: correlation between MSCT features and pathological classification in EUROPEAN RADIOLOGY
  • 2010-06. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients in MODERN PATHOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00330-016-4539-4

    DOI

    http://dx.doi.org/10.1007/s00330-016-4539-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043979657

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27543074


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diffusion Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Grading", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuroendocrine Tumors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pancreatic Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lotfalizadeh", 
            "givenName": "Emad", 
            "id": "sg:person.0773101051.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773101051.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Research on Inflammation", 
              "id": "https://www.grid.ac/institutes/grid.462374.0", 
              "name": [
                "Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France", 
                "University Paris Diderot, Sorbonne Paris Cit\u00e9, Paris, France", 
                "INSERM U1149, Centre de Recherche Biom\u00e9dicale Bichat-Beaujon, CRB3, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ronot", 
            "givenName": "Maxime", 
            "id": "sg:person.01025534354.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025534354.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Research on Inflammation", 
              "id": "https://www.grid.ac/institutes/grid.462374.0", 
              "name": [
                "Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France", 
                "INSERM U1149, Centre de Recherche Biom\u00e9dicale Bichat-Beaujon, CRB3, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wagner", 
            "givenName": "Mathilde", 
            "id": "sg:person.01034526661.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034526661.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paris Diderot University", 
              "id": "https://www.grid.ac/institutes/grid.7452.4", 
              "name": [
                "University Paris Diderot, Sorbonne Paris Cit\u00e9, Paris, France", 
                "Department of Pathology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cros", 
            "givenName": "J\u00e9r\u00f4me", 
            "id": "sg:person.01362452660.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362452660.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paris Diderot University", 
              "id": "https://www.grid.ac/institutes/grid.7452.4", 
              "name": [
                "University Paris Diderot, Sorbonne Paris Cit\u00e9, Paris, France", 
                "Department of Pathology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Couvelard", 
            "givenName": "Anne", 
            "id": "sg:person.0751137045.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751137045.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vullierme", 
            "givenName": "Marie-Pierre", 
            "id": "sg:person.01231224366.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231224366.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allaham", 
            "givenName": "Wassim", 
            "id": "sg:person.016703273335.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016703273335.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Gastroenterology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hentic", 
            "givenName": "Olivia", 
            "id": "sg:person.0736275266.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736275266.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Gastroenterology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruzniewski", 
            "givenName": "Philippe", 
            "id": "sg:person.01370250556.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370250556.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Research on Inflammation", 
              "id": "https://www.grid.ac/institutes/grid.462374.0", 
              "name": [
                "Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France", 
                "University Paris Diderot, Sorbonne Paris Cit\u00e9, Paris, France", 
                "INSERM U1149, Centre de Recherche Biom\u00e9dicale Bichat-Beaujon, CRB3, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vilgrain", 
            "givenName": "Val\u00e9rie", 
            "id": "sg:person.0761705775.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/cyt.12111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000418889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-014-3532-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000685045", 
              "https://doi.org/10.1007/s00330-014-3532-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2501080291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002751825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3961-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007889033", 
              "https://doi.org/10.1007/s00330-015-3961-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000085237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008013264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0000000000000187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010617710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0000000000000187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010617710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0000000000000187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010617710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0000000000000028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013917191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0000000000000028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013917191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0000000000000028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013917191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/annonc/mdm552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014219345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-014-3701-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014658536", 
              "https://doi.org/10.1245/s10434-014-3701-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-014-3317-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014739166", 
              "https://doi.org/10.1007/s00330-014-3317-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.22541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015968638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-014-3769-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019003592", 
              "https://doi.org/10.1245/s10434-014-3769-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surg.2013.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019620856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/raon-2015-0032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021086359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3941-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021218941", 
              "https://doi.org/10.1007/s00330-015-3941-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.2010.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030906016", 
              "https://doi.org/10.1038/modpathol.2010.58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002619900194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030979490", 
              "https://doi.org/10.1007/s002619900194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1530/erc-11-0013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033637039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ajg.2009.747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033943859", 
              "https://doi.org/10.1038/ajg.2009.747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ajg.2009.747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033943859", 
              "https://doi.org/10.1038/ajg.2009.747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ajg.2009.747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033943859", 
              "https://doi.org/10.1038/ajg.2009.747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/gutjnl-2011-300831", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035811611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-013-2929-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036947735", 
              "https://doi.org/10.1007/s00330-013-2929-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surg.2011.02.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037711853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2007.15.4377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037736197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mpa.0b013e3181ec124e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038077233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mpa.0b013e3181ec124e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038077233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000090026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038545312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cncy.20014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040238673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.13121628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040364972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.13122712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040711156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11605-007-0263-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041158307", 
              "https://doi.org/10.1007/s11605-007-0263-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.diii.2013.02.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042041027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2012.01.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042365499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-014-3485-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045924330", 
              "https://doi.org/10.1007/s00330-014-3485-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00428-010-0924-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046405040", 
              "https://doi.org/10.1007/s00428-010-0924-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00428-010-0924-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046405040", 
              "https://doi.org/10.1007/s00428-010-0924-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3943-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048517747", 
              "https://doi.org/10.1007/s00330-015-3943-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-015-0524-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048532470", 
              "https://doi.org/10.1007/s00261-015-0524-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dld.2015.06.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052332693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1055/s-0033-1344958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057289079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1055/s-0033-1359133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057300623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1210/jc.2013-2604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064294490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0284185113494982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078763216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0284185113494982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078763216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079189605", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-04", 
        "datePublishedReg": "2017-04-01", 
        "description": "OBJECTIVES: To evaluate the value of MR imaging including diffusion-weighted imaging (DWI) for the grading of pancreatic neuroendocrine tumours (pNET).\nMATERIAL AND METHODS: Between 2006 and 2014, all resected pNETs with preoperative MR imaging including DWI were included. Tumour grading was based on the 2010 WHO classification. MR imaging features included size, T1-w, and T2-w signal intensity, enhancement pattern, apparent (ADC) and true diffusion (D) coefficients.\nRESULTS: One hundred and eight pNETs (mean 40\u2009\u00b1\u200933\u00a0mm) were evaluated in 94 patients (48 women, 51\u00a0%, mean age 52\u2009\u00b1\u200912). Fifty-five (51\u00a0%), 42 (39\u00a0%), and 11 (10\u00a0%) tumours were given the following grades (G): G1, G2, and G3. Mean ADC and D values were significantly lower as grade increased (ADC: 2.13\u2009\u00b1\u20090.70, 1.78\u2009\u00b1\u20090.72, and 0.86\u2009\u00b1\u20090.22 10-3 mm2/s, and D: 1.92\u2009\u00b1\u20090.70, 1.75\u2009\u00b1\u20090.74, and 0.82\u2009\u00b1\u20090.19 10-3 mm2/s G1, G2, and G3, all p\u2009<\u20090.001). A higher grade was associated with larger sized tumours (p\u2009<\u20090.001). The AUROC of ADC and D to differentiate G3 and G1-2 were 0.96\u2009\u00b1\u20090.02 and 0.95\u2009\u00b1\u20090.02. Optimal cut-off values for the identification of G3 were 1.19 10-3 mm2/s for ADC (sensitivity 100\u00a0%, specificity 92\u00a0%) and 1.04 10-3 mm2/s for D (sensitivity 82\u00a0%, specificity 92\u00a0%).\nCONCLUSION: Morphological/functional MRI features of pNETS depend on tumour grade. DWI is useful for the identification of high-grade tumours.\nKEY POINTS: \u2022 Morphological and functional MRI features of pNETs depend on tumour grade. \u2022 Their combination has a high predictive value for grade. \u2022 All pNETs should be explored by MR imaging including DWI. \u2022 DWI is helpful for identification of high-grade and poorly-differentiated tumours.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00330-016-4539-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1289120", 
            "issn": [
              "0938-7994", 
              "1432-1084"
            ], 
            "name": "European Radiology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "name": "Prediction of pancreatic neuroendocrine tumour grade with MR imaging features: added value of diffusion-weighted imaging", 
        "pagination": "1748-1759", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d17d71204d5fde07dc085813913aafe16e7503349a7dd56f74c377e62e9ae792"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27543074"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9114774"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00330-016-4539-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043979657"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00330-016-4539-4", 
          "https://app.dimensions.ai/details/publication/pub.1043979657"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70061_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00330-016-4539-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4539-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4539-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4539-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4539-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    337 TRIPLES      21 PREDICATES      83 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00330-016-4539-4 schema:about N1a805d5924d24a0fabc08e3204f5a0b6
    2 N5510590c8acd49628293444bfc7e1391
    3 N60b62c0b3d82489ba157c7080ddb26fe
    4 N6f2533c6b92b45009e14d66e6e99b68e
    5 N786dd8d1350140dea591d6dacb199f6f
    6 N8247be2c597d4ec2a36ff54f4afefaca
    7 N82f6f66cd9254393a4b7dc1f55fa71ac
    8 N8bafbe011f444c43a1c57792c1afd517
    9 N8dec50e8ee394075be90eca16be2d654
    10 Nc5b233dd65284dd7a4684e2833a0cfda
    11 Ncb45919edb544ccc85c2d89d7bc29148
    12 Ncc20072c48f748949cd682d788fa7ede
    13 Ncc8d66a6a7b64accadc0e847809966fb
    14 anzsrc-for:11
    15 anzsrc-for:1112
    16 schema:author N1b3652f9ff5f4715b2b97f42491fcce1
    17 schema:citation sg:pub.10.1007/s00261-015-0524-7
    18 sg:pub.10.1007/s002619900194
    19 sg:pub.10.1007/s00330-013-2929-4
    20 sg:pub.10.1007/s00330-014-3317-4
    21 sg:pub.10.1007/s00330-014-3485-2
    22 sg:pub.10.1007/s00330-014-3532-z
    23 sg:pub.10.1007/s00330-015-3941-7
    24 sg:pub.10.1007/s00330-015-3943-5
    25 sg:pub.10.1007/s00330-015-3961-3
    26 sg:pub.10.1007/s00428-010-0924-6
    27 sg:pub.10.1007/s11605-007-0263-3
    28 sg:pub.10.1038/ajg.2009.747
    29 sg:pub.10.1038/modpathol.2010.58
    30 sg:pub.10.1245/s10434-014-3701-y
    31 sg:pub.10.1245/s10434-014-3769-4
    32 https://app.dimensions.ai/details/publication/pub.1079189605
    33 https://doi.org/10.1002/cncy.20014
    34 https://doi.org/10.1002/jmri.22541
    35 https://doi.org/10.1016/j.diii.2013.02.011
    36 https://doi.org/10.1016/j.dld.2015.06.005
    37 https://doi.org/10.1016/j.ejrad.2012.01.032
    38 https://doi.org/10.1016/j.surg.2011.02.022
    39 https://doi.org/10.1016/j.surg.2013.08.007
    40 https://doi.org/10.1055/s-0033-1344958
    41 https://doi.org/10.1055/s-0033-1359133
    42 https://doi.org/10.1093/annonc/mdm552
    43 https://doi.org/10.1097/mpa.0b013e3181ec124e
    44 https://doi.org/10.1097/rli.0000000000000028
    45 https://doi.org/10.1097/rli.0000000000000187
    46 https://doi.org/10.1111/cyt.12111
    47 https://doi.org/10.1136/gutjnl-2011-300831
    48 https://doi.org/10.1148/radiol.13121628
    49 https://doi.org/10.1148/radiol.13122712
    50 https://doi.org/10.1148/radiol.2501080291
    51 https://doi.org/10.1159/000085237
    52 https://doi.org/10.1159/000090026
    53 https://doi.org/10.1177/0284185113494982
    54 https://doi.org/10.1200/jco.2007.15.4377
    55 https://doi.org/10.1210/jc.2013-2604
    56 https://doi.org/10.1515/raon-2015-0032
    57 https://doi.org/10.1530/erc-11-0013
    58 schema:datePublished 2017-04
    59 schema:datePublishedReg 2017-04-01
    60 schema:description OBJECTIVES: To evaluate the value of MR imaging including diffusion-weighted imaging (DWI) for the grading of pancreatic neuroendocrine tumours (pNET). MATERIAL AND METHODS: Between 2006 and 2014, all resected pNETs with preoperative MR imaging including DWI were included. Tumour grading was based on the 2010 WHO classification. MR imaging features included size, T1-w, and T2-w signal intensity, enhancement pattern, apparent (ADC) and true diffusion (D) coefficients. RESULTS: One hundred and eight pNETs (mean 40 ± 33 mm) were evaluated in 94 patients (48 women, 51 %, mean age 52 ± 12). Fifty-five (51 %), 42 (39 %), and 11 (10 %) tumours were given the following grades (G): G1, G2, and G3. Mean ADC and D values were significantly lower as grade increased (ADC: 2.13 ± 0.70, 1.78 ± 0.72, and 0.86 ± 0.22 10-3 mm2/s, and D: 1.92 ± 0.70, 1.75 ± 0.74, and 0.82 ± 0.19 10-3 mm2/s G1, G2, and G3, all p < 0.001). A higher grade was associated with larger sized tumours (p < 0.001). The AUROC of ADC and D to differentiate G3 and G1-2 were 0.96 ± 0.02 and 0.95 ± 0.02. Optimal cut-off values for the identification of G3 were 1.19 10-3 mm2/s for ADC (sensitivity 100 %, specificity 92 %) and 1.04 10-3 mm2/s for D (sensitivity 82 %, specificity 92 %). CONCLUSION: Morphological/functional MRI features of pNETS depend on tumour grade. DWI is useful for the identification of high-grade tumours. KEY POINTS: • Morphological and functional MRI features of pNETs depend on tumour grade. • Their combination has a high predictive value for grade. • All pNETs should be explored by MR imaging including DWI. • DWI is helpful for identification of high-grade and poorly-differentiated tumours.
    61 schema:genre research_article
    62 schema:inLanguage en
    63 schema:isAccessibleForFree false
    64 schema:isPartOf N11183cd229b848e3b97e707f84535be7
    65 N5bf120bfd79943b8b11cfc918375edbf
    66 sg:journal.1289120
    67 schema:name Prediction of pancreatic neuroendocrine tumour grade with MR imaging features: added value of diffusion-weighted imaging
    68 schema:pagination 1748-1759
    69 schema:productId N35542f1efab6497d961a322c6ef09c87
    70 N4444e391701342fd851aa01412df66e4
    71 N52f672b879ff413d96d5d17fff14a02b
    72 N64ec1e0033ae47f9ac4f9dbbd10a4b71
    73 Ne7794acd87744acba99ffa301c1ec4e7
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043979657
    75 https://doi.org/10.1007/s00330-016-4539-4
    76 schema:sdDatePublished 2019-04-11T12:42
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N311e011e590b447bae3ce1949175f606
    79 schema:url https://link.springer.com/10.1007%2Fs00330-016-4539-4
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N0245e0645a3046099070fa176973a495 schema:name Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France
    84 rdf:type schema:Organization
    85 N11183cd229b848e3b97e707f84535be7 schema:issueNumber 4
    86 rdf:type schema:PublicationIssue
    87 N1a805d5924d24a0fabc08e3204f5a0b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Diffusion Magnetic Resonance Imaging
    89 rdf:type schema:DefinedTerm
    90 N1b3652f9ff5f4715b2b97f42491fcce1 rdf:first sg:person.0773101051.24
    91 rdf:rest N21f72d79a4da47e18933703682f9cf76
    92 N21f72d79a4da47e18933703682f9cf76 rdf:first sg:person.01025534354.12
    93 rdf:rest N6ee524602ff04a5cafc96645dc18125d
    94 N28f8f3c953434eea88eef58b3a9058ad rdf:first sg:person.01370250556.26
    95 rdf:rest N7d0fb9f1ed30467ab55be6d0fc1667ee
    96 N311e011e590b447bae3ce1949175f606 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 N35542f1efab6497d961a322c6ef09c87 schema:name dimensions_id
    99 schema:value pub.1043979657
    100 rdf:type schema:PropertyValue
    101 N419e5f6050ab4480b6850b4078843fdd rdf:first sg:person.01231224366.16
    102 rdf:rest Nfb8df5477819493f9a77ffbf089cd1e9
    103 N4444e391701342fd851aa01412df66e4 schema:name readcube_id
    104 schema:value d17d71204d5fde07dc085813913aafe16e7503349a7dd56f74c377e62e9ae792
    105 rdf:type schema:PropertyValue
    106 N52f672b879ff413d96d5d17fff14a02b schema:name nlm_unique_id
    107 schema:value 9114774
    108 rdf:type schema:PropertyValue
    109 N5510590c8acd49628293444bfc7e1391 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Retrospective Studies
    111 rdf:type schema:DefinedTerm
    112 N5a36b32e73184d77b7f35fee7c7136a2 rdf:first sg:person.0751137045.27
    113 rdf:rest N419e5f6050ab4480b6850b4078843fdd
    114 N5bf120bfd79943b8b11cfc918375edbf schema:volumeNumber 27
    115 rdf:type schema:PublicationVolume
    116 N60792db37c4c40e181f83c30a7390a1b schema:name Department of Gastroenterology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France
    117 rdf:type schema:Organization
    118 N60b62c0b3d82489ba157c7080ddb26fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Neuroendocrine Tumors
    120 rdf:type schema:DefinedTerm
    121 N64ec1e0033ae47f9ac4f9dbbd10a4b71 schema:name pubmed_id
    122 schema:value 27543074
    123 rdf:type schema:PropertyValue
    124 N6ee524602ff04a5cafc96645dc18125d rdf:first sg:person.01034526661.15
    125 rdf:rest N7a71a6f13f2247349cbef79b756e0fe5
    126 N6f2533c6b92b45009e14d66e6e99b68e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Humans
    128 rdf:type schema:DefinedTerm
    129 N786dd8d1350140dea591d6dacb199f6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Aged
    131 rdf:type schema:DefinedTerm
    132 N7a71a6f13f2247349cbef79b756e0fe5 rdf:first sg:person.01362452660.50
    133 rdf:rest N5a36b32e73184d77b7f35fee7c7136a2
    134 N7d0fb9f1ed30467ab55be6d0fc1667ee rdf:first sg:person.0761705775.52
    135 rdf:rest rdf:nil
    136 N8247be2c597d4ec2a36ff54f4afefaca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Male
    138 rdf:type schema:DefinedTerm
    139 N8288a2038c244896a55951f45d2cde7d schema:name Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France
    140 rdf:type schema:Organization
    141 N82f6f66cd9254393a4b7dc1f55fa71ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Pancreatic Neoplasms
    143 rdf:type schema:DefinedTerm
    144 N8bafbe011f444c43a1c57792c1afd517 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Middle Aged
    146 rdf:type schema:DefinedTerm
    147 N8dec50e8ee394075be90eca16be2d654 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Magnetic Resonance Imaging
    149 rdf:type schema:DefinedTerm
    150 Na61a5df3d95245ab81e7354ec4fbd68a schema:name Department of Gastroenterology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France
    151 rdf:type schema:Organization
    152 Nc5b233dd65284dd7a4684e2833a0cfda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Neoplasm Grading
    154 rdf:type schema:DefinedTerm
    155 Nca728551af3448ec88c448e9c17a637e rdf:first sg:person.0736275266.26
    156 rdf:rest N28f8f3c953434eea88eef58b3a9058ad
    157 Ncb45919edb544ccc85c2d89d7bc29148 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Adult
    159 rdf:type schema:DefinedTerm
    160 Ncc20072c48f748949cd682d788fa7ede schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Sensitivity and Specificity
    162 rdf:type schema:DefinedTerm
    163 Ncc8d66a6a7b64accadc0e847809966fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Female
    165 rdf:type schema:DefinedTerm
    166 Ne7794acd87744acba99ffa301c1ec4e7 schema:name doi
    167 schema:value 10.1007/s00330-016-4539-4
    168 rdf:type schema:PropertyValue
    169 Ne7aa0fc615bf495a9ca5b9607e5d599a schema:name Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France
    170 rdf:type schema:Organization
    171 Nfb8df5477819493f9a77ffbf089cd1e9 rdf:first sg:person.016703273335.19
    172 rdf:rest Nca728551af3448ec88c448e9c17a637e
    173 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Medical and Health Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Oncology and Carcinogenesis
    178 rdf:type schema:DefinedTerm
    179 sg:journal.1289120 schema:issn 0938-7994
    180 1432-1084
    181 schema:name European Radiology
    182 rdf:type schema:Periodical
    183 sg:person.01025534354.12 schema:affiliation https://www.grid.ac/institutes/grid.462374.0
    184 schema:familyName Ronot
    185 schema:givenName Maxime
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025534354.12
    187 rdf:type schema:Person
    188 sg:person.01034526661.15 schema:affiliation https://www.grid.ac/institutes/grid.462374.0
    189 schema:familyName Wagner
    190 schema:givenName Mathilde
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034526661.15
    192 rdf:type schema:Person
    193 sg:person.01231224366.16 schema:affiliation N0245e0645a3046099070fa176973a495
    194 schema:familyName Vullierme
    195 schema:givenName Marie-Pierre
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231224366.16
    197 rdf:type schema:Person
    198 sg:person.01362452660.50 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
    199 schema:familyName Cros
    200 schema:givenName Jérôme
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362452660.50
    202 rdf:type schema:Person
    203 sg:person.01370250556.26 schema:affiliation Na61a5df3d95245ab81e7354ec4fbd68a
    204 schema:familyName Ruzniewski
    205 schema:givenName Philippe
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370250556.26
    207 rdf:type schema:Person
    208 sg:person.016703273335.19 schema:affiliation Ne7aa0fc615bf495a9ca5b9607e5d599a
    209 schema:familyName Allaham
    210 schema:givenName Wassim
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016703273335.19
    212 rdf:type schema:Person
    213 sg:person.0736275266.26 schema:affiliation N60792db37c4c40e181f83c30a7390a1b
    214 schema:familyName Hentic
    215 schema:givenName Olivia
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736275266.26
    217 rdf:type schema:Person
    218 sg:person.0751137045.27 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
    219 schema:familyName Couvelard
    220 schema:givenName Anne
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751137045.27
    222 rdf:type schema:Person
    223 sg:person.0761705775.52 schema:affiliation https://www.grid.ac/institutes/grid.462374.0
    224 schema:familyName Vilgrain
    225 schema:givenName Valérie
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52
    227 rdf:type schema:Person
    228 sg:person.0773101051.24 schema:affiliation N8288a2038c244896a55951f45d2cde7d
    229 schema:familyName Lotfalizadeh
    230 schema:givenName Emad
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773101051.24
    232 rdf:type schema:Person
    233 sg:pub.10.1007/s00261-015-0524-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048532470
    234 https://doi.org/10.1007/s00261-015-0524-7
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s002619900194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030979490
    237 https://doi.org/10.1007/s002619900194
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s00330-013-2929-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036947735
    240 https://doi.org/10.1007/s00330-013-2929-4
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s00330-014-3317-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014739166
    243 https://doi.org/10.1007/s00330-014-3317-4
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s00330-014-3485-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045924330
    246 https://doi.org/10.1007/s00330-014-3485-2
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s00330-014-3532-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000685045
    249 https://doi.org/10.1007/s00330-014-3532-z
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s00330-015-3941-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021218941
    252 https://doi.org/10.1007/s00330-015-3941-7
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s00330-015-3943-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048517747
    255 https://doi.org/10.1007/s00330-015-3943-5
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s00330-015-3961-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007889033
    258 https://doi.org/10.1007/s00330-015-3961-3
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s00428-010-0924-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046405040
    261 https://doi.org/10.1007/s00428-010-0924-6
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s11605-007-0263-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041158307
    264 https://doi.org/10.1007/s11605-007-0263-3
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/ajg.2009.747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033943859
    267 https://doi.org/10.1038/ajg.2009.747
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/modpathol.2010.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030906016
    270 https://doi.org/10.1038/modpathol.2010.58
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1245/s10434-014-3701-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014658536
    273 https://doi.org/10.1245/s10434-014-3701-y
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1245/s10434-014-3769-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019003592
    276 https://doi.org/10.1245/s10434-014-3769-4
    277 rdf:type schema:CreativeWork
    278 https://app.dimensions.ai/details/publication/pub.1079189605 schema:CreativeWork
    279 https://doi.org/10.1002/cncy.20014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040238673
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1002/jmri.22541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015968638
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1016/j.diii.2013.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042041027
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1016/j.dld.2015.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052332693
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1016/j.ejrad.2012.01.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042365499
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1016/j.surg.2011.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037711853
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1016/j.surg.2013.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019620856
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1055/s-0033-1344958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057289079
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1055/s-0033-1359133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057300623
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1093/annonc/mdm552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014219345
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1097/mpa.0b013e3181ec124e schema:sameAs https://app.dimensions.ai/details/publication/pub.1038077233
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1097/rli.0000000000000028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013917191
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1097/rli.0000000000000187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010617710
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1111/cyt.12111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000418889
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1136/gutjnl-2011-300831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035811611
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1148/radiol.13121628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040364972
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1148/radiol.13122712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040711156
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1148/radiol.2501080291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002751825
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1159/000085237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008013264
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1159/000090026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038545312
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1177/0284185113494982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078763216
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1200/jco.2007.15.4377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037736197
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1210/jc.2013-2604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064294490
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1515/raon-2015-0032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021086359
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1530/erc-11-0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033637039
    328 rdf:type schema:CreativeWork
    329 https://www.grid.ac/institutes/grid.462374.0 schema:alternateName Center for Research on Inflammation
    330 schema:name Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France
    331 INSERM U1149, Centre de Recherche Biomédicale Bichat-Beaujon, CRB3, Paris, France
    332 University Paris Diderot, Sorbonne Paris Cité, Paris, France
    333 rdf:type schema:Organization
    334 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
    335 schema:name Department of Pathology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France
    336 University Paris Diderot, Sorbonne Paris Cité, Paris, France
    337 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...