Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04

AUTHORS

Mariana M. Lamacie, Paaladinesh Thavendiranathan, Kate Hanneman, Andreas Greiser, Marie-Pierre Jolly, Richard Ward, Bernd J. Wintersperger

ABSTRACT

OBJECTIVES: To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). METHODS: Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. RESULTS: DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all p<0.001), only DRA correlated significantly to STE for GLS (r=0.47; p=0.006). However, good correlation was demonstrated between MR techniques (GLS:r=0.74; GCS:r=0.80; GRS:r=0.45, all p<0.05). Comparing DRA with FT, intra-/interobserver coefficient of variance was lower (1.6 %/3.2 % vs. 6.4 %/5.7 %) and intraclass-correlation coefficient was higher. DRA GCS and GRS data presented zero variability for repeated observations. CONCLUSIONS: DRA is an automated method that allows myocardial deformation assessment with superior reproducibility compared to FT. KEY POINTS: • Inverse deformable registration algorithms (DRA) allow myocardial strain analysis on cine MRI. • Inverse DRA demonstrated superior reproducibility compared to feature-tracking (FT) methods. • Cine MR DRA and FT analysis demonstrate differences to speckle-tracking echocardiography • DRA demonstrated better correlation with STE than FT for MR-derived global strain data. More... »

PAGES

1404-1415

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-016-4514-0

DOI

http://dx.doi.org/10.1007/s00330-016-4514-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005570283

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27491873


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Echocardiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging, Cine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Health Network", 
          "id": "https://www.grid.ac/institutes/grid.231844.8", 
          "name": [
            "Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lamacie", 
        "givenName": "Mariana M.", 
        "id": "sg:person.016267445525.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267445525.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada", 
            "Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thavendiranathan", 
        "givenName": "Paaladinesh", 
        "id": "sg:person.01057557432.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057557432.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada", 
            "Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanneman", 
        "givenName": "Kate", 
        "id": "sg:person.01112006361.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112006361.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens Healthcare, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greiser", 
        "givenName": "Andreas", 
        "id": "sg:person.0651123736.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651123736.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Healthcare (United States)", 
          "id": "https://www.grid.ac/institutes/grid.415886.6", 
          "name": [
            "Siemens Healthcare, Medical Imaging Technologies, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jolly", 
        "givenName": "Marie-Pierre", 
        "id": "sg:person.0614041027.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614041027.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ward", 
        "givenName": "Richard", 
        "id": "sg:person.01274350161.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274350161.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toronto General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.417184.f", 
          "name": [
            "Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada", 
            "Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada", 
            "Department of Medical Imaging, Toronto General Hospital, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wintersperger", 
        "givenName": "Bernd J.", 
        "id": "sg:person.01134240060.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134240060.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.22489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000018463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000018463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2012.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002477265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.112.000022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002693986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.112.000022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002693986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002947681", 
          "https://doi.org/10.1186/1532-429x-15-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2007.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003507448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008419005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2008.09.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010649373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jes030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015359170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31828c351a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017796928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31828c351a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017796928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2011.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019871842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020317526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020628010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1054/jcaf.2003.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023999494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1054/jcaf.2003.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023999494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.10.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024248863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025458709", 
          "https://doi.org/10.1186/1532-429x-15-95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(94)90636-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030323684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2014.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032850891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2013.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033534811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2013.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033534811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2014.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035112289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rcl.2014.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037746088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jev006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038155956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2012.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039332392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2015.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042489796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.325115098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042945342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043111155", 
          "https://doi.org/10.1186/1532-429x-14-32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-11-55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043451951", 
          "https://doi.org/10.1186/1532-429x-11-55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/chd.12156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044892437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(01)01397-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045488613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)66621-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047386422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-28326-0_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048550399", 
          "https://doi.org/10.1007/978-3-642-28326-0_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2005.074187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048929217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.nuclcard.2007.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051170717", 
          "https://doi.org/10.1016/j.nuclcard.2007.07.006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.echo.2009.07.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051291082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/2356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051547915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000039105.49749.6f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052862413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.561423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053395986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.112.128413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053644397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.112.128413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053644397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ejechocard/jen201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059552094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ejechocard/jep095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059552308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ejechocard/jep095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059552308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5603/kp.a2013.0319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073039547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5603/kp.a2013.0319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073039547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3978/j.issn.2223-4292.2014.09.01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079000928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015150341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079192180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.169.1.3420283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079735381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.188.1.8511281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082838479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2011.5872476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093769847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2010.5490305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095209965"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "OBJECTIVES: To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE).\nMETHODS: Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing.\nRESULTS: DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all p<0.001), only DRA correlated significantly to STE for GLS (r=0.47; p=0.006). However, good correlation was demonstrated between MR techniques (GLS:r=0.74; GCS:r=0.80; GRS:r=0.45, all p<0.05). Comparing DRA with FT, intra-/interobserver coefficient of variance was lower (1.6 %/3.2 % vs. 6.4 %/5.7 %) and intraclass-correlation coefficient was higher. DRA GCS and GRS data presented zero variability for repeated observations.\nCONCLUSIONS: DRA is an automated method that allows myocardial deformation assessment with superior reproducibility compared to FT.\nKEY POINTS: \u2022 Inverse deformable registration algorithms (DRA) allow myocardial strain analysis on cine MRI. \u2022 Inverse DRA demonstrated superior reproducibility compared to feature-tracking (FT) methods. \u2022 Cine MR DRA and FT analysis demonstrate differences to speckle-tracking echocardiography \u2022 DRA demonstrated better correlation with STE than FT for MR-derived global strain data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-016-4514-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography", 
    "pagination": "1404-1415", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a89f21cc3b7c909cc6b958a8449583a8c86bed06cf5543c3a742b77c0e2abe0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27491873"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-016-4514-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005570283"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-016-4514-0", 
      "https://app.dimensions.ai/details/publication/pub.1005570283"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-016-4514-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4514-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4514-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4514-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4514-0'


 

This table displays all metadata directly associated to this object as RDF triples.

311 TRIPLES      21 PREDICATES      85 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-016-4514-0 schema:about N308a49cb96ef4dd5bc2b3950ea956791
2 N320ec8bd7b41495890f4999d42f55cdf
3 N4ed04b1cec3e4cd09928faeab600a093
4 N522f49586bb84c9baac4a5546940be56
5 N5c6385fe100d4ed09e712e6ad99d129a
6 N68b6b45c10584fb2a351d9910c72c4c9
7 Nb468a28edf0f44a38295b9c206f2ca1d
8 Nba869c3e2ce747c584d86b9f2b46c3dc
9 Nbffd051309b240359661d6adecbe027a
10 Nc73de86a222a4414ab383f9912c34d6f
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author Nd155b089d8d44449a37ada4e4982347a
14 schema:citation sg:pub.10.1007/978-3-642-28326-0_10
15 sg:pub.10.1016/j.nuclcard.2007.07.006
16 sg:pub.10.1186/1532-429x-11-55
17 sg:pub.10.1186/1532-429x-14-32
18 sg:pub.10.1186/1532-429x-15-8
19 sg:pub.10.1186/1532-429x-15-95
20 https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m
21 https://doi.org/10.1002/jmri.20749
22 https://doi.org/10.1002/jmri.24623
23 https://doi.org/10.1002/mrm.22489
24 https://doi.org/10.1016/0002-8703(94)90636-x
25 https://doi.org/10.1016/j.amjcard.2008.09.102
26 https://doi.org/10.1016/j.echo.2009.07.027
27 https://doi.org/10.1016/j.echo.2011.08.003
28 https://doi.org/10.1016/j.echo.2012.10.008
29 https://doi.org/10.1016/j.echo.2014.10.003
30 https://doi.org/10.1016/j.echo.2014.11.018
31 https://doi.org/10.1016/j.ijcard.2012.06.012
32 https://doi.org/10.1016/j.jacc.2005.10.040
33 https://doi.org/10.1016/j.jbiomech.2013.12.016
34 https://doi.org/10.1016/j.jcmg.2007.12.007
35 https://doi.org/10.1016/j.jcmg.2015.11.001
36 https://doi.org/10.1016/j.rcl.2014.11.001
37 https://doi.org/10.1016/s0140-6736(05)66621-4
38 https://doi.org/10.1016/s0735-1097(01)01397-3
39 https://doi.org/10.1054/jcaf.2003.13
40 https://doi.org/10.1093/ehjci/jes030
41 https://doi.org/10.1093/ehjci/jev006
42 https://doi.org/10.1093/ejechocard/jen201
43 https://doi.org/10.1093/ejechocard/jep095
44 https://doi.org/10.1097/rli.0b013e31828c351a
45 https://doi.org/10.1109/isbi.2010.5490305
46 https://doi.org/10.1109/isbi.2011.5872476
47 https://doi.org/10.1111/chd.12156
48 https://doi.org/10.1136/hrt.2005.074187
49 https://doi.org/10.1148/radiol.2015150341
50 https://doi.org/10.1148/radiology.169.1.3420283
51 https://doi.org/10.1148/radiology.188.1.8511281
52 https://doi.org/10.1148/rg.325115098
53 https://doi.org/10.1161/01.cir.0000039105.49749.6f
54 https://doi.org/10.1161/circimaging.112.000022
55 https://doi.org/10.1161/circulationaha.105.561423
56 https://doi.org/10.1161/circulationaha.112.128413
57 https://doi.org/10.3791/2356
58 https://doi.org/10.3978/j.issn.2223-4292.2014.09.01
59 https://doi.org/10.5603/kp.a2013.0319
60 schema:datePublished 2017-04
61 schema:datePublishedReg 2017-04-01
62 schema:description OBJECTIVES: To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). METHODS: Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. RESULTS: DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all p<0.001), only DRA correlated significantly to STE for GLS (r=0.47; p=0.006). However, good correlation was demonstrated between MR techniques (GLS:r=0.74; GCS:r=0.80; GRS:r=0.45, all p<0.05). Comparing DRA with FT, intra-/interobserver coefficient of variance was lower (1.6 %/3.2 % vs. 6.4 %/5.7 %) and intraclass-correlation coefficient was higher. DRA GCS and GRS data presented zero variability for repeated observations. CONCLUSIONS: DRA is an automated method that allows myocardial deformation assessment with superior reproducibility compared to FT. KEY POINTS: • Inverse deformable registration algorithms (DRA) allow myocardial strain analysis on cine MRI. • Inverse DRA demonstrated superior reproducibility compared to feature-tracking (FT) methods. • Cine MR DRA and FT analysis demonstrate differences to speckle-tracking echocardiography • DRA demonstrated better correlation with STE than FT for MR-derived global strain data.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree false
66 schema:isPartOf N3f7f15d595224c99aebd83819b4d9f6e
67 Nc38f1c4dd8534a369c5a7eedf98a80b9
68 sg:journal.1289120
69 schema:name Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography
70 schema:pagination 1404-1415
71 schema:productId N2a8a27e09682430f950d0cf60484e4fd
72 N642958108e2949f987a44cb92e8ff137
73 N7b76b6390faa4361bfcf6d73c07f6407
74 Nec44721e90b54d2c91d7e1d1b2399f01
75 Nf31de7699cb24909a9686bafddb9d7f6
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005570283
77 https://doi.org/10.1007/s00330-016-4514-0
78 schema:sdDatePublished 2019-04-11T12:26
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N00f7217185f24408b91f608db48f537b
81 schema:url https://link.springer.com/10.1007%2Fs00330-016-4514-0
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N00f7217185f24408b91f608db48f537b schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N150a83045ad84a2d8e64dc7fbc414c32 rdf:first sg:person.01274350161.83
88 rdf:rest Ne4d1126b8b664649b94a17ef94e1c4b1
89 N2a8a27e09682430f950d0cf60484e4fd schema:name nlm_unique_id
90 schema:value 9114774
91 rdf:type schema:PropertyValue
92 N308a49cb96ef4dd5bc2b3950ea956791 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Echocardiography
94 rdf:type schema:DefinedTerm
95 N31fcc903201e4f518705104e1f5d1c57 rdf:first sg:person.0651123736.07
96 rdf:rest N37d2d1da3819426380dd6b7616256540
97 N320ec8bd7b41495890f4999d42f55cdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Magnetic Resonance Imaging
99 rdf:type schema:DefinedTerm
100 N37d2d1da3819426380dd6b7616256540 rdf:first sg:person.0614041027.22
101 rdf:rest N150a83045ad84a2d8e64dc7fbc414c32
102 N3f1fd91bd9f34be1b07adad14739b030 rdf:first sg:person.01057557432.52
103 rdf:rest N9af9a01a8f984a1c9849c3ab52dd4ff4
104 N3f7f15d595224c99aebd83819b4d9f6e schema:volumeNumber 27
105 rdf:type schema:PublicationVolume
106 N4ed04b1cec3e4cd09928faeab600a093 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Female
108 rdf:type schema:DefinedTerm
109 N522f49586bb84c9baac4a5546940be56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Heart
111 rdf:type schema:DefinedTerm
112 N5c6385fe100d4ed09e712e6ad99d129a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Male
114 rdf:type schema:DefinedTerm
115 N642958108e2949f987a44cb92e8ff137 schema:name pubmed_id
116 schema:value 27491873
117 rdf:type schema:PropertyValue
118 N68b6b45c10584fb2a351d9910c72c4c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Algorithms
120 rdf:type schema:DefinedTerm
121 N7b76b6390faa4361bfcf6d73c07f6407 schema:name doi
122 schema:value 10.1007/s00330-016-4514-0
123 rdf:type schema:PropertyValue
124 N9af9a01a8f984a1c9849c3ab52dd4ff4 rdf:first sg:person.01112006361.57
125 rdf:rest N31fcc903201e4f518705104e1f5d1c57
126 Nb468a28edf0f44a38295b9c206f2ca1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Magnetic Resonance Imaging, Cine
128 rdf:type schema:DefinedTerm
129 Nba869c3e2ce747c584d86b9f2b46c3dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 Nbffd051309b240359661d6adecbe027a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Reproducibility of Results
134 rdf:type schema:DefinedTerm
135 Nc38f1c4dd8534a369c5a7eedf98a80b9 schema:issueNumber 4
136 rdf:type schema:PublicationIssue
137 Nc73de86a222a4414ab383f9912c34d6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Adult
139 rdf:type schema:DefinedTerm
140 Nd155b089d8d44449a37ada4e4982347a rdf:first sg:person.016267445525.68
141 rdf:rest N3f1fd91bd9f34be1b07adad14739b030
142 Ne4d1126b8b664649b94a17ef94e1c4b1 rdf:first sg:person.01134240060.10
143 rdf:rest rdf:nil
144 Nec44721e90b54d2c91d7e1d1b2399f01 schema:name dimensions_id
145 schema:value pub.1005570283
146 rdf:type schema:PropertyValue
147 Nf31de7699cb24909a9686bafddb9d7f6 schema:name readcube_id
148 schema:value 1a89f21cc3b7c909cc6b958a8449583a8c86bed06cf5543c3a742b77c0e2abe0
149 rdf:type schema:PropertyValue
150 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
151 schema:name Information and Computing Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
154 schema:name Artificial Intelligence and Image Processing
155 rdf:type schema:DefinedTerm
156 sg:journal.1289120 schema:issn 0938-7994
157 1432-1084
158 schema:name European Radiology
159 rdf:type schema:Periodical
160 sg:person.01057557432.52 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
161 schema:familyName Thavendiranathan
162 schema:givenName Paaladinesh
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057557432.52
164 rdf:type schema:Person
165 sg:person.01112006361.57 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
166 schema:familyName Hanneman
167 schema:givenName Kate
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112006361.57
169 rdf:type schema:Person
170 sg:person.01134240060.10 schema:affiliation https://www.grid.ac/institutes/grid.417184.f
171 schema:familyName Wintersperger
172 schema:givenName Bernd J.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134240060.10
174 rdf:type schema:Person
175 sg:person.01274350161.83 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
176 schema:familyName Ward
177 schema:givenName Richard
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274350161.83
179 rdf:type schema:Person
180 sg:person.016267445525.68 schema:affiliation https://www.grid.ac/institutes/grid.231844.8
181 schema:familyName Lamacie
182 schema:givenName Mariana M.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267445525.68
184 rdf:type schema:Person
185 sg:person.0614041027.22 schema:affiliation https://www.grid.ac/institutes/grid.415886.6
186 schema:familyName Jolly
187 schema:givenName Marie-Pierre
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614041027.22
189 rdf:type schema:Person
190 sg:person.0651123736.07 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
191 schema:familyName Greiser
192 schema:givenName Andreas
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651123736.07
194 rdf:type schema:Person
195 sg:pub.10.1007/978-3-642-28326-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048550399
196 https://doi.org/10.1007/978-3-642-28326-0_10
197 rdf:type schema:CreativeWork
198 sg:pub.10.1016/j.nuclcard.2007.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051170717
199 https://doi.org/10.1016/j.nuclcard.2007.07.006
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/1532-429x-11-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043451951
202 https://doi.org/10.1186/1532-429x-11-55
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/1532-429x-14-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043111155
205 https://doi.org/10.1186/1532-429x-14-32
206 rdf:type schema:CreativeWork
207 sg:pub.10.1186/1532-429x-15-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002947681
208 https://doi.org/10.1186/1532-429x-15-8
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/1532-429x-15-95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025458709
211 https://doi.org/10.1186/1532-429x-15-95
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1002/(sici)1522-2594(199912)42:6<1048::aid-mrm9>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1008419005
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1002/jmri.20749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020628010
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1002/jmri.24623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020317526
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1002/mrm.22489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000018463
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/0002-8703(94)90636-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030323684
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.amjcard.2008.09.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010649373
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.echo.2009.07.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051291082
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.echo.2011.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019871842
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.echo.2012.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039332392
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.echo.2014.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035112289
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.echo.2014.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032850891
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.ijcard.2012.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002477265
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.jacc.2005.10.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024248863
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.jbiomech.2013.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033534811
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.jcmg.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003507448
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.jcmg.2015.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042489796
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.rcl.2014.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037746088
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/s0140-6736(05)66621-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047386422
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/s0735-1097(01)01397-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045488613
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1054/jcaf.2003.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023999494
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/ehjci/jes030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015359170
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/ehjci/jev006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038155956
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/ejechocard/jen201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059552094
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/ejechocard/jep095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059552308
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1097/rli.0b013e31828c351a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017796928
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1109/isbi.2010.5490305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095209965
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1109/isbi.2011.5872476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093769847
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1111/chd.12156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044892437
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1136/hrt.2005.074187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048929217
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1148/radiol.2015150341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079192180
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1148/radiology.169.1.3420283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079735381
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1148/radiology.188.1.8511281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082838479
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1148/rg.325115098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042945342
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1161/01.cir.0000039105.49749.6f schema:sameAs https://app.dimensions.ai/details/publication/pub.1052862413
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1161/circimaging.112.000022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002693986
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1161/circulationaha.105.561423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053395986
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1161/circulationaha.112.128413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053644397
286 rdf:type schema:CreativeWork
287 https://doi.org/10.3791/2356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051547915
288 rdf:type schema:CreativeWork
289 https://doi.org/10.3978/j.issn.2223-4292.2014.09.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079000928
290 rdf:type schema:CreativeWork
291 https://doi.org/10.5603/kp.a2013.0319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073039547
292 rdf:type schema:CreativeWork
293 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
294 schema:name Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
295 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
296 Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Ontario, Canada
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.231844.8 schema:alternateName University Health Network
299 schema:name Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.415886.6 schema:alternateName Siemens Healthcare (United States)
302 schema:name Siemens Healthcare, Medical Imaging Technologies, Princeton, NJ, USA
303 rdf:type schema:Organization
304 https://www.grid.ac/institutes/grid.417184.f schema:alternateName Toronto General Hospital
305 schema:name Department of Medical Imaging, Toronto General Hospital, 1 PMB-273, 585 University Avenue, M5G 2N2, Toronto, Ontario, Canada
306 Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
307 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
310 schema:name Siemens Healthcare, Erlangen, Germany
311 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...