Retrospective assessment of interobserver agreement and accuracy in classifications and measurements in subsolid nodules with solid components less than 8mm: ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07-25

AUTHORS

Roh-Eul Yoo, Jin Mo Goo, Eui Jin Hwang, Soon Ho Yoon, Chang Hyun Lee, Chang Min Park, Soyeon Ahn

ABSTRACT

ObjectivesTo compare interobserver agreements among multiple readers and accuracy for the assessment of solid components in subsolid nodules between the lung and mediastinal window settings.MethodsSeventy-seven surgically resected nodules with solid components smaller than 8 mm were included in this study. In both lung and mediastinal windows, five readers independently assessed the presence and size of solid component. Bootstrapping was used to compare the interobserver agreement between the two window settings. Imaging-pathology correlation was performed to evaluate the accuracy.ResultsThere were no significant differences in the interobserver agreements between the two windows for both identification (lung windows, k = 0.51; mediastinal windows, k = 0.57) and measurements (lung windows, ICC = 0.70; mediastinal windows, ICC = 0.69) of solid components. The incidence of false negative results for the presence of invasive components and the median absolute difference between the solid component size and the invasive component size were significantly higher on mediastinal windows than on lung windows (P < 0.001 and P < 0.001, respectively).ConclusionsThe lung window setting had a comparable reproducibility but a higher accuracy than the mediastinal window setting for nodule classifications and solid component measurements in subsolid nodules.Key Points• Reproducibility was similar between the two windows in nodule classifications.• Reproducibility was similar between the two windows in solid component measurements.• Accuracy for solid component assessment was higher on lung windows. More... »

PAGES

1369-1376

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-016-4495-z

DOI

http://dx.doi.org/10.1007/s00330-016-4495-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010441421

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27456963


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenocarcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mediastinum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multiple Pulmonary Nodules", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoo", 
        "givenName": "Roh-Eul", 
        "id": "sg:person.0605134174.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605134174.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea", 
            "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goo", 
        "givenName": "Jin Mo", 
        "id": "sg:person.01351124710.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351124710.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Eui Jin", 
        "id": "sg:person.0654224120.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654224120.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoon", 
        "givenName": "Soon Ho", 
        "id": "sg:person.0720162106.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720162106.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Chang Hyun", 
        "id": "sg:person.010322643702.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010322643702.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea", 
            "Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Chang Min", 
        "id": "sg:person.01111565227.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111565227.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Soyeon", 
        "id": "sg:person.0612662613.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/modpathol.2012.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051056011", 
          "https://doi.org/10.1038/modpathol.2012.106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3441-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024686079", 
          "https://doi.org/10.1007/s00330-014-3441-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3616-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030303935", 
          "https://doi.org/10.1007/s00330-015-3616-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07-25", 
    "datePublishedReg": "2016-07-25", 
    "description": "ObjectivesTo compare interobserver agreements among multiple readers and accuracy for the assessment of solid components in subsolid nodules between the lung and mediastinal window settings.MethodsSeventy-seven surgically resected nodules with solid components smaller than 8\u00a0mm were included in this study. In both lung and mediastinal windows, five readers independently assessed the presence and size of solid component. Bootstrapping was used to compare the interobserver agreement between the two window settings. Imaging-pathology correlation was performed to evaluate the accuracy.ResultsThere were no significant differences in the interobserver agreements between the two windows for both identification (lung windows, k\u2009=\u20090.51; mediastinal windows, k\u2009=\u20090.57) and measurements (lung windows, ICC\u2009=\u20090.70; mediastinal windows, ICC\u2009=\u20090.69) of solid components. The incidence of false negative results for the presence of invasive components and the median absolute difference between the solid component size and the invasive component size were significantly higher on mediastinal windows than on lung windows (P\u2009<\u20090.001 and P\u2009<\u20090.001, respectively).ConclusionsThe lung window setting had a comparable reproducibility but a higher accuracy than the mediastinal window setting for nodule classifications and solid component measurements in subsolid nodules.Key Points\u2022 Reproducibility was similar between the two windows in nodule classifications.\u2022 Reproducibility was similar between the two windows in solid component measurements.\u2022 Accuracy for solid component assessment was higher on lung windows.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-016-4495-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "mediastinal window setting", 
      "interobserver agreement", 
      "subsolid nodules", 
      "mediastinal window", 
      "lung windows", 
      "Imaging-pathology correlation", 
      "invasive component size", 
      "window settings", 
      "solid component size", 
      "solid components", 
      "lung window settings", 
      "false negative results", 
      "invasive component", 
      "retrospective assessment", 
      "median absolute difference", 
      "significant differences", 
      "negative results", 
      "lung", 
      "nodules", 
      "setting", 
      "absolute difference", 
      "assessment", 
      "MethodsSeventy", 
      "ResultsThere", 
      "ObjectivesTo", 
      "incidence", 
      "differences", 
      "nodule classification", 
      "presence", 
      "classification", 
      "reproducibility", 
      "comparable reproducibility", 
      "component size", 
      "component measurements", 
      "study", 
      "correlation", 
      "components", 
      "window", 
      "size", 
      "measurements", 
      "identification", 
      "results", 
      "multiple readers", 
      "accuracy", 
      "component assessment", 
      "readers", 
      "agreement", 
      "high accuracy", 
      "ConclusionsThe lung window setting", 
      "solid component measurements", 
      "solid component assessment"
    ], 
    "name": "Retrospective assessment of interobserver agreement and accuracy in classifications and measurements in subsolid nodules with solid components less than 8mm: which window setting is better?", 
    "pagination": "1369-1376", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010441421"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-016-4495-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27456963"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-016-4495-z", 
      "https://app.dimensions.ai/details/publication/pub.1010441421"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_697.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-016-4495-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4495-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4495-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4495-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4495-z'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      22 PREDICATES      96 URIs      85 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-016-4495-z schema:about N1688592ffe944b96b719d5f078413f12
2 N20b069bbd1a1447b88990fca9644f782
3 N28f2c9e88b5449ff9c95c2563ed000db
4 N2e7b51b643d845ddad3b89350c29c396
5 N4349462be8dd4133898a9c35f7fe207e
6 N5752e3aee960421a8c7fd37ca482d5e9
7 N65036af1cded425382679f7afbb41743
8 N8bfb867f498746ff93847fc82325d854
9 Na71d56f3650b4bac91c35d41d4870351
10 Na7aa4939245b46bc8913672b6ac8670e
11 Naea3d1d2c32e4f3b9a32cbc199da836c
12 Naf9fd6e765e440e6830386b7c122809f
13 Ncf944871eebd4c8fbc0744a19648f618
14 Nd30530b4b0a64f01b161efc59a23d428
15 Ndc2913212c5647eeb4cc1525137c9463
16 Ndd6897c8a5654e01af100c8ae6f38db5
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author N161f8e9b35e64739861551610d3205bc
20 schema:citation sg:pub.10.1007/s00330-014-3441-1
21 sg:pub.10.1007/s00330-015-3616-4
22 sg:pub.10.1038/modpathol.2012.106
23 schema:datePublished 2016-07-25
24 schema:datePublishedReg 2016-07-25
25 schema:description ObjectivesTo compare interobserver agreements among multiple readers and accuracy for the assessment of solid components in subsolid nodules between the lung and mediastinal window settings.MethodsSeventy-seven surgically resected nodules with solid components smaller than 8 mm were included in this study. In both lung and mediastinal windows, five readers independently assessed the presence and size of solid component. Bootstrapping was used to compare the interobserver agreement between the two window settings. Imaging-pathology correlation was performed to evaluate the accuracy.ResultsThere were no significant differences in the interobserver agreements between the two windows for both identification (lung windows, k = 0.51; mediastinal windows, k = 0.57) and measurements (lung windows, ICC = 0.70; mediastinal windows, ICC = 0.69) of solid components. The incidence of false negative results for the presence of invasive components and the median absolute difference between the solid component size and the invasive component size were significantly higher on mediastinal windows than on lung windows (P < 0.001 and P < 0.001, respectively).ConclusionsThe lung window setting had a comparable reproducibility but a higher accuracy than the mediastinal window setting for nodule classifications and solid component measurements in subsolid nodules.Key Points• Reproducibility was similar between the two windows in nodule classifications.• Reproducibility was similar between the two windows in solid component measurements.• Accuracy for solid component assessment was higher on lung windows.
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N1cb770df3fcf4379bfb5bfec9c1da76c
30 N4538f0013fe34eb8b17a43859240bcdc
31 sg:journal.1289120
32 schema:keywords ConclusionsThe lung window setting
33 Imaging-pathology correlation
34 MethodsSeventy
35 ObjectivesTo
36 ResultsThere
37 absolute difference
38 accuracy
39 agreement
40 assessment
41 classification
42 comparable reproducibility
43 component assessment
44 component measurements
45 component size
46 components
47 correlation
48 differences
49 false negative results
50 high accuracy
51 identification
52 incidence
53 interobserver agreement
54 invasive component
55 invasive component size
56 lung
57 lung window settings
58 lung windows
59 measurements
60 median absolute difference
61 mediastinal window
62 mediastinal window setting
63 multiple readers
64 negative results
65 nodule classification
66 nodules
67 presence
68 readers
69 reproducibility
70 results
71 retrospective assessment
72 setting
73 significant differences
74 size
75 solid component assessment
76 solid component measurements
77 solid component size
78 solid components
79 study
80 subsolid nodules
81 window
82 window settings
83 schema:name Retrospective assessment of interobserver agreement and accuracy in classifications and measurements in subsolid nodules with solid components less than 8mm: which window setting is better?
84 schema:pagination 1369-1376
85 schema:productId N8cf71b31f6854cee9de1ecf2716a336b
86 Nb020c5c8bb074ed98b2ecb0396d816e0
87 Nc8687b8f17f348449494986f26705a37
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010441421
89 https://doi.org/10.1007/s00330-016-4495-z
90 schema:sdDatePublished 2022-01-01T18:40
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N853f7470964045cd95bca77aee7b0c34
93 schema:url https://doi.org/10.1007/s00330-016-4495-z
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N161f8e9b35e64739861551610d3205bc rdf:first sg:person.0605134174.12
98 rdf:rest N1a09bf65d5a1475490cca51db8e06a48
99 N1688592ffe944b96b719d5f078413f12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Adenocarcinoma
101 rdf:type schema:DefinedTerm
102 N1a09bf65d5a1475490cca51db8e06a48 rdf:first sg:person.01351124710.13
103 rdf:rest N5bb934c981fc46fcbe6985cb15fdcea9
104 N1cb770df3fcf4379bfb5bfec9c1da76c schema:issueNumber 4
105 rdf:type schema:PublicationIssue
106 N20b069bbd1a1447b88990fca9644f782 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Lung
108 rdf:type schema:DefinedTerm
109 N28f2c9e88b5449ff9c95c2563ed000db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Adult
111 rdf:type schema:DefinedTerm
112 N2e7b51b643d845ddad3b89350c29c396 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Multiple Pulmonary Nodules
114 rdf:type schema:DefinedTerm
115 N340e8b145a0f4bbb994a3d5a63a77bf5 rdf:first sg:person.0612662613.04
116 rdf:rest rdf:nil
117 N4349462be8dd4133898a9c35f7fe207e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Aged
119 rdf:type schema:DefinedTerm
120 N4538f0013fe34eb8b17a43859240bcdc schema:volumeNumber 27
121 rdf:type schema:PublicationVolume
122 N4b47f5abc296400cbb2c119e84d8945a rdf:first sg:person.0720162106.41
123 rdf:rest Nfc229f2c470048439b676b8e07a6fe1f
124 N5752e3aee960421a8c7fd37ca482d5e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Tomography, X-Ray Computed
126 rdf:type schema:DefinedTerm
127 N5bb934c981fc46fcbe6985cb15fdcea9 rdf:first sg:person.0654224120.11
128 rdf:rest N4b47f5abc296400cbb2c119e84d8945a
129 N65036af1cded425382679f7afbb41743 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Lung Neoplasms
131 rdf:type schema:DefinedTerm
132 N6ea01a9eff4345fba25c4fa34ae36502 rdf:first sg:person.01111565227.56
133 rdf:rest N340e8b145a0f4bbb994a3d5a63a77bf5
134 N853f7470964045cd95bca77aee7b0c34 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N8bfb867f498746ff93847fc82325d854 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Mediastinum
138 rdf:type schema:DefinedTerm
139 N8cf71b31f6854cee9de1ecf2716a336b schema:name pubmed_id
140 schema:value 27456963
141 rdf:type schema:PropertyValue
142 Na71d56f3650b4bac91c35d41d4870351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Retrospective Studies
144 rdf:type schema:DefinedTerm
145 Na7aa4939245b46bc8913672b6ac8670e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Reproducibility of Results
147 rdf:type schema:DefinedTerm
148 Naea3d1d2c32e4f3b9a32cbc199da836c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Male
150 rdf:type schema:DefinedTerm
151 Naf9fd6e765e440e6830386b7c122809f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Observer Variation
153 rdf:type schema:DefinedTerm
154 Nb020c5c8bb074ed98b2ecb0396d816e0 schema:name dimensions_id
155 schema:value pub.1010441421
156 rdf:type schema:PropertyValue
157 Nc8687b8f17f348449494986f26705a37 schema:name doi
158 schema:value 10.1007/s00330-016-4495-z
159 rdf:type schema:PropertyValue
160 Ncf944871eebd4c8fbc0744a19648f618 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Humans
162 rdf:type schema:DefinedTerm
163 Nd30530b4b0a64f01b161efc59a23d428 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Image Processing, Computer-Assisted
165 rdf:type schema:DefinedTerm
166 Ndc2913212c5647eeb4cc1525137c9463 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Middle Aged
168 rdf:type schema:DefinedTerm
169 Ndd6897c8a5654e01af100c8ae6f38db5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Female
171 rdf:type schema:DefinedTerm
172 Nfc229f2c470048439b676b8e07a6fe1f rdf:first sg:person.010322643702.41
173 rdf:rest N6ea01a9eff4345fba25c4fa34ae36502
174 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
175 schema:name Medical and Health Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
178 schema:name Clinical Sciences
179 rdf:type schema:DefinedTerm
180 sg:journal.1289120 schema:issn 0938-7994
181 1432-1084
182 schema:name European Radiology
183 schema:publisher Springer Nature
184 rdf:type schema:Periodical
185 sg:person.010322643702.41 schema:affiliation grid-institutes:grid.31501.36
186 schema:familyName Lee
187 schema:givenName Chang Hyun
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010322643702.41
189 rdf:type schema:Person
190 sg:person.01111565227.56 schema:affiliation grid-institutes:grid.31501.36
191 schema:familyName Park
192 schema:givenName Chang Min
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111565227.56
194 rdf:type schema:Person
195 sg:person.01351124710.13 schema:affiliation grid-institutes:grid.31501.36
196 schema:familyName Goo
197 schema:givenName Jin Mo
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351124710.13
199 rdf:type schema:Person
200 sg:person.0605134174.12 schema:affiliation grid-institutes:grid.412484.f
201 schema:familyName Yoo
202 schema:givenName Roh-Eul
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605134174.12
204 rdf:type schema:Person
205 sg:person.0612662613.04 schema:affiliation grid-institutes:grid.412480.b
206 schema:familyName Ahn
207 schema:givenName Soyeon
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04
209 rdf:type schema:Person
210 sg:person.0654224120.11 schema:affiliation grid-institutes:grid.31501.36
211 schema:familyName Hwang
212 schema:givenName Eui Jin
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654224120.11
214 rdf:type schema:Person
215 sg:person.0720162106.41 schema:affiliation grid-institutes:grid.31501.36
216 schema:familyName Yoon
217 schema:givenName Soon Ho
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720162106.41
219 rdf:type schema:Person
220 sg:pub.10.1007/s00330-014-3441-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024686079
221 https://doi.org/10.1007/s00330-014-3441-1
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s00330-015-3616-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030303935
224 https://doi.org/10.1007/s00330-015-3616-4
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/modpathol.2012.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051056011
227 https://doi.org/10.1038/modpathol.2012.106
228 rdf:type schema:CreativeWork
229 grid-institutes:grid.31501.36 schema:alternateName Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
230 Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea
231 schema:name Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
232 Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea
233 rdf:type schema:Organization
234 grid-institutes:grid.412480.b schema:alternateName Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Korea
235 schema:name Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam-si, Korea
236 rdf:type schema:Organization
237 grid-institutes:grid.412484.f schema:alternateName Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea
238 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea
239 Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehak-ro, Chongno-gu, 110-744, Seoul, Korea
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...