Low contrast detectability and spatial resolution with model-based Iterative reconstructions of MDCT images: a phantom and cadaveric study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Domitille Millon, Alain Vlassenbroek, Aline G. Van Maanen, Samantha E. Cambier, Emmanuel E. Coche

ABSTRACT

OBJECTIVES: To compare image quality [low contrast (LC) detectability, noise, contrast-to-noise (CNR) and spatial resolution (SR)] of MDCT images reconstructed with an iterative reconstruction (IR) algorithm and a filtered back projection (FBP) algorithm. METHODS: The experimental study was performed on a 256-slice MDCT. LC detectability, noise, CNR and SR were measured on a Catphan phantom scanned with decreasing doses (48.8 down to 0.7 mGy) and parameters typical of a chest CT examination. Images were reconstructed with FBP and a model-based IR algorithm. Additionally, human chest cadavers were scanned and reconstructed using the same technical parameters. Images were analyzed to illustrate the phantom results. RESULTS: LC detectability and noise were statistically significantly different between the techniques, supporting model-based IR algorithm (p < 0.0001). At low doses, the noise in FBP images only enabled SR measurements of high contrast objects. The superior CNR of model-based IR algorithm enabled lower dose measurements, which showed that SR was dose and contrast dependent. Cadaver images reconstructed with model-based IR illustrated that visibility and delineation of anatomical structure edges could be deteriorated at low doses. CONCLUSION: Model-based IR improved LC detectability and enabled dose reduction. At low dose, SR became dose and contrast dependent. KEY POINTS: • Model- based Iterative Reconstruction improves detectability of low contrast object. • With model- based Iterative Reconstruction, spatial resolution is dose and contrast dependent. • Model-based Iterative Reconstruction algorithms enable improved IQ combined with dose-reduction possibilities. • Improvement of SR and LC detectability on the same IMR data set would reduce reconstructions. More... »

PAGES

927-937

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-016-4444-x

DOI

http://dx.doi.org/10.1007/s00330-016-4444-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042167058

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27300195


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cadaver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multidetector Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Thoracic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thorax", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Radiology and Medical Imaging, Cliniques Universitaires Saint Luc, Universit\u00e9 Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Millon", 
        "givenName": "Domitille", 
        "id": "sg:person.0655603527.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655603527.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Philips Healthcare, Rue des deux gares 80, 1070, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vlassenbroek", 
        "givenName": "Alain", 
        "id": "sg:person.01000626066.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000626066.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Catholique de Louvain", 
          "id": "https://www.grid.ac/institutes/grid.7942.8", 
          "name": [
            "Statistics Unit, King Albert II Cancer Institute, Universit\u00e9 Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Maanen", 
        "givenName": "Aline G.", 
        "id": "sg:person.016311633351.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311633351.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Catholique de Louvain", 
          "id": "https://www.grid.ac/institutes/grid.7942.8", 
          "name": [
            "Statistics Unit, King Albert II Cancer Institute, Universit\u00e9 Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cambier", 
        "givenName": "Samantha E.", 
        "id": "sg:person.07606562151.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07606562151.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Radiology and Medical Imaging, Cliniques Universitaires Saint Luc, Universit\u00e9 Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coche", 
        "givenName": "Emmanuel E.", 
        "id": "sg:person.0617315616.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617315616.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiol.2015132766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006750918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmp.2011.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015415271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnmt.106.037846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016635226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018496065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4884038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033881514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2014.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035131199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036860532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2627-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038379272", 
          "https://doi.org/10.1007/s00330-012-2627-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13122349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041215586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4725171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042218185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a2585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048529798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2271-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051991976", 
          "https://doi.org/10.1007/s00330-011-2271-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20130388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064565149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.24.003644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065161855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.11.7421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.15142047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079062216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015141260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079089439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079317866", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/93.2.257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081364793"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "OBJECTIVES: To compare image quality [low contrast (LC) detectability, noise, contrast-to-noise (CNR) and spatial resolution (SR)] of MDCT images reconstructed with an iterative reconstruction (IR) algorithm and a filtered back projection (FBP) algorithm.\nMETHODS: The experimental study was performed on a 256-slice MDCT. LC detectability, noise, CNR and SR were measured on a Catphan phantom scanned with decreasing doses (48.8 down to 0.7\u00a0mGy) and parameters typical of a chest CT examination. Images were reconstructed with FBP and a model-based IR algorithm. Additionally, human chest cadavers were scanned and reconstructed using the same technical parameters. Images were analyzed to illustrate the phantom results.\nRESULTS: LC detectability and noise were statistically significantly different between the techniques, supporting model-based IR algorithm (p\u2009<\u20090.0001). At low doses, the noise in FBP images only enabled SR measurements of high contrast objects. The superior CNR of model-based IR algorithm enabled lower dose measurements, which showed that SR was dose and contrast dependent. Cadaver images reconstructed with model-based IR illustrated that visibility and delineation of anatomical structure edges could be deteriorated at low doses.\nCONCLUSION: Model-based IR improved LC detectability and enabled dose reduction. At low dose, SR became dose and contrast dependent.\nKEY POINTS: \u2022 Model- based Iterative Reconstruction improves detectability of low contrast object. \u2022 With model- based Iterative Reconstruction, spatial resolution is dose and contrast dependent. \u2022 Model-based Iterative Reconstruction algorithms enable improved IQ combined with dose-reduction possibilities. \u2022 Improvement of SR and LC detectability on the same IMR data set would reduce reconstructions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-016-4444-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Low contrast detectability and spatial resolution with model-based Iterative reconstructions of MDCT images: a phantom and cadaveric study", 
    "pagination": "927-937", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c8dcde5aead3fdb2d3e5a55f9ffbeba475be4045ea3479d40f6de3c2472ce4ec"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27300195"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-016-4444-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042167058"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-016-4444-x", 
      "https://app.dimensions.ai/details/publication/pub.1042167058"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70064_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-016-4444-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4444-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4444-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4444-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4444-x'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      59 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-016-4444-x schema:about N35601f92ea3a412986e8e8b610852d91
2 N394e94b49782484187a9c1d365bcf90c
3 N40646ac3832242309855853597b83d08
4 N4e25544213504be6a2c522c1fd517e18
5 N64927c6f327a4330a3a787db6ee74e54
6 N657deb533825473a866d135943eb113e
7 Naad8134cac9e4f8187c703ec5da498cc
8 Nc40156af9d0942b8a435d83645fa8bcc
9 Ndedd0e68e2c04f3f93a09ec5de234a10
10 Ndf0b80d4d81c4dc8964ed5554f24ad44
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author N6c7555becdad4cbe940058ffdcfd2b30
14 schema:citation sg:pub.10.1007/s00330-011-2271-7
15 sg:pub.10.1007/s00330-012-2627-7
16 https://app.dimensions.ai/details/publication/pub.1079317866
17 https://doi.org/10.1016/j.ejmp.2011.12.004
18 https://doi.org/10.1016/j.ejrad.2014.05.033
19 https://doi.org/10.1118/1.4725171
20 https://doi.org/10.1118/1.4884038
21 https://doi.org/10.1148/93.2.257
22 https://doi.org/10.1148/radiol.13122349
23 https://doi.org/10.1148/radiol.15142047
24 https://doi.org/10.1148/radiol.2015132766
25 https://doi.org/10.1148/radiol.2015141260
26 https://doi.org/10.1259/bjr.20130388
27 https://doi.org/10.1364/josaa.24.003644
28 https://doi.org/10.2214/ajr.11.7421
29 https://doi.org/10.2214/ajr.12.9382
30 https://doi.org/10.2967/jnmt.106.037846
31 https://doi.org/10.3174/ajnr.a2585
32 https://doi.org/10.3174/ajnr.a2749
33 https://doi.org/10.3174/ajnr.a2826
34 schema:datePublished 2017-03
35 schema:datePublishedReg 2017-03-01
36 schema:description OBJECTIVES: To compare image quality [low contrast (LC) detectability, noise, contrast-to-noise (CNR) and spatial resolution (SR)] of MDCT images reconstructed with an iterative reconstruction (IR) algorithm and a filtered back projection (FBP) algorithm. METHODS: The experimental study was performed on a 256-slice MDCT. LC detectability, noise, CNR and SR were measured on a Catphan phantom scanned with decreasing doses (48.8 down to 0.7 mGy) and parameters typical of a chest CT examination. Images were reconstructed with FBP and a model-based IR algorithm. Additionally, human chest cadavers were scanned and reconstructed using the same technical parameters. Images were analyzed to illustrate the phantom results. RESULTS: LC detectability and noise were statistically significantly different between the techniques, supporting model-based IR algorithm (p < 0.0001). At low doses, the noise in FBP images only enabled SR measurements of high contrast objects. The superior CNR of model-based IR algorithm enabled lower dose measurements, which showed that SR was dose and contrast dependent. Cadaver images reconstructed with model-based IR illustrated that visibility and delineation of anatomical structure edges could be deteriorated at low doses. CONCLUSION: Model-based IR improved LC detectability and enabled dose reduction. At low dose, SR became dose and contrast dependent. KEY POINTS: • Model- based Iterative Reconstruction improves detectability of low contrast object. • With model- based Iterative Reconstruction, spatial resolution is dose and contrast dependent. • Model-based Iterative Reconstruction algorithms enable improved IQ combined with dose-reduction possibilities. • Improvement of SR and LC detectability on the same IMR data set would reduce reconstructions.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N0648a43f4140455e9a5faab9326c1d74
41 Nd6058774220045c69c2402d36fecc3b7
42 sg:journal.1289120
43 schema:name Low contrast detectability and spatial resolution with model-based Iterative reconstructions of MDCT images: a phantom and cadaveric study
44 schema:pagination 927-937
45 schema:productId N1665547e6edc4599aab213a41319f800
46 N59a9846b19174820a7a619a096118e5e
47 Nc2d532a913414bf9b2057c44d3d39857
48 Ncb562cb5c5e347828e534bc0c5839b4e
49 Nef6d645fcd60437e8070283083ad1dba
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042167058
51 https://doi.org/10.1007/s00330-016-4444-x
52 schema:sdDatePublished 2019-04-11T12:43
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Ndd032bb0430b497ba3d471bd2afbd6be
55 schema:url https://link.springer.com/10.1007%2Fs00330-016-4444-x
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N02c795e9286d496aa885445def739076 schema:name Department of Radiology and Medical Imaging, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium
60 rdf:type schema:Organization
61 N0648a43f4140455e9a5faab9326c1d74 schema:volumeNumber 27
62 rdf:type schema:PublicationVolume
63 N1665547e6edc4599aab213a41319f800 schema:name nlm_unique_id
64 schema:value 9114774
65 rdf:type schema:PropertyValue
66 N2cc85abb764645ea87365eab08099d55 rdf:first sg:person.016311633351.73
67 rdf:rest Na78fff37cee84b82aafdff587b73e492
68 N35601f92ea3a412986e8e8b610852d91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Multidetector Computed Tomography
70 rdf:type schema:DefinedTerm
71 N38a5ada8986c4a328b7d0f9a097c9f9e rdf:first sg:person.0617315616.12
72 rdf:rest rdf:nil
73 N394e94b49782484187a9c1d365bcf90c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Radiation Dosage
75 rdf:type schema:DefinedTerm
76 N40646ac3832242309855853597b83d08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N4e25544213504be6a2c522c1fd517e18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Reproducibility of Results
81 rdf:type schema:DefinedTerm
82 N59a9846b19174820a7a619a096118e5e schema:name readcube_id
83 schema:value c8dcde5aead3fdb2d3e5a55f9ffbeba475be4045ea3479d40f6de3c2472ce4ec
84 rdf:type schema:PropertyValue
85 N64927c6f327a4330a3a787db6ee74e54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Radiographic Image Interpretation, Computer-Assisted
87 rdf:type schema:DefinedTerm
88 N657deb533825473a866d135943eb113e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Cadaver
90 rdf:type schema:DefinedTerm
91 N6c7555becdad4cbe940058ffdcfd2b30 rdf:first sg:person.0655603527.41
92 rdf:rest Ndd4bd952f147481abebae2d577042aa1
93 N7146ea9154d84b94b86abb12241cb533 schema:name Department of Radiology and Medical Imaging, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium
94 rdf:type schema:Organization
95 Na78fff37cee84b82aafdff587b73e492 rdf:first sg:person.07606562151.14
96 rdf:rest N38a5ada8986c4a328b7d0f9a097c9f9e
97 Naad8134cac9e4f8187c703ec5da498cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Phantoms, Imaging
99 rdf:type schema:DefinedTerm
100 Nc2d532a913414bf9b2057c44d3d39857 schema:name doi
101 schema:value 10.1007/s00330-016-4444-x
102 rdf:type schema:PropertyValue
103 Nc40156af9d0942b8a435d83645fa8bcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Algorithms
105 rdf:type schema:DefinedTerm
106 Ncb562cb5c5e347828e534bc0c5839b4e schema:name dimensions_id
107 schema:value pub.1042167058
108 rdf:type schema:PropertyValue
109 Nd6058774220045c69c2402d36fecc3b7 schema:issueNumber 3
110 rdf:type schema:PublicationIssue
111 Ndd032bb0430b497ba3d471bd2afbd6be schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 Ndd4bd952f147481abebae2d577042aa1 rdf:first sg:person.01000626066.64
114 rdf:rest N2cc85abb764645ea87365eab08099d55
115 Ndedd0e68e2c04f3f93a09ec5de234a10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Thorax
117 rdf:type schema:DefinedTerm
118 Ndf0b80d4d81c4dc8964ed5554f24ad44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Radiography, Thoracic
120 rdf:type schema:DefinedTerm
121 Nede8cd669ea745e8840da747030a23e9 schema:name Philips Healthcare, Rue des deux gares 80, 1070, Brussels, Belgium
122 rdf:type schema:Organization
123 Nef6d645fcd60437e8070283083ad1dba schema:name pubmed_id
124 schema:value 27300195
125 rdf:type schema:PropertyValue
126 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
127 schema:name Information and Computing Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
130 schema:name Artificial Intelligence and Image Processing
131 rdf:type schema:DefinedTerm
132 sg:journal.1289120 schema:issn 0938-7994
133 1432-1084
134 schema:name European Radiology
135 rdf:type schema:Periodical
136 sg:person.01000626066.64 schema:affiliation Nede8cd669ea745e8840da747030a23e9
137 schema:familyName Vlassenbroek
138 schema:givenName Alain
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000626066.64
140 rdf:type schema:Person
141 sg:person.016311633351.73 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
142 schema:familyName Van Maanen
143 schema:givenName Aline G.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311633351.73
145 rdf:type schema:Person
146 sg:person.0617315616.12 schema:affiliation N02c795e9286d496aa885445def739076
147 schema:familyName Coche
148 schema:givenName Emmanuel E.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617315616.12
150 rdf:type schema:Person
151 sg:person.0655603527.41 schema:affiliation N7146ea9154d84b94b86abb12241cb533
152 schema:familyName Millon
153 schema:givenName Domitille
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655603527.41
155 rdf:type schema:Person
156 sg:person.07606562151.14 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
157 schema:familyName Cambier
158 schema:givenName Samantha E.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07606562151.14
160 rdf:type schema:Person
161 sg:pub.10.1007/s00330-011-2271-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051991976
162 https://doi.org/10.1007/s00330-011-2271-7
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s00330-012-2627-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038379272
165 https://doi.org/10.1007/s00330-012-2627-7
166 rdf:type schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1079317866 schema:CreativeWork
168 https://doi.org/10.1016/j.ejmp.2011.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415271
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ejrad.2014.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035131199
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1118/1.4725171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042218185
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1118/1.4884038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033881514
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1148/93.2.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081364793
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1148/radiol.13122349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041215586
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1148/radiol.15142047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079062216
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1148/radiol.2015132766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006750918
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1148/radiol.2015141260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079089439
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1259/bjr.20130388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064565149
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1364/josaa.24.003644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065161855
189 rdf:type schema:CreativeWork
190 https://doi.org/10.2214/ajr.11.7421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302000
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2214/ajr.12.9382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302837
193 rdf:type schema:CreativeWork
194 https://doi.org/10.2967/jnmt.106.037846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016635226
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3174/ajnr.a2585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048529798
197 rdf:type schema:CreativeWork
198 https://doi.org/10.3174/ajnr.a2749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036860532
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3174/ajnr.a2826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018496065
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.7942.8 schema:alternateName Université Catholique de Louvain
203 schema:name Statistics Unit, King Albert II Cancer Institute, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels, Belgium
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...