Outcome and CT differentiation of gallbladder neuroendocrine tumours from adenocarcinomas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02

AUTHORS

Tae-Hyung Kim, Se Hyung Kim, Kyoung Boon Lee, Joon Koo Han

ABSTRACT

OBJECTIVES: To retrospectively investigate clinical outcome and differential CT features of gallbladder (GB) neuroendocrine tumours (NETs) from adenocarcinomas (ADCs). MATERIALS AND METHODS: Nineteen patients with poorly-differentiated (PD) NETs and 19 patients with PD ADCs were enrolled. Clinical outcome was compared by the Kaplan-Meier method. We assessed qualitative and quantitative CT features to identify significant differential CT features of PD NETs from ADCs using univariate and multivariate analyses. Receiver operating characteristic (ROC) analysis was used for quantitative CT features. RESULTS: PD NETs showed poorer prognosis with significantly shorter median survival days than ADCs (363 vs. 590 days, P = 0.03). On univariate analysis, NETs more frequently manifested as GB-replacing type and showed well-defined margins accompanied with intact overlying mucosa. On multivariate analysis, well-defined margin was the sole significant CT differentiator (odds ratio = 27.817, P = 0.045). Maximum size of hepatic and lymph node (LN) metastases was significantly larger in NETs (11.0 cm and 4.62 cm) than ADCs (2.40 cm and 2.41 cm). Areas under ROC curves for tumour-to-mucosa ratio, maximum size of hepatic and LN metastasis were 0.772, 0.932 and 0.919, respectively (P < 0.05). CONCLUSION: GB PD NETs show poorer prognosis than ADCs. Well-defined margin, larger hepatic and LN metastases are useful CT differentiators of GB NETs from ADCs. KEY POINTS: • A well-defined margin is a useful CT differentiator of GB NETs from ADCs. • Hepatic and LN metastases are significantly larger in NETs than in ADCs. • Primary tumour and hepatic metastasis of NETs are more hyperattenuated than ADCs. More... »

PAGES

507-517

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-016-4394-3

DOI

http://dx.doi.org/10.1007/s00330-016-4394-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007170196

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27225621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenocarcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gallbladder Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kaplan-Meier Estimate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymph Nodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuroendocrine Tumors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae-Hyung", 
        "id": "sg:person.015721622340.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721622340.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul, Korea", 
            "Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Se Hyung", 
        "id": "sg:person.016434366660.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Pathology, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kyoung Boon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, Seoul, Korea", 
            "Department of Radiology, Seoul National University College of Medicine, Seoul, Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00261-006-9002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000413864", 
          "https://doi.org/10.1007/s00261-006-9002-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-004-7443-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003955957", 
          "https://doi.org/10.1007/s00268-004-7443-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3206-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005429950", 
          "https://doi.org/10.1007/s00330-014-3206-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4061/2011/154541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010197881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diii.2014.11.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016960495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3941-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021218941", 
          "https://doi.org/10.1007/s00330-015-3941-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3600-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022512529", 
          "https://doi.org/10.1007/s00330-015-3600-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200607000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031298025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200607000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031298025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2008.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032665477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.23542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036783522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.15.4377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037736197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsu.2015.12.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041121370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gut.34.9.1274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042129493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.11105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046798811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mcg.0b013e3181d7a6d4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050436692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mcg.0b013e3181d7a6d4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050436692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mcg.0b013e3181d7a6d4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050436692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.180.1.1800121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v20.i33.11916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071371383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v21.i1.269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071372244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077068399", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079144720", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.206.1.9423664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083194658"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "OBJECTIVES: To retrospectively investigate clinical outcome and differential CT features of gallbladder (GB) neuroendocrine tumours (NETs) from adenocarcinomas (ADCs).\nMATERIALS AND METHODS: Nineteen patients with poorly-differentiated (PD) NETs and 19 patients with PD ADCs were enrolled. Clinical outcome was compared by the Kaplan-Meier method. We assessed qualitative and quantitative CT features to identify significant differential CT features of PD NETs from ADCs using univariate and multivariate analyses. Receiver operating characteristic (ROC) analysis was used for quantitative CT features.\nRESULTS: PD NETs showed poorer prognosis with significantly shorter median survival days than ADCs (363 vs. 590\u00a0days, P\u2009=\u20090.03). On univariate analysis, NETs more frequently manifested as GB-replacing type and showed well-defined margins accompanied with intact overlying mucosa. On multivariate analysis, well-defined margin was the sole significant CT differentiator (odds ratio\u2009=\u200927.817, P\u2009=\u20090.045). Maximum size of hepatic and lymph node (LN) metastases was significantly larger in NETs (11.0\u00a0cm and 4.62\u00a0cm) than ADCs (2.40\u00a0cm and 2.41\u00a0cm). Areas under ROC curves for tumour-to-mucosa ratio, maximum size of hepatic and LN metastasis were 0.772, 0.932 and 0.919, respectively (P\u2009<\u20090.05).\nCONCLUSION: GB PD NETs show poorer prognosis than ADCs. Well-defined margin, larger hepatic and LN metastases are useful CT differentiators of GB NETs from ADCs.\nKEY POINTS: \u2022 A well-defined margin is a useful CT differentiator of GB NETs from ADCs. \u2022 Hepatic and LN metastases are significantly larger in NETs than in ADCs. \u2022 Primary tumour and hepatic metastasis of NETs are more hyperattenuated than ADCs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-016-4394-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Outcome and CT differentiation of gallbladder neuroendocrine tumours from adenocarcinomas", 
    "pagination": "507-517", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2227303b52ac29c8c24c20794fa735d1b744594b13c58f09a220808b624eab87"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27225621"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-016-4394-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007170196"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-016-4394-3", 
      "https://app.dimensions.ai/details/publication/pub.1007170196"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00330-016-4394-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4394-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4394-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4394-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-016-4394-3'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      68 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-016-4394-3 schema:about N036f754acb884f1daa748efb39bd7b3b
2 N0cd7dda2860d460ab11331e2b9a09eab
3 N329376436bd74dcd99a356f758d4255b
4 N3920ecd3bfec4cac948ba19bb38a76f1
5 N3f2a5be7f001402bbfb02ef5cccf77ec
6 N54ada89df5df4791adbee7eff765f335
7 N5d2436bbed5a415cb495d657f9f644c9
8 N6ad0d09d952440bc91d6ec4c80d59623
9 N74c6c284de4943069ff842bb90f8b785
10 N7bd54b0cf42e42ca8c689ecf358241dd
11 N96518b83e3664d7d879fc9aad438bf78
12 Nbc55eaa9e3ae4c29afa225f9260769b8
13 Nbfc33e011bfc49e28febddaddc5885ee
14 Nc8d1a019b9304792a0b336a49e398eb5
15 Ne77da850a6474fce885a981bd96f92c4
16 Ne94d373de2e8484cb9b4c21f15215119
17 Neba1d3e79b2b4e24ae888bc3d3b2f7e7
18 Nf5194c1a7e37412892099e9486d81121
19 anzsrc-for:11
20 anzsrc-for:1112
21 schema:author N845dc6b02d2d4b81b9ea3cbb94619954
22 schema:citation sg:pub.10.1007/s00261-006-9002-6
23 sg:pub.10.1007/s00268-004-7443-z
24 sg:pub.10.1007/s00330-014-3206-x
25 sg:pub.10.1007/s00330-015-3600-z
26 sg:pub.10.1007/s00330-015-3941-7
27 https://app.dimensions.ai/details/publication/pub.1077068399
28 https://app.dimensions.ai/details/publication/pub.1079144720
29 https://doi.org/10.1002/cncr.11105
30 https://doi.org/10.1002/cncr.23542
31 https://doi.org/10.1016/j.diii.2014.11.027
32 https://doi.org/10.1016/j.ejrad.2008.08.008
33 https://doi.org/10.1016/j.ijsu.2015.12.045
34 https://doi.org/10.1097/00004728-200607000-00009
35 https://doi.org/10.1097/mcg.0b013e3181d7a6d4
36 https://doi.org/10.1136/gut.34.9.1274
37 https://doi.org/10.1148/radiology.206.1.9423664
38 https://doi.org/10.1200/jco.2007.15.4377
39 https://doi.org/10.2214/ajr.180.1.1800121
40 https://doi.org/10.3748/wjg.v20.i33.11916
41 https://doi.org/10.3748/wjg.v21.i1.269
42 https://doi.org/10.4061/2011/154541
43 schema:datePublished 2017-02
44 schema:datePublishedReg 2017-02-01
45 schema:description OBJECTIVES: To retrospectively investigate clinical outcome and differential CT features of gallbladder (GB) neuroendocrine tumours (NETs) from adenocarcinomas (ADCs). MATERIALS AND METHODS: Nineteen patients with poorly-differentiated (PD) NETs and 19 patients with PD ADCs were enrolled. Clinical outcome was compared by the Kaplan-Meier method. We assessed qualitative and quantitative CT features to identify significant differential CT features of PD NETs from ADCs using univariate and multivariate analyses. Receiver operating characteristic (ROC) analysis was used for quantitative CT features. RESULTS: PD NETs showed poorer prognosis with significantly shorter median survival days than ADCs (363 vs. 590 days, P = 0.03). On univariate analysis, NETs more frequently manifested as GB-replacing type and showed well-defined margins accompanied with intact overlying mucosa. On multivariate analysis, well-defined margin was the sole significant CT differentiator (odds ratio = 27.817, P = 0.045). Maximum size of hepatic and lymph node (LN) metastases was significantly larger in NETs (11.0 cm and 4.62 cm) than ADCs (2.40 cm and 2.41 cm). Areas under ROC curves for tumour-to-mucosa ratio, maximum size of hepatic and LN metastasis were 0.772, 0.932 and 0.919, respectively (P < 0.05). CONCLUSION: GB PD NETs show poorer prognosis than ADCs. Well-defined margin, larger hepatic and LN metastases are useful CT differentiators of GB NETs from ADCs. KEY POINTS: • A well-defined margin is a useful CT differentiator of GB NETs from ADCs. • Hepatic and LN metastases are significantly larger in NETs than in ADCs. • Primary tumour and hepatic metastasis of NETs are more hyperattenuated than ADCs.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N1c018bc067f740168ff883370175d9e0
50 N92fea0bd778d4fd9bd8ec793131251df
51 sg:journal.1289120
52 schema:name Outcome and CT differentiation of gallbladder neuroendocrine tumours from adenocarcinomas
53 schema:pagination 507-517
54 schema:productId N4a7f0404cc834e2a805596a0f3ec7efd
55 N5f0a7ef3a85f4176a618e186109f8783
56 N736be35d8ffe47289f3e8480bbee450c
57 Na0c165132a764c568882dee55c473851
58 Nd0e8eca088ce41709b66a64dc3e1b3cb
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007170196
60 https://doi.org/10.1007/s00330-016-4394-3
61 schema:sdDatePublished 2019-04-10T14:54
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N222c45d421904da89969ed11e4c52b15
64 schema:url http://link.springer.com/10.1007/s00330-016-4394-3
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N036f754acb884f1daa748efb39bd7b3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Middle Aged
70 rdf:type schema:DefinedTerm
71 N04901e32af3c4b9489be639e5cd0b440 rdf:first sg:person.016434366660.80
72 rdf:rest Nf8942d62dee746618d524a727d9a95af
73 N0cd7dda2860d460ab11331e2b9a09eab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Female
75 rdf:type schema:DefinedTerm
76 N1c018bc067f740168ff883370175d9e0 schema:issueNumber 2
77 rdf:type schema:PublicationIssue
78 N222c45d421904da89969ed11e4c52b15 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N2345165ff25949e59de79e276833468f schema:affiliation https://www.grid.ac/institutes/grid.412484.f
81 schema:familyName Lee
82 schema:givenName Kyoung Boon
83 rdf:type schema:Person
84 N329376436bd74dcd99a356f758d4255b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Aged
86 rdf:type schema:DefinedTerm
87 N3920ecd3bfec4cac948ba19bb38a76f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Humans
89 rdf:type schema:DefinedTerm
90 N3f2a5be7f001402bbfb02ef5cccf77ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Lymphatic Metastasis
92 rdf:type schema:DefinedTerm
93 N4a7f0404cc834e2a805596a0f3ec7efd schema:name nlm_unique_id
94 schema:value 9114774
95 rdf:type schema:PropertyValue
96 N4eec7c0e57a242ccaea5ffd381ad487f rdf:first sg:person.0647723014.95
97 rdf:rest rdf:nil
98 N54ada89df5df4791adbee7eff765f335 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Male
100 rdf:type schema:DefinedTerm
101 N5d2436bbed5a415cb495d657f9f644c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Diagnosis, Differential
103 rdf:type schema:DefinedTerm
104 N5f0a7ef3a85f4176a618e186109f8783 schema:name dimensions_id
105 schema:value pub.1007170196
106 rdf:type schema:PropertyValue
107 N6ad0d09d952440bc91d6ec4c80d59623 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Adenocarcinoma
109 rdf:type schema:DefinedTerm
110 N736be35d8ffe47289f3e8480bbee450c schema:name readcube_id
111 schema:value 2227303b52ac29c8c24c20794fa735d1b744594b13c58f09a220808b624eab87
112 rdf:type schema:PropertyValue
113 N74c6c284de4943069ff842bb90f8b785 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Lymph Nodes
115 rdf:type schema:DefinedTerm
116 N7bd54b0cf42e42ca8c689ecf358241dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name ROC Curve
118 rdf:type schema:DefinedTerm
119 N845dc6b02d2d4b81b9ea3cbb94619954 rdf:first sg:person.015721622340.19
120 rdf:rest N04901e32af3c4b9489be639e5cd0b440
121 N92fea0bd778d4fd9bd8ec793131251df schema:volumeNumber 27
122 rdf:type schema:PublicationVolume
123 N96518b83e3664d7d879fc9aad438bf78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Liver Neoplasms
125 rdf:type schema:DefinedTerm
126 Na0c165132a764c568882dee55c473851 schema:name pubmed_id
127 schema:value 27225621
128 rdf:type schema:PropertyValue
129 Nbc55eaa9e3ae4c29afa225f9260769b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Tomography, X-Ray Computed
131 rdf:type schema:DefinedTerm
132 Nbfc33e011bfc49e28febddaddc5885ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Kaplan-Meier Estimate
134 rdf:type schema:DefinedTerm
135 Nc8d1a019b9304792a0b336a49e398eb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Adult
137 rdf:type schema:DefinedTerm
138 Nd0e8eca088ce41709b66a64dc3e1b3cb schema:name doi
139 schema:value 10.1007/s00330-016-4394-3
140 rdf:type schema:PropertyValue
141 Ne77da850a6474fce885a981bd96f92c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Retrospective Studies
143 rdf:type schema:DefinedTerm
144 Ne94d373de2e8484cb9b4c21f15215119 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Neuroendocrine Tumors
146 rdf:type schema:DefinedTerm
147 Neba1d3e79b2b4e24ae888bc3d3b2f7e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Gallbladder Neoplasms
149 rdf:type schema:DefinedTerm
150 Nf5194c1a7e37412892099e9486d81121 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Aged, 80 and over
152 rdf:type schema:DefinedTerm
153 Nf8942d62dee746618d524a727d9a95af rdf:first N2345165ff25949e59de79e276833468f
154 rdf:rest N4eec7c0e57a242ccaea5ffd381ad487f
155 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
156 schema:name Medical and Health Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
159 schema:name Oncology and Carcinogenesis
160 rdf:type schema:DefinedTerm
161 sg:journal.1289120 schema:issn 0938-7994
162 1432-1084
163 schema:name European Radiology
164 rdf:type schema:Periodical
165 sg:person.015721622340.19 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
166 schema:familyName Kim
167 schema:givenName Tae-Hyung
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721622340.19
169 rdf:type schema:Person
170 sg:person.016434366660.80 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
171 schema:familyName Kim
172 schema:givenName Se Hyung
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80
174 rdf:type schema:Person
175 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
176 schema:familyName Han
177 schema:givenName Joon Koo
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
179 rdf:type schema:Person
180 sg:pub.10.1007/s00261-006-9002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000413864
181 https://doi.org/10.1007/s00261-006-9002-6
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00268-004-7443-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003955957
184 https://doi.org/10.1007/s00268-004-7443-z
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00330-014-3206-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005429950
187 https://doi.org/10.1007/s00330-014-3206-x
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s00330-015-3600-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022512529
190 https://doi.org/10.1007/s00330-015-3600-z
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s00330-015-3941-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021218941
193 https://doi.org/10.1007/s00330-015-3941-7
194 rdf:type schema:CreativeWork
195 https://app.dimensions.ai/details/publication/pub.1077068399 schema:CreativeWork
196 https://app.dimensions.ai/details/publication/pub.1079144720 schema:CreativeWork
197 https://doi.org/10.1002/cncr.11105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046798811
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/cncr.23542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036783522
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.diii.2014.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016960495
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ejrad.2008.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032665477
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.ijsu.2015.12.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041121370
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1097/00004728-200607000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031298025
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1097/mcg.0b013e3181d7a6d4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050436692
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1136/gut.34.9.1274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042129493
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1148/radiology.206.1.9423664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083194658
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1200/jco.2007.15.4377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037736197
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2214/ajr.180.1.1800121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325180
218 rdf:type schema:CreativeWork
219 https://doi.org/10.3748/wjg.v20.i33.11916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071371383
220 rdf:type schema:CreativeWork
221 https://doi.org/10.3748/wjg.v21.i1.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071372244
222 rdf:type schema:CreativeWork
223 https://doi.org/10.4061/2011/154541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010197881
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
226 schema:name Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
227 Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 03080, Seoul, Korea
228 Department of Radiology, Seoul National University Hospital, Seoul, Korea
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
231 schema:name Department of Pathology, Seoul National University Hospital, Seoul, Korea
232 Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
233 Department of Radiology, Seoul National University Hospital, Seoul, Korea
234 Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...