Multiparametric fully-integrated 18-FDG PET/MRI of advanced gastric cancer for prediction of chemotherapy response: a preliminary study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-08

AUTHORS

Dong Ho Lee, Se Hyung Kim, Seock-Ah Im, Do-Youn Oh, Tae-Yong Kim, Joon Koo Han

ABSTRACT

OBJECTIVES: To investigate usefulness of multiparametric fully integrated 18-FDG PET/MRI in predicting treatment response after chemotherapy for unresectable advanced gastric cancers (AGCs). METHODS: Eleven patients with unresectable AGCs underwent multiparametric 18-FDG PET/MRI examinations prior to chemotherapy. Perfusion parameters obtained via dynamic contrast-enhanced MRI, apparent diffusion coefficient values from diffusion-weighted images, and maximum standardized uptake values (SUVmax) from 18-FDG PET were measured. For parameters obtained from 18-FDG PET/MRI data, interobserver agreement was obtained using intraclass correlation coefficients (ICC) and chemotherapy response relationship was evaluated using the Mann-Whitney test and receiver operating characteristic analysis. RESULTS: After chemotherapy, six patients were classified into the responder group and five patients into the non-responder group. For all parameters, moderate to nearly perfect agreement was achieved (ICC = 0.452-0.911). K (trans) values (P = 0.018) and initial area under the curves (iAUCs) (P = 0.045) of gastric cancers were significantly higher in responder group than in non-responder group. The area under the curve was 0.917 for K (trans) and 0.867 for iAUC. However, SUVmax values were not significantly different between the two groups. CONCLUSION: Multiparametric approach using fully integrated 18-FDG PET/MRI was shown to be feasible for patients with unresectable gastric cancers. In addition, K (trans) and iAUC values can be used as early predictive markers for chemotherapy response. KEY POINTS: • Multiparametric 18-FDG PET/MRI is feasible for patients with unresectable advanced gastric cancer • K (trans) and iAUC were significantly higher in the responder group of patients • K (trans) , iAUC can be utilized as early predictive markers for chemotherapeutic response. More... »

PAGES

2771-2778

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-015-4105-5

DOI

http://dx.doi.org/10.1007/s00330-015-4105-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035169569

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26615555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stomach Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 28, Yeongon-dong, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Ho", 
        "id": "sg:person.0662301041.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662301041.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 28, Yeongon-dong, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Se Hyung", 
        "id": "sg:person.016434366660.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Im", 
        "givenName": "Seock-Ah", 
        "id": "sg:person.01212754274.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212754274.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Do-Youn", 
        "id": "sg:person.0726553273.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726553273.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae-Yong", 
        "id": "sg:person.012611557304.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012611557304.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 28, Yeongon-dong, Jongno-gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jmri.20529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002437129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002437129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003195523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005005913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910170208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006033961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-010-1107-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007093307", 
          "https://doi.org/10.1245/s10434-010-1107-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-010-1107-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007093307", 
          "https://doi.org/10.1245/s10434-010-1107-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2483071958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008576467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2015.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010777034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vph.2006.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010858837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8140(00)00259-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013683945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdh422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014373199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.109306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014400923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-010-0852-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015035917", 
          "https://doi.org/10.1007/s00432-010-0852-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-010-0852-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015035917", 
          "https://doi.org/10.1007/s00432-010-0852-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2416-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015667984", 
          "https://doi.org/10.1007/s00330-012-2416-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)60919-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024871122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2008.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026558254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026663909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10120-007-0438-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028900501", 
          "https://doi.org/10.1007/s10120-007-0438-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10120-007-0438-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028900501", 
          "https://doi.org/10.1007/s10120-007-0438-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.105338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028961562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/canjclin.50.1.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029345645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(09)70190-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030747795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030826627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00228-010-0858-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035919787", 
          "https://doi.org/10.1007/s00228-010-0858-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00228-010-0858-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035919787", 
          "https://doi.org/10.1007/s00228-010-0858-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2594(200012)44:6<825::aid-mrm2>3.0.co;2-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045673034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semnuclmed.2014.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047190494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2699-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048379287", 
          "https://doi.org/10.1007/s00330-012-2699-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygyno.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048634508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-0934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049958424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1023/a:1008243606668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056302730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/53/5/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2003.06.574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064203707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4261/1305-3825.dir.2537-08.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072404823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074870431", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078899235", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08", 
    "datePublishedReg": "2016-08-01", 
    "description": "OBJECTIVES: To investigate usefulness of multiparametric fully integrated 18-FDG PET/MRI in predicting treatment response after chemotherapy for unresectable advanced gastric cancers (AGCs).\nMETHODS: Eleven patients with unresectable AGCs underwent multiparametric 18-FDG PET/MRI examinations prior to chemotherapy. Perfusion parameters obtained via dynamic contrast-enhanced MRI, apparent diffusion coefficient values from diffusion-weighted images, and maximum standardized uptake values (SUVmax) from 18-FDG PET were measured. For parameters obtained from 18-FDG PET/MRI data, interobserver agreement was obtained using intraclass correlation coefficients (ICC) and chemotherapy response relationship was evaluated using the Mann-Whitney test and receiver operating characteristic analysis.\nRESULTS: After chemotherapy, six patients were classified into the responder group and five patients into the non-responder group. For all parameters, moderate to nearly perfect agreement was achieved (ICC\u2009=\u20090.452-0.911). K (trans) values (P\u2009=\u20090.018) and initial area under the curves (iAUCs) (P\u2009=\u20090.045) of gastric cancers were significantly higher in responder group than in non-responder group. The area under the curve was 0.917 for K (trans) and 0.867 for iAUC. However, SUVmax values were not significantly different between the two groups.\nCONCLUSION: Multiparametric approach using fully integrated 18-FDG PET/MRI was shown to be feasible for patients with unresectable gastric cancers. In addition, K (trans) and iAUC values can be used as early predictive markers for chemotherapy response.\nKEY POINTS: \u2022 Multiparametric 18-FDG PET/MRI is feasible for patients with unresectable advanced gastric cancer \u2022 K (trans) and iAUC were significantly higher in the responder group of patients \u2022 K (trans) , iAUC can be utilized as early predictive markers for chemotherapeutic response.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-015-4105-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Multiparametric fully-integrated 18-FDG PET/MRI of advanced gastric cancer for prediction of chemotherapy response: a preliminary study", 
    "pagination": "2771-2778", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a788b9bfcb69acd4050b82939b1d477c5f2fdad2b34954f59824efaca35ba988"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26615555"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-015-4105-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035169569"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-015-4105-5", 
      "https://app.dimensions.ai/details/publication/pub.1035169569"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-015-4105-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4105-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4105-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4105-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4105-5'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      21 PREDICATES      76 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-015-4105-5 schema:about N015eb46d7e8e470ab1b656346c89281e
2 N16ef751f5970462b8d41e0c486558b31
3 N2b64f9b15df046de9e11cfc4d802df34
4 N34f895702b2648a2ac273acd5c56fd29
5 N549ec0310dd446b1b5f3698dc607456e
6 N5d63e82deb5942daa029155f829c7093
7 N8385f9fb5c884130928ec70c708b3962
8 N88e05b17b71642e185e45d40aa22dd82
9 N9046d4a3afa442ecbd1c64dab9c5b73e
10 N91beeb172ea34529ac2f058e5740afae
11 N92db23487c434d6a8a618e55ed478a23
12 Na4da1a8294804f46a06b1510eee9c836
13 Nad96ce0bcddb4df0af3ef9bee882f618
14 Nb3f35d1514974e5ea92fc364e452f8f6
15 anzsrc-for:11
16 anzsrc-for:1112
17 schema:author N71e63cef712945bb9d564e0528aa0d4e
18 schema:citation sg:pub.10.1007/s00228-010-0858-6
19 sg:pub.10.1007/s00330-012-2416-3
20 sg:pub.10.1007/s00330-012-2699-4
21 sg:pub.10.1007/s00432-010-0852-5
22 sg:pub.10.1007/s10120-007-0438-3
23 sg:pub.10.1245/s10434-010-1107-z
24 https://app.dimensions.ai/details/publication/pub.1074870431
25 https://app.dimensions.ai/details/publication/pub.1078899235
26 https://doi.org/10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s
27 https://doi.org/10.1002/1522-2594(200012)44:6<825::aid-mrm2>3.0.co;2-d
28 https://doi.org/10.1002/jmri.20529
29 https://doi.org/10.1002/jmri.24387
30 https://doi.org/10.1002/jmri.24711
31 https://doi.org/10.1002/mrm.1910170208
32 https://doi.org/10.1016/j.ejca.2008.10.026
33 https://doi.org/10.1016/j.vph.2006.08.003
34 https://doi.org/10.1016/j.ygyno.2010.11.002
35 https://doi.org/10.1016/s0140-6736(12)60919-2
36 https://doi.org/10.1016/s0167-8140(00)00259-0
37 https://doi.org/10.1016/s1470-2045(09)70190-1
38 https://doi.org/10.1023/a:1008243606668
39 https://doi.org/10.1053/j.semnuclmed.2014.12.004
40 https://doi.org/10.1053/j.semnuclmed.2015.03.005
41 https://doi.org/10.1088/0031-9155/53/5/005
42 https://doi.org/10.1093/annonc/mdh422
43 https://doi.org/10.1148/radiol.12120111
44 https://doi.org/10.1148/radiol.2483071958
45 https://doi.org/10.1158/1078-0432.ccr-07-0934
46 https://doi.org/10.1200/jco.2003.06.574
47 https://doi.org/10.2967/jnumed.112.105338
48 https://doi.org/10.2967/jnumed.112.109306
49 https://doi.org/10.3322/canjclin.50.1.7
50 https://doi.org/10.4261/1305-3825.dir.2537-08.1
51 schema:datePublished 2016-08
52 schema:datePublishedReg 2016-08-01
53 schema:description OBJECTIVES: To investigate usefulness of multiparametric fully integrated 18-FDG PET/MRI in predicting treatment response after chemotherapy for unresectable advanced gastric cancers (AGCs). METHODS: Eleven patients with unresectable AGCs underwent multiparametric 18-FDG PET/MRI examinations prior to chemotherapy. Perfusion parameters obtained via dynamic contrast-enhanced MRI, apparent diffusion coefficient values from diffusion-weighted images, and maximum standardized uptake values (SUVmax) from 18-FDG PET were measured. For parameters obtained from 18-FDG PET/MRI data, interobserver agreement was obtained using intraclass correlation coefficients (ICC) and chemotherapy response relationship was evaluated using the Mann-Whitney test and receiver operating characteristic analysis. RESULTS: After chemotherapy, six patients were classified into the responder group and five patients into the non-responder group. For all parameters, moderate to nearly perfect agreement was achieved (ICC = 0.452-0.911). K (trans) values (P = 0.018) and initial area under the curves (iAUCs) (P = 0.045) of gastric cancers were significantly higher in responder group than in non-responder group. The area under the curve was 0.917 for K (trans) and 0.867 for iAUC. However, SUVmax values were not significantly different between the two groups. CONCLUSION: Multiparametric approach using fully integrated 18-FDG PET/MRI was shown to be feasible for patients with unresectable gastric cancers. In addition, K (trans) and iAUC values can be used as early predictive markers for chemotherapy response. KEY POINTS: • Multiparametric 18-FDG PET/MRI is feasible for patients with unresectable advanced gastric cancer • K (trans) and iAUC were significantly higher in the responder group of patients • K (trans) , iAUC can be utilized as early predictive markers for chemotherapeutic response.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf Ne225c8ea3c3441e6addbed46d7a57f5d
58 Nf7fd5c09f89b476a8e75111d3bc1d3a2
59 sg:journal.1289120
60 schema:name Multiparametric fully-integrated 18-FDG PET/MRI of advanced gastric cancer for prediction of chemotherapy response: a preliminary study
61 schema:pagination 2771-2778
62 schema:productId N4d7d5f7577144c8889e601bba22725d4
63 N51ab41c5ea3245f48587fd4074d1acc3
64 N67058edb56654fd1bb945bf47b7abfdb
65 Nca2efe88c9cf4de6b90a7a8aebeac630
66 Ne59330173704479fa1df86b336e9d294
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035169569
68 https://doi.org/10.1007/s00330-015-4105-5
69 schema:sdDatePublished 2019-04-11T00:16
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nd2a1ca18ca3f4f01a6997a1b9d421ff3
72 schema:url http://link.springer.com/10.1007%2Fs00330-015-4105-5
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N015eb46d7e8e470ab1b656346c89281e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N0fd706e8a1b04ff9a6f6ce2f4ea08b01 rdf:first sg:person.0647723014.95
80 rdf:rest rdf:nil
81 N16ef751f5970462b8d41e0c486558b31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Male
83 rdf:type schema:DefinedTerm
84 N2b64f9b15df046de9e11cfc4d802df34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name ROC Curve
86 rdf:type schema:DefinedTerm
87 N34f895702b2648a2ac273acd5c56fd29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Positron-Emission Tomography
89 rdf:type schema:DefinedTerm
90 N4d7d5f7577144c8889e601bba22725d4 schema:name pubmed_id
91 schema:value 26615555
92 rdf:type schema:PropertyValue
93 N51ab41c5ea3245f48587fd4074d1acc3 schema:name doi
94 schema:value 10.1007/s00330-015-4105-5
95 rdf:type schema:PropertyValue
96 N549ec0310dd446b1b5f3698dc607456e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Aged
98 rdf:type schema:DefinedTerm
99 N5d63e82deb5942daa029155f829c7093 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Adult
101 rdf:type schema:DefinedTerm
102 N67058edb56654fd1bb945bf47b7abfdb schema:name dimensions_id
103 schema:value pub.1035169569
104 rdf:type schema:PropertyValue
105 N6c4ad417f4be4b81b625dd75814127f3 rdf:first sg:person.0726553273.50
106 rdf:rest Nec3d836229354ef0b769bb9ca23d05fa
107 N71e63cef712945bb9d564e0528aa0d4e rdf:first sg:person.0662301041.59
108 rdf:rest N767ab61384b141f9bf46f5fa1c1e5fa8
109 N767ab61384b141f9bf46f5fa1c1e5fa8 rdf:first sg:person.016434366660.80
110 rdf:rest N877f077be84f40939ecb16716d05e2ea
111 N8385f9fb5c884130928ec70c708b3962 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Radiopharmaceuticals
113 rdf:type schema:DefinedTerm
114 N877f077be84f40939ecb16716d05e2ea rdf:first sg:person.01212754274.50
115 rdf:rest N6c4ad417f4be4b81b625dd75814127f3
116 N88e05b17b71642e185e45d40aa22dd82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Female
118 rdf:type schema:DefinedTerm
119 N9046d4a3afa442ecbd1c64dab9c5b73e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Antineoplastic Agents
121 rdf:type schema:DefinedTerm
122 N91beeb172ea34529ac2f058e5740afae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Middle Aged
124 rdf:type schema:DefinedTerm
125 N92db23487c434d6a8a618e55ed478a23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Neoplasm Staging
127 rdf:type schema:DefinedTerm
128 Na4da1a8294804f46a06b1510eee9c836 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Fluorodeoxyglucose F18
130 rdf:type schema:DefinedTerm
131 Nad96ce0bcddb4df0af3ef9bee882f618 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Stomach Neoplasms
133 rdf:type schema:DefinedTerm
134 Nb3f35d1514974e5ea92fc364e452f8f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Magnetic Resonance Imaging
136 rdf:type schema:DefinedTerm
137 Nca2efe88c9cf4de6b90a7a8aebeac630 schema:name readcube_id
138 schema:value a788b9bfcb69acd4050b82939b1d477c5f2fdad2b34954f59824efaca35ba988
139 rdf:type schema:PropertyValue
140 Nd2a1ca18ca3f4f01a6997a1b9d421ff3 schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 Ne225c8ea3c3441e6addbed46d7a57f5d schema:volumeNumber 26
143 rdf:type schema:PublicationVolume
144 Ne59330173704479fa1df86b336e9d294 schema:name nlm_unique_id
145 schema:value 9114774
146 rdf:type schema:PropertyValue
147 Nec3d836229354ef0b769bb9ca23d05fa rdf:first sg:person.012611557304.53
148 rdf:rest N0fd706e8a1b04ff9a6f6ce2f4ea08b01
149 Nf7fd5c09f89b476a8e75111d3bc1d3a2 schema:issueNumber 8
150 rdf:type schema:PublicationIssue
151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
152 schema:name Medical and Health Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
155 schema:name Oncology and Carcinogenesis
156 rdf:type schema:DefinedTerm
157 sg:journal.1289120 schema:issn 0938-7994
158 1432-1084
159 schema:name European Radiology
160 rdf:type schema:Periodical
161 sg:person.01212754274.50 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
162 schema:familyName Im
163 schema:givenName Seock-Ah
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212754274.50
165 rdf:type schema:Person
166 sg:person.012611557304.53 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
167 schema:familyName Kim
168 schema:givenName Tae-Yong
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012611557304.53
170 rdf:type schema:Person
171 sg:person.016434366660.80 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
172 schema:familyName Kim
173 schema:givenName Se Hyung
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434366660.80
175 rdf:type schema:Person
176 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
177 schema:familyName Han
178 schema:givenName Joon Koo
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
180 rdf:type schema:Person
181 sg:person.0662301041.59 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
182 schema:familyName Lee
183 schema:givenName Dong Ho
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662301041.59
185 rdf:type schema:Person
186 sg:person.0726553273.50 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
187 schema:familyName Oh
188 schema:givenName Do-Youn
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726553273.50
190 rdf:type schema:Person
191 sg:pub.10.1007/s00228-010-0858-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035919787
192 https://doi.org/10.1007/s00228-010-0858-6
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s00330-012-2416-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015667984
195 https://doi.org/10.1007/s00330-012-2416-3
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s00330-012-2699-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048379287
198 https://doi.org/10.1007/s00330-012-2699-4
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s00432-010-0852-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015035917
201 https://doi.org/10.1007/s00432-010-0852-5
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s10120-007-0438-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028900501
204 https://doi.org/10.1007/s10120-007-0438-3
205 rdf:type schema:CreativeWork
206 sg:pub.10.1245/s10434-010-1107-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007093307
207 https://doi.org/10.1245/s10434-010-1107-z
208 rdf:type schema:CreativeWork
209 https://app.dimensions.ai/details/publication/pub.1074870431 schema:CreativeWork
210 https://app.dimensions.ai/details/publication/pub.1078899235 schema:CreativeWork
211 https://doi.org/10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1030826627
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1002/1522-2594(200012)44:6<825::aid-mrm2>3.0.co;2-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1045673034
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1002/jmri.20529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002437129
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1002/jmri.24387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005005913
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1002/jmri.24711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026663909
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1002/mrm.1910170208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006033961
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.ejca.2008.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026558254
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.vph.2006.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010858837
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.ygyno.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048634508
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/s0140-6736(12)60919-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024871122
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/s0167-8140(00)00259-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013683945
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s1470-2045(09)70190-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030747795
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1023/a:1008243606668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056302730
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1053/j.semnuclmed.2014.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047190494
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1053/j.semnuclmed.2015.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010777034
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1088/0031-9155/53/5/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027496
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/annonc/mdh422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014373199
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1148/radiol.12120111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003195523
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1148/radiol.2483071958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008576467
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1158/1078-0432.ccr-07-0934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049958424
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1200/jco.2003.06.574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203707
252 rdf:type schema:CreativeWork
253 https://doi.org/10.2967/jnumed.112.105338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028961562
254 rdf:type schema:CreativeWork
255 https://doi.org/10.2967/jnumed.112.109306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014400923
256 rdf:type schema:CreativeWork
257 https://doi.org/10.3322/canjclin.50.1.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345645
258 rdf:type schema:CreativeWork
259 https://doi.org/10.4261/1305-3825.dir.2537-08.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072404823
260 rdf:type schema:CreativeWork
261 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
262 schema:name Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
263 Department of Radiology, Seoul National University Hospital, 28, Yeongon-dong, Jongno-gu, 110-744, Seoul, Korea
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...