An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09-16

AUTHORS

Zhongzhao Teng, Wenjia Peng, Qian Zhan, Xuefeng Zhang, Qi Liu, Shiyue Chen, Xia Tian, Luguang Chen, Adam J. Brown, Martin J. Graves, Jonathan H. Gillard, Jianping Lu

ABSTRACT

ObjectiveAlthough certain morphological features depicted by high resolution, multi-contrast magnetic resonance imaging (hrMRI) have been shown to be different between culprit and non-culprit middle cerebral artery (MCA) atherosclerotic lesions, the incremental value of hrMRI to define culprit lesions over stenosis has not been assessed.MethodsPatients suspected with MCA stenosis underwent hrMRI. Lumen and outer wall were segmented to calculate stenosis, plaque burden (PB), volume (PV), length (PL) and minimum luminal area (MLA).ResultsData from 165 lesions (112 culprit and 53 non-culprit) in 139 individuals were included. Culprit lesions were larger and longer with a narrower lumen and increased PB compared with non-culprit lesions. More culprit lesions showed contrast enhancement. Both PB and MLA were better indicators than stenosis in differentiating lesion types (AUC were 0.649, 0.732 and 0.737 for stenosis, PB and MLA, respectively). Combinations of PB, MLA and stenosis could improve positive predictive value (PPV) and specificity significantly. An optimal combination of stenosis ≥ 50 %, PB ≥ 77 % and MLA ≤ 2.0 mm2 produced a PPV = 85.7 %, negative predictive value = 54.1 %, sensitivity = 69.6 %, specificity = 75.5 %, and accuracy = 71.5 %.ConclusionshrMRI plaque imaging provides incremental information to luminal stenosis in identifying culprit lesions.Key points• High resolution MRI provides incremental information in defining culprit MCA atherosclerotic lesions.• Both plaque burden and minimum luminal area are better indicators than stenosis.• An optimal combination includes stenosis ≥ 50 %, PB ≥ 77 % and MLA ≤ 2.0 mm2. More... »

PAGES

2206-2214

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-015-4008-5

DOI

http://dx.doi.org/10.1007/s00330-015-4008-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009298470

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26376883


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebrovascular Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Constriction, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intracranial Arteriosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Cerebral Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teng", 
        "givenName": "Zhongzhao", 
        "id": "sg:person.0735506101.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735506101.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK", 
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Wenjia", 
        "id": "sg:person.0640512567.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640512567.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhan", 
        "givenName": "Qian", 
        "id": "sg:person.0724210461.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724210461.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xuefeng", 
        "id": "sg:person.01316003467.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316003467.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Qi", 
        "id": "sg:person.01126417550.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126417550.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shiyue", 
        "id": "sg:person.010162401603.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010162401603.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Xia", 
        "id": "sg:person.01154665461.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154665461.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Luguang", 
        "id": "sg:person.0754741167.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754741167.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Adam J.", 
        "id": "sg:person.01204646504.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204646504.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graves", 
        "givenName": "Martin J.", 
        "id": "sg:person.01044617352.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044617352.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gillard", 
        "givenName": "Jonathan H.", 
        "id": "sg:person.01250066663.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250066663.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Jianping", 
        "id": "sg:person.01100366305.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100366305.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1532-429x-13-64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020116556", 
          "https://doi.org/10.1186/1532-429x-13-64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2009.246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033209600", 
          "https://doi.org/10.1038/nrcardio.2009.246"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09-16", 
    "datePublishedReg": "2015-09-16", 
    "description": "ObjectiveAlthough certain morphological features depicted by high resolution, multi-contrast magnetic resonance imaging (hrMRI) have been shown to be different between culprit and non-culprit middle cerebral artery (MCA) atherosclerotic lesions, the incremental value of hrMRI to define culprit lesions over stenosis has not been assessed.MethodsPatients suspected with MCA stenosis underwent hrMRI. Lumen and outer wall were segmented to calculate stenosis, plaque burden (PB), volume (PV), length (PL) and minimum luminal area (MLA).ResultsData from 165 lesions (112 culprit and 53 non-culprit) in 139 individuals were included. Culprit lesions were larger and longer with a narrower lumen and increased PB compared with non-culprit lesions. More culprit lesions showed contrast enhancement. Both PB and MLA were better indicators than stenosis in differentiating lesion types (AUC were 0.649, 0.732 and 0.737 for stenosis, PB and MLA, respectively). Combinations of PB, MLA and stenosis could improve positive predictive value (PPV) and specificity significantly. An optimal combination of stenosis\u2009\u2265\u200950\u00a0%, PB\u2009\u2265\u200977\u00a0% and MLA\u2009\u2264\u20092.0\u00a0mm2 produced a PPV\u2009=\u200985.7\u00a0%, negative predictive value\u2009=\u200954.1\u00a0%, sensitivity\u2009=\u200969.6\u00a0%, specificity\u2009=\u200975.5\u00a0%, and accuracy\u2009=\u200971.5\u00a0%.ConclusionshrMRI plaque imaging provides incremental information to luminal stenosis in identifying culprit lesions.Key points\u2022 High resolution MRI provides incremental information in defining culprit MCA atherosclerotic lesions.\u2022 Both plaque burden and minimum luminal area are better indicators than stenosis.\u2022 An optimal combination includes stenosis\u2009\u2265\u200950\u00a0%, PB\u2009\u2265\u200977\u00a0% and MLA\u2009\u2264\u20092.0\u00a0mm2.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-015-4008-5", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5136203", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8184648", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "minimum luminal area", 
      "positive predictive value", 
      "plaque burden", 
      "culprit lesion", 
      "luminal area", 
      "atherosclerotic lesions", 
      "predictive value", 
      "more culprit lesions", 
      "non-culprit lesions", 
      "incremental value", 
      "middle cerebral artery", 
      "high-resolution magnetic resonance", 
      "negative predictive value", 
      "magnetic resonance imaging", 
      "high-resolution MRI", 
      "MCA stenosis", 
      "culprit plaques", 
      "cerebral artery", 
      "atherosclerotic disease", 
      "luminal stenosis", 
      "stenosis", 
      "plaque imaging", 
      "lesion type", 
      "resonance imaging", 
      "lesions", 
      "narrow lumen", 
      "multi-contrast magnetic resonance imaging", 
      "HRMRI", 
      "resolution MRI", 
      "contrast enhancement", 
      "incremental information", 
      "magnetic resonance", 
      "burden", 
      "lumen", 
      "good indicator", 
      "certain morphological features", 
      "imaging", 
      "MethodsPatients", 
      "artery", 
      "ResultsData", 
      "specificity", 
      "plaques", 
      "disease", 
      "MRI", 
      "morphological features", 
      "culprit", 
      "combination", 
      "individuals", 
      "indicators", 
      "assessment", 
      "sensitivity", 
      "volume", 
      "area", 
      "values", 
      "optimal combination", 
      "information", 
      "mm2", 
      "wall", 
      "types", 
      "features", 
      "length", 
      "enhancement", 
      "resonance", 
      "resolution", 
      "outer wall", 
      "accuracy", 
      "high resolution"
    ], 
    "name": "An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery", 
    "pagination": "2206-2214", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009298470"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-015-4008-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26376883"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-015-4008-5", 
      "https://app.dimensions.ai/details/publication/pub.1009298470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_679.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-015-4008-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4008-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4008-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4008-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4008-5'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      21 PREDICATES      112 URIs      102 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-015-4008-5 schema:about N0c880d4d6c674caab3e84106e6702ce0
2 N141ec934800b4771b909b730aacaf102
3 N60164fc9664444efbfa0b0a212ea7e93
4 N606c69398acf4d658a1b567542741a64
5 N68a78acf2499409fa515febbb2348b62
6 N74571a12201d485e91fcce835a0ef1d8
7 N7827473fc417489fb7176b91a7b260d4
8 Na4170647e2a8488e806d82b58dae4817
9 Nad79b167c88c46ae8fff7fae3b368851
10 Nb86ef327f13c4761a929f692ac263b32
11 Nbb329ea8e95c45adb8475e4af83dcbb4
12 Nbca540ff641c49e4907a53671a4d7d52
13 Nc141517e0c7e498a99d7beb15e46214a
14 Ncdcd0dba4f9a48a79b136268f66137c4
15 Nd148fe10d94042b792c0c3e9ad4de80a
16 Nd3054ec65d184b56adb844cf0c1b5599
17 Ndad6cd8085234866afca6e0d9287165f
18 Ne445bd81cdbd4adbb1d0f010e9516aea
19 anzsrc-for:11
20 anzsrc-for:1102
21 schema:author Ne887bc34bcac4614bcb0eff6d273607d
22 schema:citation sg:pub.10.1038/nrcardio.2009.246
23 sg:pub.10.1186/1532-429x-13-64
24 schema:datePublished 2015-09-16
25 schema:datePublishedReg 2015-09-16
26 schema:description ObjectiveAlthough certain morphological features depicted by high resolution, multi-contrast magnetic resonance imaging (hrMRI) have been shown to be different between culprit and non-culprit middle cerebral artery (MCA) atherosclerotic lesions, the incremental value of hrMRI to define culprit lesions over stenosis has not been assessed.MethodsPatients suspected with MCA stenosis underwent hrMRI. Lumen and outer wall were segmented to calculate stenosis, plaque burden (PB), volume (PV), length (PL) and minimum luminal area (MLA).ResultsData from 165 lesions (112 culprit and 53 non-culprit) in 139 individuals were included. Culprit lesions were larger and longer with a narrower lumen and increased PB compared with non-culprit lesions. More culprit lesions showed contrast enhancement. Both PB and MLA were better indicators than stenosis in differentiating lesion types (AUC were 0.649, 0.732 and 0.737 for stenosis, PB and MLA, respectively). Combinations of PB, MLA and stenosis could improve positive predictive value (PPV) and specificity significantly. An optimal combination of stenosis ≥ 50 %, PB ≥ 77 % and MLA ≤ 2.0 mm2 produced a PPV = 85.7 %, negative predictive value = 54.1 %, sensitivity = 69.6 %, specificity = 75.5 %, and accuracy = 71.5 %.ConclusionshrMRI plaque imaging provides incremental information to luminal stenosis in identifying culprit lesions.Key points• High resolution MRI provides incremental information in defining culprit MCA atherosclerotic lesions.• Both plaque burden and minimum luminal area are better indicators than stenosis.• An optimal combination includes stenosis ≥ 50 %, PB ≥ 77 % and MLA ≤ 2.0 mm2.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N5f459f62277849be97b0f1e4ac24c656
30 Nb53d2208d59c4548a04721e956e52ca1
31 sg:journal.1289120
32 schema:keywords HRMRI
33 MCA stenosis
34 MRI
35 MethodsPatients
36 ResultsData
37 accuracy
38 area
39 artery
40 assessment
41 atherosclerotic disease
42 atherosclerotic lesions
43 burden
44 cerebral artery
45 certain morphological features
46 combination
47 contrast enhancement
48 culprit
49 culprit lesion
50 culprit plaques
51 disease
52 enhancement
53 features
54 good indicator
55 high resolution
56 high-resolution MRI
57 high-resolution magnetic resonance
58 imaging
59 incremental information
60 incremental value
61 indicators
62 individuals
63 information
64 length
65 lesion type
66 lesions
67 lumen
68 luminal area
69 luminal stenosis
70 magnetic resonance
71 magnetic resonance imaging
72 middle cerebral artery
73 minimum luminal area
74 mm2
75 more culprit lesions
76 morphological features
77 multi-contrast magnetic resonance imaging
78 narrow lumen
79 negative predictive value
80 non-culprit lesions
81 optimal combination
82 outer wall
83 plaque burden
84 plaque imaging
85 plaques
86 positive predictive value
87 predictive value
88 resolution
89 resolution MRI
90 resonance
91 resonance imaging
92 sensitivity
93 specificity
94 stenosis
95 types
96 values
97 volume
98 wall
99 schema:name An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery
100 schema:pagination 2206-2214
101 schema:productId N01456dbdf3e54111851da101357132dc
102 N551a0d4709a8431397dd10b5739b721a
103 Na61e186cc076433f903fbfc8e6e8aac5
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009298470
105 https://doi.org/10.1007/s00330-015-4008-5
106 schema:sdDatePublished 2022-12-01T06:33
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N53e44a9f41e44a2490689cc5b92a4b93
109 schema:url https://doi.org/10.1007/s00330-015-4008-5
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N01456dbdf3e54111851da101357132dc schema:name pubmed_id
114 schema:value 26376883
115 rdf:type schema:PropertyValue
116 N0c880d4d6c674caab3e84106e6702ce0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Cerebral Angiography
118 rdf:type schema:DefinedTerm
119 N141ec934800b4771b909b730aacaf102 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Predictive Value of Tests
121 rdf:type schema:DefinedTerm
122 N53e44a9f41e44a2490689cc5b92a4b93 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 N551a0d4709a8431397dd10b5739b721a schema:name doi
125 schema:value 10.1007/s00330-015-4008-5
126 rdf:type schema:PropertyValue
127 N586378ce8251477ab5ca1a473bfb2723 rdf:first sg:person.010162401603.26
128 rdf:rest Ne61e5e9917714304a85ea6be588b8f76
129 N5ebabf5c58e24d1ba147e23fa6fc368b rdf:first sg:person.01204646504.30
130 rdf:rest Nbde1c3087bc44a51a3510a1a60cfb90b
131 N5f459f62277849be97b0f1e4ac24c656 schema:volumeNumber 26
132 rdf:type schema:PublicationVolume
133 N60164fc9664444efbfa0b0a212ea7e93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Image Processing, Computer-Assisted
135 rdf:type schema:DefinedTerm
136 N606c69398acf4d658a1b567542741a64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Female
138 rdf:type schema:DefinedTerm
139 N68a78acf2499409fa515febbb2348b62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Magnetic Resonance Imaging
141 rdf:type schema:DefinedTerm
142 N6f8af02ab22047338d52d22dbbe482cc rdf:first sg:person.0754741167.48
143 rdf:rest N5ebabf5c58e24d1ba147e23fa6fc368b
144 N74571a12201d485e91fcce835a0ef1d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Constriction, Pathologic
146 rdf:type schema:DefinedTerm
147 N776cb7dca08e4001be6e3779f7a759d2 rdf:first sg:person.0640512567.19
148 rdf:rest Nd0e6f6eb0812442d96ff6f6a5fb22e76
149 N7827473fc417489fb7176b91a7b260d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Sensitivity and Specificity
151 rdf:type schema:DefinedTerm
152 N7a9c45aa76534c83bc96a241d9e65029 rdf:first sg:person.01250066663.04
153 rdf:rest Nc162b046f7f14da0b6b31840b1d42d4b
154 Na4170647e2a8488e806d82b58dae4817 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Intracranial Arteriosclerosis
156 rdf:type schema:DefinedTerm
157 Na61e186cc076433f903fbfc8e6e8aac5 schema:name dimensions_id
158 schema:value pub.1009298470
159 rdf:type schema:PropertyValue
160 Nad79b167c88c46ae8fff7fae3b368851 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Diffusion Magnetic Resonance Imaging
162 rdf:type schema:DefinedTerm
163 Nb53d2208d59c4548a04721e956e52ca1 schema:issueNumber 7
164 rdf:type schema:PublicationIssue
165 Nb86ef327f13c4761a929f692ac263b32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Magnetic Resonance Angiography
167 rdf:type schema:DefinedTerm
168 Nbb329ea8e95c45adb8475e4af83dcbb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Middle Aged
170 rdf:type schema:DefinedTerm
171 Nbca540ff641c49e4907a53671a4d7d52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Aged
173 rdf:type schema:DefinedTerm
174 Nbde1c3087bc44a51a3510a1a60cfb90b rdf:first sg:person.01044617352.46
175 rdf:rest N7a9c45aa76534c83bc96a241d9e65029
176 Nc141517e0c7e498a99d7beb15e46214a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Plaque, Atherosclerotic
178 rdf:type schema:DefinedTerm
179 Nc162b046f7f14da0b6b31840b1d42d4b rdf:first sg:person.01100366305.67
180 rdf:rest rdf:nil
181 Ncdcd0dba4f9a48a79b136268f66137c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Humans
183 rdf:type schema:DefinedTerm
184 Nd0e6f6eb0812442d96ff6f6a5fb22e76 rdf:first sg:person.0724210461.60
185 rdf:rest Nf0a3557d359a4a7ea26fcb12c1c230fa
186 Nd148fe10d94042b792c0c3e9ad4de80a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Male
188 rdf:type schema:DefinedTerm
189 Nd3054ec65d184b56adb844cf0c1b5599 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Middle Cerebral Artery
191 rdf:type schema:DefinedTerm
192 Nd8a3ca9bdbde40c993a78b8d634a56e6 rdf:first sg:person.01126417550.77
193 rdf:rest N586378ce8251477ab5ca1a473bfb2723
194 Ndad6cd8085234866afca6e0d9287165f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Cerebrovascular Disorders
196 rdf:type schema:DefinedTerm
197 Ne445bd81cdbd4adbb1d0f010e9516aea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Case-Control Studies
199 rdf:type schema:DefinedTerm
200 Ne61e5e9917714304a85ea6be588b8f76 rdf:first sg:person.01154665461.54
201 rdf:rest N6f8af02ab22047338d52d22dbbe482cc
202 Ne887bc34bcac4614bcb0eff6d273607d rdf:first sg:person.0735506101.49
203 rdf:rest N776cb7dca08e4001be6e3779f7a759d2
204 Nf0a3557d359a4a7ea26fcb12c1c230fa rdf:first sg:person.01316003467.43
205 rdf:rest Nd8a3ca9bdbde40c993a78b8d634a56e6
206 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
207 schema:name Medical and Health Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
210 schema:name Cardiorespiratory Medicine and Haematology
211 rdf:type schema:DefinedTerm
212 sg:grant.5136203 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-015-4008-5
213 rdf:type schema:MonetaryGrant
214 sg:grant.8184648 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-015-4008-5
215 rdf:type schema:MonetaryGrant
216 sg:journal.1289120 schema:issn 0938-7994
217 1432-1084
218 schema:name European Radiology
219 schema:publisher Springer Nature
220 rdf:type schema:Periodical
221 sg:person.010162401603.26 schema:affiliation grid-institutes:grid.411525.6
222 schema:familyName Chen
223 schema:givenName Shiyue
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010162401603.26
225 rdf:type schema:Person
226 sg:person.01044617352.46 schema:affiliation grid-institutes:grid.5335.0
227 schema:familyName Graves
228 schema:givenName Martin J.
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044617352.46
230 rdf:type schema:Person
231 sg:person.01100366305.67 schema:affiliation grid-institutes:grid.411525.6
232 schema:familyName Lu
233 schema:givenName Jianping
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100366305.67
235 rdf:type schema:Person
236 sg:person.01126417550.77 schema:affiliation grid-institutes:grid.411525.6
237 schema:familyName Liu
238 schema:givenName Qi
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126417550.77
240 rdf:type schema:Person
241 sg:person.01154665461.54 schema:affiliation grid-institutes:grid.411525.6
242 schema:familyName Tian
243 schema:givenName Xia
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154665461.54
245 rdf:type schema:Person
246 sg:person.01204646504.30 schema:affiliation grid-institutes:grid.5335.0
247 schema:familyName Brown
248 schema:givenName Adam J.
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204646504.30
250 rdf:type schema:Person
251 sg:person.01250066663.04 schema:affiliation grid-institutes:grid.5335.0
252 schema:familyName Gillard
253 schema:givenName Jonathan H.
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250066663.04
255 rdf:type schema:Person
256 sg:person.01316003467.43 schema:affiliation grid-institutes:grid.411525.6
257 schema:familyName Zhang
258 schema:givenName Xuefeng
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316003467.43
260 rdf:type schema:Person
261 sg:person.0640512567.19 schema:affiliation grid-institutes:grid.411525.6
262 schema:familyName Peng
263 schema:givenName Wenjia
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640512567.19
265 rdf:type schema:Person
266 sg:person.0724210461.60 schema:affiliation grid-institutes:grid.411525.6
267 schema:familyName Zhan
268 schema:givenName Qian
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724210461.60
270 rdf:type schema:Person
271 sg:person.0735506101.49 schema:affiliation grid-institutes:grid.5335.0
272 schema:familyName Teng
273 schema:givenName Zhongzhao
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735506101.49
275 rdf:type schema:Person
276 sg:person.0754741167.48 schema:affiliation grid-institutes:grid.411525.6
277 schema:familyName Chen
278 schema:givenName Luguang
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754741167.48
280 rdf:type schema:Person
281 sg:pub.10.1038/nrcardio.2009.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033209600
282 https://doi.org/10.1038/nrcardio.2009.246
283 rdf:type schema:CreativeWork
284 sg:pub.10.1186/1532-429x-13-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020116556
285 https://doi.org/10.1186/1532-429x-13-64
286 rdf:type schema:CreativeWork
287 grid-institutes:grid.411525.6 schema:alternateName Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China
288 schema:name Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China
289 Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK
290 rdf:type schema:Organization
291 grid-institutes:grid.5335.0 schema:alternateName Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK
292 Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
293 schema:name Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK
294 Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...