An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09-16

AUTHORS

Zhongzhao Teng, Wenjia Peng, Qian Zhan, Xuefeng Zhang, Qi Liu, Shiyue Chen, Xia Tian, Luguang Chen, Adam J. Brown, Martin J. Graves, Jonathan H. Gillard, Jianping Lu

ABSTRACT

ObjectiveAlthough certain morphological features depicted by high resolution, multi-contrast magnetic resonance imaging (hrMRI) have been shown to be different between culprit and non-culprit middle cerebral artery (MCA) atherosclerotic lesions, the incremental value of hrMRI to define culprit lesions over stenosis has not been assessed.MethodsPatients suspected with MCA stenosis underwent hrMRI. Lumen and outer wall were segmented to calculate stenosis, plaque burden (PB), volume (PV), length (PL) and minimum luminal area (MLA).ResultsData from 165 lesions (112 culprit and 53 non-culprit) in 139 individuals were included. Culprit lesions were larger and longer with a narrower lumen and increased PB compared with non-culprit lesions. More culprit lesions showed contrast enhancement. Both PB and MLA were better indicators than stenosis in differentiating lesion types (AUC were 0.649, 0.732 and 0.737 for stenosis, PB and MLA, respectively). Combinations of PB, MLA and stenosis could improve positive predictive value (PPV) and specificity significantly. An optimal combination of stenosis ≥ 50 %, PB ≥ 77 % and MLA ≤ 2.0 mm2 produced a PPV = 85.7 %, negative predictive value = 54.1 %, sensitivity = 69.6 %, specificity = 75.5 %, and accuracy = 71.5 %.ConclusionshrMRI plaque imaging provides incremental information to luminal stenosis in identifying culprit lesions.Key points• High resolution MRI provides incremental information in defining culprit MCA atherosclerotic lesions.• Both plaque burden and minimum luminal area are better indicators than stenosis.• An optimal combination includes stenosis ≥ 50 %, PB ≥ 77 % and MLA ≤ 2.0 mm2. More... »

PAGES

2206-2214

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-015-4008-5

DOI

http://dx.doi.org/10.1007/s00330-015-4008-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009298470

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26376883


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebrovascular Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Constriction, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intracranial Arteriosclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Cerebral Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teng", 
        "givenName": "Zhongzhao", 
        "id": "sg:person.0735506101.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735506101.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK", 
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Wenjia", 
        "id": "sg:person.0640512567.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640512567.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhan", 
        "givenName": "Qian", 
        "id": "sg:person.0724210461.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724210461.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xuefeng", 
        "id": "sg:person.01316003467.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316003467.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Qi", 
        "id": "sg:person.01126417550.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126417550.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shiyue", 
        "id": "sg:person.010162401603.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010162401603.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Xia", 
        "id": "sg:person.01154665461.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154665461.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Luguang", 
        "id": "sg:person.0754741167.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754741167.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Adam J.", 
        "id": "sg:person.01204646504.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204646504.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graves", 
        "givenName": "Martin J.", 
        "id": "sg:person.01044617352.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044617352.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gillard", 
        "givenName": "Jonathan H.", 
        "id": "sg:person.01250066663.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250066663.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.411525.6", 
          "name": [
            "Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Jianping", 
        "id": "sg:person.01100366305.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100366305.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrcardio.2009.246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033209600", 
          "https://doi.org/10.1038/nrcardio.2009.246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-13-64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020116556", 
          "https://doi.org/10.1186/1532-429x-13-64"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09-16", 
    "datePublishedReg": "2015-09-16", 
    "description": "ObjectiveAlthough certain morphological features depicted by high resolution, multi-contrast magnetic resonance imaging (hrMRI) have been shown to be different between culprit and non-culprit middle cerebral artery (MCA) atherosclerotic lesions, the incremental value of hrMRI to define culprit lesions over stenosis has not been assessed.MethodsPatients suspected with MCA stenosis underwent hrMRI. Lumen and outer wall were segmented to calculate stenosis, plaque burden (PB), volume (PV), length (PL) and minimum luminal area (MLA).ResultsData from 165 lesions (112 culprit and 53 non-culprit) in 139 individuals were included. Culprit lesions were larger and longer with a narrower lumen and increased PB compared with non-culprit lesions. More culprit lesions showed contrast enhancement. Both PB and MLA were better indicators than stenosis in differentiating lesion types (AUC were 0.649, 0.732 and 0.737 for stenosis, PB and MLA, respectively). Combinations of PB, MLA and stenosis could improve positive predictive value (PPV) and specificity significantly. An optimal combination of stenosis\u2009\u2265\u200950\u00a0%, PB\u2009\u2265\u200977\u00a0% and MLA\u2009\u2264\u20092.0\u00a0mm2 produced a PPV\u2009=\u200985.7\u00a0%, negative predictive value\u2009=\u200954.1\u00a0%, sensitivity\u2009=\u200969.6\u00a0%, specificity\u2009=\u200975.5\u00a0%, and accuracy\u2009=\u200971.5\u00a0%.ConclusionshrMRI plaque imaging provides incremental information to luminal stenosis in identifying culprit lesions.Key points\u2022 High resolution MRI provides incremental information in defining culprit MCA atherosclerotic lesions.\u2022 Both plaque burden and minimum luminal area are better indicators than stenosis.\u2022 An optimal combination includes stenosis\u2009\u2265\u200950\u00a0%, PB\u2009\u2265\u200977\u00a0% and MLA\u2009\u2264\u20092.0\u00a0mm2.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-015-4008-5", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5136203", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8184648", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "minimum luminal area", 
      "positive predictive value", 
      "plaque burden", 
      "culprit lesion", 
      "luminal area", 
      "atherosclerotic lesions", 
      "predictive value", 
      "more culprit lesions", 
      "non-culprit lesions", 
      "incremental value", 
      "middle cerebral artery", 
      "high-resolution magnetic resonance", 
      "negative predictive value", 
      "magnetic resonance imaging", 
      "high-resolution MRI", 
      "MCA stenosis", 
      "culprit plaques", 
      "cerebral artery", 
      "atherosclerotic disease", 
      "luminal stenosis", 
      "stenosis", 
      "plaque imaging", 
      "lesion type", 
      "resonance imaging", 
      "lesions", 
      "narrow lumen", 
      "multi-contrast magnetic resonance imaging", 
      "HRMRI", 
      "resolution MRI", 
      "contrast enhancement", 
      "incremental information", 
      "magnetic resonance", 
      "burden", 
      "lumen", 
      "good indicator", 
      "certain morphological features", 
      "imaging", 
      "MethodsPatients", 
      "artery", 
      "ResultsData", 
      "specificity", 
      "plaques", 
      "disease", 
      "MRI", 
      "morphological features", 
      "culprit", 
      "combination", 
      "individuals", 
      "indicators", 
      "assessment", 
      "sensitivity", 
      "volume", 
      "area", 
      "values", 
      "optimal combination", 
      "information", 
      "mm2", 
      "wall", 
      "types", 
      "features", 
      "length", 
      "enhancement", 
      "resonance", 
      "resolution", 
      "outer wall", 
      "accuracy", 
      "high resolution"
    ], 
    "name": "An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery", 
    "pagination": "2206-2214", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009298470"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-015-4008-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26376883"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-015-4008-5", 
      "https://app.dimensions.ai/details/publication/pub.1009298470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_678.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-015-4008-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4008-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4008-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4008-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-4008-5'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      21 PREDICATES      112 URIs      102 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-015-4008-5 schema:about N0b43989ed7c248c7b2fd4b4981fa80e5
2 N1fad16613080491c9534772d4aabdb4a
3 N238645aa193346a39dad8140099ffbb1
4 N48dde5e898d1426b85551444cac01ef4
5 N564ef08cd4dc4b74991931ec09006db6
6 N57c4ec02f9724e68bed900fbea84c032
7 N694c791be0b94fb595f9201eed1a34c6
8 N72fd78f6150945e9b91c370f5226d4a5
9 N7d3939a143684e7b9ffb9cb1899ef3bf
10 N7eb3c43f2a2540419940e295cd35f49d
11 N8c416c5260d44b7cb743945e2f6e4dcb
12 Nbc2fd8c5c13143578257f4ed5d0135c4
13 Nbd33690f4894497aad15e41d5718224c
14 Nbdf709ba2b204fbea9dae90172896dec
15 Nc3ce6cbf73b54174b8ff19ccd7b7a9b6
16 Ncb1d23de98294164b80cf928221adbc3
17 Nd8ca37bdca00434ebc98438626bc3b0b
18 Nf41f9d9db57c4ebc94b2f346a7ca8e0f
19 anzsrc-for:11
20 anzsrc-for:1102
21 schema:author N55fb620932134b359a052759b0f56efc
22 schema:citation sg:pub.10.1038/nrcardio.2009.246
23 sg:pub.10.1186/1532-429x-13-64
24 schema:datePublished 2015-09-16
25 schema:datePublishedReg 2015-09-16
26 schema:description ObjectiveAlthough certain morphological features depicted by high resolution, multi-contrast magnetic resonance imaging (hrMRI) have been shown to be different between culprit and non-culprit middle cerebral artery (MCA) atherosclerotic lesions, the incremental value of hrMRI to define culprit lesions over stenosis has not been assessed.MethodsPatients suspected with MCA stenosis underwent hrMRI. Lumen and outer wall were segmented to calculate stenosis, plaque burden (PB), volume (PV), length (PL) and minimum luminal area (MLA).ResultsData from 165 lesions (112 culprit and 53 non-culprit) in 139 individuals were included. Culprit lesions were larger and longer with a narrower lumen and increased PB compared with non-culprit lesions. More culprit lesions showed contrast enhancement. Both PB and MLA were better indicators than stenosis in differentiating lesion types (AUC were 0.649, 0.732 and 0.737 for stenosis, PB and MLA, respectively). Combinations of PB, MLA and stenosis could improve positive predictive value (PPV) and specificity significantly. An optimal combination of stenosis ≥ 50 %, PB ≥ 77 % and MLA ≤ 2.0 mm2 produced a PPV = 85.7 %, negative predictive value = 54.1 %, sensitivity = 69.6 %, specificity = 75.5 %, and accuracy = 71.5 %.ConclusionshrMRI plaque imaging provides incremental information to luminal stenosis in identifying culprit lesions.Key points• High resolution MRI provides incremental information in defining culprit MCA atherosclerotic lesions.• Both plaque burden and minimum luminal area are better indicators than stenosis.• An optimal combination includes stenosis ≥ 50 %, PB ≥ 77 % and MLA ≤ 2.0 mm2.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N4097e66121404a329c60c72725f01ce1
30 N927fba61ad914b8fa576427ed6dcc34c
31 sg:journal.1289120
32 schema:keywords HRMRI
33 MCA stenosis
34 MRI
35 MethodsPatients
36 ResultsData
37 accuracy
38 area
39 artery
40 assessment
41 atherosclerotic disease
42 atherosclerotic lesions
43 burden
44 cerebral artery
45 certain morphological features
46 combination
47 contrast enhancement
48 culprit
49 culprit lesion
50 culprit plaques
51 disease
52 enhancement
53 features
54 good indicator
55 high resolution
56 high-resolution MRI
57 high-resolution magnetic resonance
58 imaging
59 incremental information
60 incremental value
61 indicators
62 individuals
63 information
64 length
65 lesion type
66 lesions
67 lumen
68 luminal area
69 luminal stenosis
70 magnetic resonance
71 magnetic resonance imaging
72 middle cerebral artery
73 minimum luminal area
74 mm2
75 more culprit lesions
76 morphological features
77 multi-contrast magnetic resonance imaging
78 narrow lumen
79 negative predictive value
80 non-culprit lesions
81 optimal combination
82 outer wall
83 plaque burden
84 plaque imaging
85 plaques
86 positive predictive value
87 predictive value
88 resolution
89 resolution MRI
90 resonance
91 resonance imaging
92 sensitivity
93 specificity
94 stenosis
95 types
96 values
97 volume
98 wall
99 schema:name An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery
100 schema:pagination 2206-2214
101 schema:productId N6a0396d266334b6aa018be07ab39f20b
102 N775484b4f3154406a18720ebf0076638
103 Nbaf9da7df4504a93a64ee3ed25a53365
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009298470
105 https://doi.org/10.1007/s00330-015-4008-5
106 schema:sdDatePublished 2022-11-24T20:59
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N6d0c0956b5364ac183023783d39d1d78
109 schema:url https://doi.org/10.1007/s00330-015-4008-5
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N01c9f5c0d71c4add820f9d2bd29a9b52 rdf:first sg:person.01204646504.30
114 rdf:rest N43d59b1fbe344a509a0fcbf8bcaaf983
115 N0b43989ed7c248c7b2fd4b4981fa80e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Sensitivity and Specificity
117 rdf:type schema:DefinedTerm
118 N1bc91565dedc4cee80243d61994ea04e rdf:first sg:person.01250066663.04
119 rdf:rest Nca423ddc45f944ccb8f038e760cfbba7
120 N1fad16613080491c9534772d4aabdb4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Predictive Value of Tests
122 rdf:type schema:DefinedTerm
123 N238645aa193346a39dad8140099ffbb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 N4097e66121404a329c60c72725f01ce1 schema:issueNumber 7
127 rdf:type schema:PublicationIssue
128 N43d59b1fbe344a509a0fcbf8bcaaf983 rdf:first sg:person.01044617352.46
129 rdf:rest N1bc91565dedc4cee80243d61994ea04e
130 N48dde5e898d1426b85551444cac01ef4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Case-Control Studies
132 rdf:type schema:DefinedTerm
133 N4b73dce9dd374084ab1bac7cc7352625 rdf:first sg:person.0754741167.48
134 rdf:rest N01c9f5c0d71c4add820f9d2bd29a9b52
135 N5497aeba830b455792665614c54e027f rdf:first sg:person.01154665461.54
136 rdf:rest N4b73dce9dd374084ab1bac7cc7352625
137 N55fb620932134b359a052759b0f56efc rdf:first sg:person.0735506101.49
138 rdf:rest Nb19ff9645a3442b49d4785f43552c3fe
139 N564ef08cd4dc4b74991931ec09006db6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Male
141 rdf:type schema:DefinedTerm
142 N571abbc3e17e42d1886d6ee14e12189d rdf:first sg:person.0724210461.60
143 rdf:rest Nfdbeaaa42a6147a88bb63f7d58ea5803
144 N57c4ec02f9724e68bed900fbea84c032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Middle Aged
146 rdf:type schema:DefinedTerm
147 N6819aeda84244f6f842f4a48d9d4151b rdf:first sg:person.010162401603.26
148 rdf:rest N5497aeba830b455792665614c54e027f
149 N694c791be0b94fb595f9201eed1a34c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Middle Cerebral Artery
151 rdf:type schema:DefinedTerm
152 N6a0396d266334b6aa018be07ab39f20b schema:name pubmed_id
153 schema:value 26376883
154 rdf:type schema:PropertyValue
155 N6d0c0956b5364ac183023783d39d1d78 schema:name Springer Nature - SN SciGraph project
156 rdf:type schema:Organization
157 N72fd78f6150945e9b91c370f5226d4a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Plaque, Atherosclerotic
159 rdf:type schema:DefinedTerm
160 N775484b4f3154406a18720ebf0076638 schema:name dimensions_id
161 schema:value pub.1009298470
162 rdf:type schema:PropertyValue
163 N7a1527e76da04ce99b75cfb20321d665 rdf:first sg:person.01126417550.77
164 rdf:rest N6819aeda84244f6f842f4a48d9d4151b
165 N7d3939a143684e7b9ffb9cb1899ef3bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Constriction, Pathologic
167 rdf:type schema:DefinedTerm
168 N7eb3c43f2a2540419940e295cd35f49d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Magnetic Resonance Angiography
170 rdf:type schema:DefinedTerm
171 N8c416c5260d44b7cb743945e2f6e4dcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Female
173 rdf:type schema:DefinedTerm
174 N927fba61ad914b8fa576427ed6dcc34c schema:volumeNumber 26
175 rdf:type schema:PublicationVolume
176 Nb19ff9645a3442b49d4785f43552c3fe rdf:first sg:person.0640512567.19
177 rdf:rest N571abbc3e17e42d1886d6ee14e12189d
178 Nbaf9da7df4504a93a64ee3ed25a53365 schema:name doi
179 schema:value 10.1007/s00330-015-4008-5
180 rdf:type schema:PropertyValue
181 Nbc2fd8c5c13143578257f4ed5d0135c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Aged
183 rdf:type schema:DefinedTerm
184 Nbd33690f4894497aad15e41d5718224c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Cerebrovascular Disorders
186 rdf:type schema:DefinedTerm
187 Nbdf709ba2b204fbea9dae90172896dec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Image Processing, Computer-Assisted
189 rdf:type schema:DefinedTerm
190 Nc3ce6cbf73b54174b8ff19ccd7b7a9b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Intracranial Arteriosclerosis
192 rdf:type schema:DefinedTerm
193 Nca423ddc45f944ccb8f038e760cfbba7 rdf:first sg:person.01100366305.67
194 rdf:rest rdf:nil
195 Ncb1d23de98294164b80cf928221adbc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Cerebral Angiography
197 rdf:type schema:DefinedTerm
198 Nd8ca37bdca00434ebc98438626bc3b0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Magnetic Resonance Imaging
200 rdf:type schema:DefinedTerm
201 Nf41f9d9db57c4ebc94b2f346a7ca8e0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Diffusion Magnetic Resonance Imaging
203 rdf:type schema:DefinedTerm
204 Nfdbeaaa42a6147a88bb63f7d58ea5803 rdf:first sg:person.01316003467.43
205 rdf:rest N7a1527e76da04ce99b75cfb20321d665
206 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
207 schema:name Medical and Health Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
210 schema:name Cardiorespiratory Medicine and Haematology
211 rdf:type schema:DefinedTerm
212 sg:grant.5136203 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-015-4008-5
213 rdf:type schema:MonetaryGrant
214 sg:grant.8184648 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-015-4008-5
215 rdf:type schema:MonetaryGrant
216 sg:journal.1289120 schema:issn 0938-7994
217 1432-1084
218 schema:name European Radiology
219 schema:publisher Springer Nature
220 rdf:type schema:Periodical
221 sg:person.010162401603.26 schema:affiliation grid-institutes:grid.411525.6
222 schema:familyName Chen
223 schema:givenName Shiyue
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010162401603.26
225 rdf:type schema:Person
226 sg:person.01044617352.46 schema:affiliation grid-institutes:grid.5335.0
227 schema:familyName Graves
228 schema:givenName Martin J.
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044617352.46
230 rdf:type schema:Person
231 sg:person.01100366305.67 schema:affiliation grid-institutes:grid.411525.6
232 schema:familyName Lu
233 schema:givenName Jianping
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100366305.67
235 rdf:type schema:Person
236 sg:person.01126417550.77 schema:affiliation grid-institutes:grid.411525.6
237 schema:familyName Liu
238 schema:givenName Qi
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126417550.77
240 rdf:type schema:Person
241 sg:person.01154665461.54 schema:affiliation grid-institutes:grid.411525.6
242 schema:familyName Tian
243 schema:givenName Xia
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154665461.54
245 rdf:type schema:Person
246 sg:person.01204646504.30 schema:affiliation grid-institutes:grid.5335.0
247 schema:familyName Brown
248 schema:givenName Adam J.
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204646504.30
250 rdf:type schema:Person
251 sg:person.01250066663.04 schema:affiliation grid-institutes:grid.5335.0
252 schema:familyName Gillard
253 schema:givenName Jonathan H.
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250066663.04
255 rdf:type schema:Person
256 sg:person.01316003467.43 schema:affiliation grid-institutes:grid.411525.6
257 schema:familyName Zhang
258 schema:givenName Xuefeng
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316003467.43
260 rdf:type schema:Person
261 sg:person.0640512567.19 schema:affiliation grid-institutes:grid.411525.6
262 schema:familyName Peng
263 schema:givenName Wenjia
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640512567.19
265 rdf:type schema:Person
266 sg:person.0724210461.60 schema:affiliation grid-institutes:grid.411525.6
267 schema:familyName Zhan
268 schema:givenName Qian
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724210461.60
270 rdf:type schema:Person
271 sg:person.0735506101.49 schema:affiliation grid-institutes:grid.5335.0
272 schema:familyName Teng
273 schema:givenName Zhongzhao
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735506101.49
275 rdf:type schema:Person
276 sg:person.0754741167.48 schema:affiliation grid-institutes:grid.411525.6
277 schema:familyName Chen
278 schema:givenName Luguang
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754741167.48
280 rdf:type schema:Person
281 sg:pub.10.1038/nrcardio.2009.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033209600
282 https://doi.org/10.1038/nrcardio.2009.246
283 rdf:type schema:CreativeWork
284 sg:pub.10.1186/1532-429x-13-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020116556
285 https://doi.org/10.1186/1532-429x-13-64
286 rdf:type schema:CreativeWork
287 grid-institutes:grid.411525.6 schema:alternateName Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China
288 schema:name Department of Radiology, Changhai Hospital, 168 Changhai Rd, 200433, Shanghai, China
289 Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK
290 rdf:type schema:Organization
291 grid-institutes:grid.5335.0 schema:alternateName Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK
292 Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
293 schema:name Department of Radiology, University of Cambridge, Level 5, Box 218, Hills Rd., CB2 0QQ, Cambridge, UK
294 Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...