Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05

AUTHORS

Hiroaki Arakawa, Takumi Kishimoto, Kazuto Ashizawa, Katsuya Kato, Kenzo Okamoto, Koichi Honma, Seiji Hayashi, Masanori Akira

ABSTRACT

OBJECTIVE: The purpose was to identify distinguishing CT features of pathologically diagnosed asbestosis, and correlate diagnostic confidence with asbestos body burden. METHODS: Thirty-three workers (mean age at CT: 73 years) with clinical diagnoses of asbestosis, who were autopsied (n = 30) or underwent lobectomy (n = 3), were collected. Two radiologists independently scored high-resolution CT images for various CT findings and the likelihood of asbestosis was scored. Two pathologists reviewed the pathology specimens and scored the confidence of their diagnoses. Asbestos body count was correlated with CT and pathology scores. RESULTS: Pathologically, 15 cases were diagnosed as asbestosis and 18 cases with various lung fibroses other than asbestosis. On CT, only the score of the subpleural curvilinear lines was significantly higher in asbestosis (p = 0.03). Accuracy of CT diagnosis of asbestosis with a high confidence ranged from 0.73 to 0.79. Asbestos body count positively correlated with CT likelihood of asbestosis (r = 0.503, p = 0.003), and with the confidence level of pathological diagnosis (r = 0.637, p < 0.001). CONCLUSIONS: Subpleural curvilinear lines were the only clue for the diagnosis of asbestosis. However, this was complicated by other lung fibrosis, especially at low asbestos body burden. KEY POINTS: • Various patterns of pulmonary fibrosis occurred in asbestos-exposed workers. • The fibre burden in lungs paralleled confident CT diagnosis of asbestosis. • The fibre burden in lungs paralleled confident pathological diagnosis of asbestosis. • Subpleural curvilinear lines were an important CT finding favouring asbestosis. More... »

PAGES

1485-1492

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-015-3973-z

DOI

http://dx.doi.org/10.1007/s00330-015-3973-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041277301

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26334510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asbestos", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asbestosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Autopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Burden", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Exposure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dokkyo Medical University", 
          "id": "https://www.grid.ac/institutes/grid.255137.7", 
          "name": [
            "Department of Radiology, Dokkyo Medical University, 880, Kita-Kobayashi, 321-0293, Mibu, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arakawa", 
        "givenName": "Hiroaki", 
        "id": "sg:person.01143056727.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143056727.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Okayama Rosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416813.9", 
          "name": [
            "Asbestos Research Center, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi Ninamiku, 702-8055, Okayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishimoto", 
        "givenName": "Takumi", 
        "id": "sg:person.01100662313.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100662313.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagasaki University", 
          "id": "https://www.grid.ac/institutes/grid.174567.6", 
          "name": [
            "Department of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, 852-8501, Nagasaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashizawa", 
        "givenName": "Kazuto", 
        "id": "sg:person.0765555766.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765555766.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kawasaki Medical School", 
          "id": "https://www.grid.ac/institutes/grid.415086.e", 
          "name": [
            "Department of Diagnostic Radiology 2, Kawasaki Medical School, 2-1-80, Nakasange, Kita-ku, 701-0114, Okayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Katsuya", 
        "id": "sg:person.01335774436.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335774436.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Pathology, Hokkaido Chuo Hospital, 4 Joh Higashi 16, 068-0004, Iwamizawa, Hokkaido, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okamoto", 
        "givenName": "Kenzo", 
        "id": "sg:person.01255747037.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255747037.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dokkyo Medical University", 
          "id": "https://www.grid.ac/institutes/grid.255137.7", 
          "name": [
            "Department of Pathology, Dokkyo Medical University, 880, Kita-Kobayashi, 321-0293, Mibu, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Honma", 
        "givenName": "Koichi", 
        "id": "sg:person.01255614605.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255614605.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Kinki Chuo Hospital for Chest Disease", 
          "id": "https://www.grid.ac/institutes/grid.415611.6", 
          "name": [
            "National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai-city, 591-8555, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Seiji", 
        "id": "sg:person.01267555663.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267555663.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Kinki Chuo Hospital for Chest Disease", 
          "id": "https://www.grid.ac/institutes/grid.415611.6", 
          "name": [
            "Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akira", 
        "givenName": "Masanori", 
        "id": "sg:person.01161113103.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161113103.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/thx.47.8.645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011398167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.47.8.645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011398167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/copd.s74643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012604109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1991.tb24442.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015570663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/152.4.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016395425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.46.6.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028780864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.46.6.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028780864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijerph8030899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039755681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(00)82017-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045469648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2293020668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046042324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm.150.3.8087336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051779369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(99)05417-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054617089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.181.1.1810163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.178.2.1987601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077978124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1043/1543-2165-134.3.457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078055400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1043/1543-2165-134.3.462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078055401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.176.2.2367652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078730217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083241966", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "OBJECTIVE: The purpose was to identify distinguishing CT features of pathologically diagnosed asbestosis, and correlate diagnostic confidence with asbestos body burden.\nMETHODS: Thirty-three workers (mean age at CT: 73\u00a0years) with clinical diagnoses of asbestosis, who were autopsied (n\u2009=\u200930) or underwent lobectomy (n\u2009=\u20093), were collected. Two radiologists independently scored high-resolution CT images for various CT findings and the likelihood of asbestosis was scored. Two pathologists reviewed the pathology specimens and scored the confidence of their diagnoses. Asbestos body count was correlated with CT and pathology scores.\nRESULTS: Pathologically, 15 cases were diagnosed as asbestosis and 18 cases with various lung fibroses other than asbestosis. On CT, only the score of the subpleural curvilinear lines was significantly higher in asbestosis (p\u2009=\u20090.03). Accuracy of CT diagnosis of asbestosis with a high confidence ranged from 0.73 to 0.79. Asbestos body count positively correlated with CT likelihood of asbestosis (r\u2009=\u20090.503, p\u2009=\u20090.003), and with the confidence level of pathological diagnosis (r\u2009=\u20090.637, p\u2009<\u20090.001).\nCONCLUSIONS: Subpleural curvilinear lines were the only clue for the diagnosis of asbestosis. However, this was complicated by other lung fibrosis, especially at low asbestos body burden.\nKEY POINTS: \u2022 Various patterns of pulmonary fibrosis occurred in asbestos-exposed workers. \u2022 The fibre burden in lungs paralleled confident CT diagnosis of asbestosis. \u2022 The fibre burden in lungs paralleled confident pathological diagnosis of asbestosis. \u2022 Subpleural curvilinear lines were an important CT finding favouring asbestosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-015-3973-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations", 
    "pagination": "1485-1492", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c4a1cd93eb88d06ad2f2e79a4bd69f2ff34ca351c04744edb1ab85341bd7f3d3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26334510"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-015-3973-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041277301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-015-3973-z", 
      "https://app.dimensions.ai/details/publication/pub.1041277301"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00330-015-3973-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3973-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3973-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3973-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3973-z'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      60 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-015-3973-z schema:about N170c5366ee524d7da1919c68ca9fa02c
2 N1d34e01407ec4944bf7f8a57c94714e2
3 N2f210b57c44846fc9279c11537fa6a2e
4 N3691e45f4c8e47259d8e0c0ef09f00ab
5 N3c6140edafff424c8c0e81fd502bb9f6
6 N3f307322108849a78c041c57fb0b805c
7 N44d069d19f224e068cbe31d252e0a77b
8 N522440ff68564376ad4db330a3d76fc1
9 N57a9cacc831d4c9bb453166775de0960
10 Ncac4e834682b4caab77b91ecca98e983
11 Ncdb5f02f95b64ccebdb1ff27f6d474a9
12 Nd2a4936e6eb542dea002634d9f9fb608
13 Ndb586d13296c4e948556c9d63c026e93
14 Ne202595d83e343d19271f4794a18295c
15 Neb07c9ba5cdf453c92590dd9ab1d8f99
16 anzsrc-for:11
17 anzsrc-for:1102
18 schema:author N59a59d6ed0b64c16954eb7173398f0f4
19 schema:citation https://app.dimensions.ai/details/publication/pub.1083241966
20 https://doi.org/10.1016/s0140-6736(00)82017-6
21 https://doi.org/10.1016/s0140-6736(99)05417-3
22 https://doi.org/10.1043/1543-2165-134.3.457
23 https://doi.org/10.1043/1543-2165-134.3.462
24 https://doi.org/10.1093/aje/152.4.307
25 https://doi.org/10.1111/j.1749-6632.1991.tb24442.x
26 https://doi.org/10.1136/thx.46.6.454
27 https://doi.org/10.1136/thx.47.8.645
28 https://doi.org/10.1148/radiol.2293020668
29 https://doi.org/10.1148/radiology.176.2.2367652
30 https://doi.org/10.1148/radiology.178.2.1987601
31 https://doi.org/10.1164/ajrccm.150.3.8087336
32 https://doi.org/10.2147/copd.s74643
33 https://doi.org/10.2214/ajr.181.1.1810163
34 https://doi.org/10.3390/ijerph8030899
35 schema:datePublished 2016-05
36 schema:datePublishedReg 2016-05-01
37 schema:description OBJECTIVE: The purpose was to identify distinguishing CT features of pathologically diagnosed asbestosis, and correlate diagnostic confidence with asbestos body burden. METHODS: Thirty-three workers (mean age at CT: 73 years) with clinical diagnoses of asbestosis, who were autopsied (n = 30) or underwent lobectomy (n = 3), were collected. Two radiologists independently scored high-resolution CT images for various CT findings and the likelihood of asbestosis was scored. Two pathologists reviewed the pathology specimens and scored the confidence of their diagnoses. Asbestos body count was correlated with CT and pathology scores. RESULTS: Pathologically, 15 cases were diagnosed as asbestosis and 18 cases with various lung fibroses other than asbestosis. On CT, only the score of the subpleural curvilinear lines was significantly higher in asbestosis (p = 0.03). Accuracy of CT diagnosis of asbestosis with a high confidence ranged from 0.73 to 0.79. Asbestos body count positively correlated with CT likelihood of asbestosis (r = 0.503, p = 0.003), and with the confidence level of pathological diagnosis (r = 0.637, p < 0.001). CONCLUSIONS: Subpleural curvilinear lines were the only clue for the diagnosis of asbestosis. However, this was complicated by other lung fibrosis, especially at low asbestos body burden. KEY POINTS: • Various patterns of pulmonary fibrosis occurred in asbestos-exposed workers. • The fibre burden in lungs paralleled confident CT diagnosis of asbestosis. • The fibre burden in lungs paralleled confident pathological diagnosis of asbestosis. • Subpleural curvilinear lines were an important CT finding favouring asbestosis.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf Ncc46ed146ddd4645a3ebd02b12937136
42 Nffa9682fcca54f76b083b32b9b2a6e00
43 sg:journal.1289120
44 schema:name Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations
45 schema:pagination 1485-1492
46 schema:productId N7515d3e99d934f339c8675e3b9702747
47 N986df4e0ee5649c4bcff3a2e0d28a446
48 Nafadd6406cd24fddb30aff17304ed9ad
49 Nc69d1833bbce4172a8313ee58b33c8a7
50 Nf9cbe9e9f43b44ffb90c5df0669a1b25
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041277301
52 https://doi.org/10.1007/s00330-015-3973-z
53 schema:sdDatePublished 2019-04-11T01:54
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nf782ebe0c08a473fa169460f44e92e69
56 schema:url http://link.springer.com/10.1007/s00330-015-3973-z
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N004775f572204219b8c7ab79b37d91d9 rdf:first sg:person.01267555663.82
61 rdf:rest N5d56a8d4136043038ed48e91fc5da398
62 N0211701288694bfd9442e4fad2cf2f04 rdf:first sg:person.01335774436.59
63 rdf:rest N7bea13eab6d3416aadf809506bc23527
64 N170c5366ee524d7da1919c68ca9fa02c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Environmental Exposure
66 rdf:type schema:DefinedTerm
67 N1d34e01407ec4944bf7f8a57c94714e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Body Burden
69 rdf:type schema:DefinedTerm
70 N220b5cb34fed437ca89572e155f9bfe9 rdf:first sg:person.0765555766.79
71 rdf:rest N0211701288694bfd9442e4fad2cf2f04
72 N2f210b57c44846fc9279c11537fa6a2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Asbestosis
74 rdf:type schema:DefinedTerm
75 N3691e45f4c8e47259d8e0c0ef09f00ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Female
77 rdf:type schema:DefinedTerm
78 N3c6140edafff424c8c0e81fd502bb9f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Tomography, X-Ray Computed
80 rdf:type schema:DefinedTerm
81 N3f307322108849a78c041c57fb0b805c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Asbestos
83 rdf:type schema:DefinedTerm
84 N44d069d19f224e068cbe31d252e0a77b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Lung
86 rdf:type schema:DefinedTerm
87 N522440ff68564376ad4db330a3d76fc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Observer Variation
89 rdf:type schema:DefinedTerm
90 N57a9cacc831d4c9bb453166775de0960 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Middle Aged
92 rdf:type schema:DefinedTerm
93 N59a59d6ed0b64c16954eb7173398f0f4 rdf:first sg:person.01143056727.25
94 rdf:rest N5c6b953ad9b64a6293e163be43fa2a17
95 N5c6b953ad9b64a6293e163be43fa2a17 rdf:first sg:person.01100662313.31
96 rdf:rest N220b5cb34fed437ca89572e155f9bfe9
97 N5d56a8d4136043038ed48e91fc5da398 rdf:first sg:person.01161113103.38
98 rdf:rest rdf:nil
99 N5dd76847345444848fedfe8d6781ee55 schema:name Department of Pathology, Hokkaido Chuo Hospital, 4 Joh Higashi 16, 068-0004, Iwamizawa, Hokkaido, Japan
100 rdf:type schema:Organization
101 N7515d3e99d934f339c8675e3b9702747 schema:name pubmed_id
102 schema:value 26334510
103 rdf:type schema:PropertyValue
104 N7bea13eab6d3416aadf809506bc23527 rdf:first sg:person.01255747037.37
105 rdf:rest Nf2fc8482a43b46d19b2f099206bd3d00
106 N986df4e0ee5649c4bcff3a2e0d28a446 schema:name nlm_unique_id
107 schema:value 9114774
108 rdf:type schema:PropertyValue
109 Nafadd6406cd24fddb30aff17304ed9ad schema:name dimensions_id
110 schema:value pub.1041277301
111 rdf:type schema:PropertyValue
112 Nc69d1833bbce4172a8313ee58b33c8a7 schema:name readcube_id
113 schema:value c4a1cd93eb88d06ad2f2e79a4bd69f2ff34ca351c04744edb1ab85341bd7f3d3
114 rdf:type schema:PropertyValue
115 Ncac4e834682b4caab77b91ecca98e983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Pulmonary Fibrosis
117 rdf:type schema:DefinedTerm
118 Ncc46ed146ddd4645a3ebd02b12937136 schema:issueNumber 5
119 rdf:type schema:PublicationIssue
120 Ncdb5f02f95b64ccebdb1ff27f6d474a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 Nd2a4936e6eb542dea002634d9f9fb608 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Autopsy
125 rdf:type schema:DefinedTerm
126 Ndb586d13296c4e948556c9d63c026e93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Male
128 rdf:type schema:DefinedTerm
129 Ne202595d83e343d19271f4794a18295c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Retrospective Studies
131 rdf:type schema:DefinedTerm
132 Neb07c9ba5cdf453c92590dd9ab1d8f99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Aged
134 rdf:type schema:DefinedTerm
135 Nf2fc8482a43b46d19b2f099206bd3d00 rdf:first sg:person.01255614605.80
136 rdf:rest N004775f572204219b8c7ab79b37d91d9
137 Nf782ebe0c08a473fa169460f44e92e69 schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 Nf9cbe9e9f43b44ffb90c5df0669a1b25 schema:name doi
140 schema:value 10.1007/s00330-015-3973-z
141 rdf:type schema:PropertyValue
142 Nffa9682fcca54f76b083b32b9b2a6e00 schema:volumeNumber 26
143 rdf:type schema:PublicationVolume
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
148 schema:name Cardiorespiratory Medicine and Haematology
149 rdf:type schema:DefinedTerm
150 sg:journal.1289120 schema:issn 0938-7994
151 1432-1084
152 schema:name European Radiology
153 rdf:type schema:Periodical
154 sg:person.01100662313.31 schema:affiliation https://www.grid.ac/institutes/grid.416813.9
155 schema:familyName Kishimoto
156 schema:givenName Takumi
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100662313.31
158 rdf:type schema:Person
159 sg:person.01143056727.25 schema:affiliation https://www.grid.ac/institutes/grid.255137.7
160 schema:familyName Arakawa
161 schema:givenName Hiroaki
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143056727.25
163 rdf:type schema:Person
164 sg:person.01161113103.38 schema:affiliation https://www.grid.ac/institutes/grid.415611.6
165 schema:familyName Akira
166 schema:givenName Masanori
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161113103.38
168 rdf:type schema:Person
169 sg:person.01255614605.80 schema:affiliation https://www.grid.ac/institutes/grid.255137.7
170 schema:familyName Honma
171 schema:givenName Koichi
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255614605.80
173 rdf:type schema:Person
174 sg:person.01255747037.37 schema:affiliation N5dd76847345444848fedfe8d6781ee55
175 schema:familyName Okamoto
176 schema:givenName Kenzo
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255747037.37
178 rdf:type schema:Person
179 sg:person.01267555663.82 schema:affiliation https://www.grid.ac/institutes/grid.415611.6
180 schema:familyName Hayashi
181 schema:givenName Seiji
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267555663.82
183 rdf:type schema:Person
184 sg:person.01335774436.59 schema:affiliation https://www.grid.ac/institutes/grid.415086.e
185 schema:familyName Kato
186 schema:givenName Katsuya
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335774436.59
188 rdf:type schema:Person
189 sg:person.0765555766.79 schema:affiliation https://www.grid.ac/institutes/grid.174567.6
190 schema:familyName Ashizawa
191 schema:givenName Kazuto
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765555766.79
193 rdf:type schema:Person
194 https://app.dimensions.ai/details/publication/pub.1083241966 schema:CreativeWork
195 https://doi.org/10.1016/s0140-6736(00)82017-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469648
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0140-6736(99)05417-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054617089
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1043/1543-2165-134.3.457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078055400
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1043/1543-2165-134.3.462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078055401
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/aje/152.4.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016395425
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1749-6632.1991.tb24442.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015570663
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1136/thx.46.6.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028780864
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1136/thx.47.8.645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011398167
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1148/radiol.2293020668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046042324
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1148/radiology.176.2.2367652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078730217
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1148/radiology.178.2.1987601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077978124
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1164/ajrccm.150.3.8087336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051779369
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2147/copd.s74643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012604109
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2214/ajr.181.1.1810163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325541
222 rdf:type schema:CreativeWork
223 https://doi.org/10.3390/ijerph8030899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039755681
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.174567.6 schema:alternateName Nagasaki University
226 schema:name Department of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, 852-8501, Nagasaki, Japan
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.255137.7 schema:alternateName Dokkyo Medical University
229 schema:name Department of Pathology, Dokkyo Medical University, 880, Kita-Kobayashi, 321-0293, Mibu, Tochigi, Japan
230 Department of Radiology, Dokkyo Medical University, 880, Kita-Kobayashi, 321-0293, Mibu, Tochigi, Japan
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.415086.e schema:alternateName Kawasaki Medical School
233 schema:name Department of Diagnostic Radiology 2, Kawasaki Medical School, 2-1-80, Nakasange, Kita-ku, 701-0114, Okayama, Japan
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.415611.6 schema:alternateName National Kinki Chuo Hospital for Chest Disease
236 schema:name Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
237 National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai-city, 591-8555, Osaka, Japan
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.416813.9 schema:alternateName Okayama Rosai Hospital
240 schema:name Asbestos Research Center, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi Ninamiku, 702-8055, Okayama, Japan
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...