Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05

AUTHORS

Hiroaki Arakawa, Takumi Kishimoto, Kazuto Ashizawa, Katsuya Kato, Kenzo Okamoto, Koichi Honma, Seiji Hayashi, Masanori Akira

ABSTRACT

OBJECTIVE: The purpose was to identify distinguishing CT features of pathologically diagnosed asbestosis, and correlate diagnostic confidence with asbestos body burden. METHODS: Thirty-three workers (mean age at CT: 73 years) with clinical diagnoses of asbestosis, who were autopsied (n = 30) or underwent lobectomy (n = 3), were collected. Two radiologists independently scored high-resolution CT images for various CT findings and the likelihood of asbestosis was scored. Two pathologists reviewed the pathology specimens and scored the confidence of their diagnoses. Asbestos body count was correlated with CT and pathology scores. RESULTS: Pathologically, 15 cases were diagnosed as asbestosis and 18 cases with various lung fibroses other than asbestosis. On CT, only the score of the subpleural curvilinear lines was significantly higher in asbestosis (p = 0.03). Accuracy of CT diagnosis of asbestosis with a high confidence ranged from 0.73 to 0.79. Asbestos body count positively correlated with CT likelihood of asbestosis (r = 0.503, p = 0.003), and with the confidence level of pathological diagnosis (r = 0.637, p < 0.001). CONCLUSIONS: Subpleural curvilinear lines were the only clue for the diagnosis of asbestosis. However, this was complicated by other lung fibrosis, especially at low asbestos body burden. KEY POINTS: • Various patterns of pulmonary fibrosis occurred in asbestos-exposed workers. • The fibre burden in lungs paralleled confident CT diagnosis of asbestosis. • The fibre burden in lungs paralleled confident pathological diagnosis of asbestosis. • Subpleural curvilinear lines were an important CT finding favouring asbestosis. More... »

PAGES

1485-1492

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-015-3973-z

DOI

http://dx.doi.org/10.1007/s00330-015-3973-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041277301

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26334510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asbestos", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asbestosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Autopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Burden", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Exposure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Fibrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dokkyo Medical University", 
          "id": "https://www.grid.ac/institutes/grid.255137.7", 
          "name": [
            "Department of Radiology, Dokkyo Medical University, 880, Kita-Kobayashi, 321-0293, Mibu, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arakawa", 
        "givenName": "Hiroaki", 
        "id": "sg:person.01143056727.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143056727.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Okayama Rosai Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416813.9", 
          "name": [
            "Asbestos Research Center, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi Ninamiku, 702-8055, Okayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishimoto", 
        "givenName": "Takumi", 
        "id": "sg:person.01100662313.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100662313.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagasaki University", 
          "id": "https://www.grid.ac/institutes/grid.174567.6", 
          "name": [
            "Department of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, 852-8501, Nagasaki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashizawa", 
        "givenName": "Kazuto", 
        "id": "sg:person.0765555766.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765555766.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kawasaki Medical School", 
          "id": "https://www.grid.ac/institutes/grid.415086.e", 
          "name": [
            "Department of Diagnostic Radiology 2, Kawasaki Medical School, 2-1-80, Nakasange, Kita-ku, 701-0114, Okayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kato", 
        "givenName": "Katsuya", 
        "id": "sg:person.01335774436.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335774436.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Pathology, Hokkaido Chuo Hospital, 4 Joh Higashi 16, 068-0004, Iwamizawa, Hokkaido, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okamoto", 
        "givenName": "Kenzo", 
        "id": "sg:person.01255747037.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255747037.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dokkyo Medical University", 
          "id": "https://www.grid.ac/institutes/grid.255137.7", 
          "name": [
            "Department of Pathology, Dokkyo Medical University, 880, Kita-Kobayashi, 321-0293, Mibu, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Honma", 
        "givenName": "Koichi", 
        "id": "sg:person.01255614605.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255614605.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Kinki Chuo Hospital for Chest Disease", 
          "id": "https://www.grid.ac/institutes/grid.415611.6", 
          "name": [
            "National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai-city, 591-8555, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Seiji", 
        "id": "sg:person.01267555663.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267555663.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Kinki Chuo Hospital for Chest Disease", 
          "id": "https://www.grid.ac/institutes/grid.415611.6", 
          "name": [
            "Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akira", 
        "givenName": "Masanori", 
        "id": "sg:person.01161113103.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161113103.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/thx.47.8.645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011398167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.47.8.645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011398167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/copd.s74643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012604109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1991.tb24442.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015570663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/152.4.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016395425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.46.6.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028780864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/thx.46.6.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028780864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijerph8030899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039755681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(00)82017-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045469648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2293020668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046042324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm.150.3.8087336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051779369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(99)05417-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054617089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.181.1.1810163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069325541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.178.2.1987601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077978124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1043/1543-2165-134.3.457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078055400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1043/1543-2165-134.3.462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078055401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.176.2.2367652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078730217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083241966", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "OBJECTIVE: The purpose was to identify distinguishing CT features of pathologically diagnosed asbestosis, and correlate diagnostic confidence with asbestos body burden.\nMETHODS: Thirty-three workers (mean age at CT: 73\u00a0years) with clinical diagnoses of asbestosis, who were autopsied (n\u2009=\u200930) or underwent lobectomy (n\u2009=\u20093), were collected. Two radiologists independently scored high-resolution CT images for various CT findings and the likelihood of asbestosis was scored. Two pathologists reviewed the pathology specimens and scored the confidence of their diagnoses. Asbestos body count was correlated with CT and pathology scores.\nRESULTS: Pathologically, 15 cases were diagnosed as asbestosis and 18 cases with various lung fibroses other than asbestosis. On CT, only the score of the subpleural curvilinear lines was significantly higher in asbestosis (p\u2009=\u20090.03). Accuracy of CT diagnosis of asbestosis with a high confidence ranged from 0.73 to 0.79. Asbestos body count positively correlated with CT likelihood of asbestosis (r\u2009=\u20090.503, p\u2009=\u20090.003), and with the confidence level of pathological diagnosis (r\u2009=\u20090.637, p\u2009<\u20090.001).\nCONCLUSIONS: Subpleural curvilinear lines were the only clue for the diagnosis of asbestosis. However, this was complicated by other lung fibrosis, especially at low asbestos body burden.\nKEY POINTS: \u2022 Various patterns of pulmonary fibrosis occurred in asbestos-exposed workers. \u2022 The fibre burden in lungs paralleled confident CT diagnosis of asbestosis. \u2022 The fibre burden in lungs paralleled confident pathological diagnosis of asbestosis. \u2022 Subpleural curvilinear lines were an important CT finding favouring asbestosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-015-3973-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations", 
    "pagination": "1485-1492", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c4a1cd93eb88d06ad2f2e79a4bd69f2ff34ca351c04744edb1ab85341bd7f3d3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26334510"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-015-3973-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041277301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-015-3973-z", 
      "https://app.dimensions.ai/details/publication/pub.1041277301"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00330-015-3973-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3973-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3973-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3973-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3973-z'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      60 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-015-3973-z schema:about N01c3bf8ce7c342159573ce2b3165a8cc
2 N0632ac8a24d141ce80f786fb51cae3ff
3 N06361b021db6472ca8eb314679d4cbe6
4 N218c931b0811485fa511e36447d3bf1a
5 N2720a9e3150b465dbd9d25951af8ec81
6 N2c5d2c7420a549dab2d1a166c6a80681
7 N2dc27202651a4a2cb043ed6d8b65f209
8 N45e9d05a00784105a0e358fe478d9de7
9 N8313867284a1497bbffc4231a9d88648
10 N93d48aeea01144eda53273359db2d580
11 Na244d6d729df4c00ad115a76fce34d5c
12 Nb83e55782f5b469995c397f5c2767ce6
13 Nbc998f48345546e68fc04b39e1e28d78
14 Nd5755e2a3b4f46f1bc13a8a533fdc782
15 Nd747b6192d36452882454e52072defff
16 anzsrc-for:11
17 anzsrc-for:1102
18 schema:author Ncd322f1b903c475db6685121ad656798
19 schema:citation https://app.dimensions.ai/details/publication/pub.1083241966
20 https://doi.org/10.1016/s0140-6736(00)82017-6
21 https://doi.org/10.1016/s0140-6736(99)05417-3
22 https://doi.org/10.1043/1543-2165-134.3.457
23 https://doi.org/10.1043/1543-2165-134.3.462
24 https://doi.org/10.1093/aje/152.4.307
25 https://doi.org/10.1111/j.1749-6632.1991.tb24442.x
26 https://doi.org/10.1136/thx.46.6.454
27 https://doi.org/10.1136/thx.47.8.645
28 https://doi.org/10.1148/radiol.2293020668
29 https://doi.org/10.1148/radiology.176.2.2367652
30 https://doi.org/10.1148/radiology.178.2.1987601
31 https://doi.org/10.1164/ajrccm.150.3.8087336
32 https://doi.org/10.2147/copd.s74643
33 https://doi.org/10.2214/ajr.181.1.1810163
34 https://doi.org/10.3390/ijerph8030899
35 schema:datePublished 2016-05
36 schema:datePublishedReg 2016-05-01
37 schema:description OBJECTIVE: The purpose was to identify distinguishing CT features of pathologically diagnosed asbestosis, and correlate diagnostic confidence with asbestos body burden. METHODS: Thirty-three workers (mean age at CT: 73 years) with clinical diagnoses of asbestosis, who were autopsied (n = 30) or underwent lobectomy (n = 3), were collected. Two radiologists independently scored high-resolution CT images for various CT findings and the likelihood of asbestosis was scored. Two pathologists reviewed the pathology specimens and scored the confidence of their diagnoses. Asbestos body count was correlated with CT and pathology scores. RESULTS: Pathologically, 15 cases were diagnosed as asbestosis and 18 cases with various lung fibroses other than asbestosis. On CT, only the score of the subpleural curvilinear lines was significantly higher in asbestosis (p = 0.03). Accuracy of CT diagnosis of asbestosis with a high confidence ranged from 0.73 to 0.79. Asbestos body count positively correlated with CT likelihood of asbestosis (r = 0.503, p = 0.003), and with the confidence level of pathological diagnosis (r = 0.637, p < 0.001). CONCLUSIONS: Subpleural curvilinear lines were the only clue for the diagnosis of asbestosis. However, this was complicated by other lung fibrosis, especially at low asbestos body burden. KEY POINTS: • Various patterns of pulmonary fibrosis occurred in asbestos-exposed workers. • The fibre burden in lungs paralleled confident CT diagnosis of asbestosis. • The fibre burden in lungs paralleled confident pathological diagnosis of asbestosis. • Subpleural curvilinear lines were an important CT finding favouring asbestosis.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N8549fa09f4584793956a4f7a45287f2d
42 Nc040bc9735434b48bfe60a43c87d4cbb
43 sg:journal.1289120
44 schema:name Asbestosis and other pulmonary fibrosis in asbestos-exposed workers: high-resolution CT features with pathological correlations
45 schema:pagination 1485-1492
46 schema:productId N4564b29da7604926b68a1b16badf9373
47 N5c84bedfcc1b4c47a891c8e756bd5e83
48 Ne0a370543dee43d49b6e6ae24458daea
49 Ne39dab8f00694bc4ab77d14458ea6f6c
50 Nea1949ea31ed40babc7e8e7a377b754b
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041277301
52 https://doi.org/10.1007/s00330-015-3973-z
53 schema:sdDatePublished 2019-04-11T01:54
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N76fbe3f15aae4cbc8c62db4425846399
56 schema:url http://link.springer.com/10.1007/s00330-015-3973-z
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N01c3bf8ce7c342159573ce2b3165a8cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Tomography, X-Ray Computed
62 rdf:type schema:DefinedTerm
63 N0632ac8a24d141ce80f786fb51cae3ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Autopsy
65 rdf:type schema:DefinedTerm
66 N06361b021db6472ca8eb314679d4cbe6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Observer Variation
68 rdf:type schema:DefinedTerm
69 N17f424dbeca142f692b8da609675da79 rdf:first sg:person.0765555766.79
70 rdf:rest Na3dcdce3176c4aa490bf12a33fe74f38
71 N218c931b0811485fa511e36447d3bf1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Aged
73 rdf:type schema:DefinedTerm
74 N22aceb5750ef4a098c24661b9b82103e rdf:first sg:person.01100662313.31
75 rdf:rest N17f424dbeca142f692b8da609675da79
76 N2720a9e3150b465dbd9d25951af8ec81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Asbestosis
78 rdf:type schema:DefinedTerm
79 N2c5d2c7420a549dab2d1a166c6a80681 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Retrospective Studies
81 rdf:type schema:DefinedTerm
82 N2dc27202651a4a2cb043ed6d8b65f209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Body Burden
84 rdf:type schema:DefinedTerm
85 N36b8bd8a087248eaa1ae87a8fc5fee25 rdf:first sg:person.01255614605.80
86 rdf:rest Nd5fc510f6f444e0c946cd651c6003044
87 N4564b29da7604926b68a1b16badf9373 schema:name readcube_id
88 schema:value c4a1cd93eb88d06ad2f2e79a4bd69f2ff34ca351c04744edb1ab85341bd7f3d3
89 rdf:type schema:PropertyValue
90 N45e9d05a00784105a0e358fe478d9de7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Female
92 rdf:type schema:DefinedTerm
93 N5c84bedfcc1b4c47a891c8e756bd5e83 schema:name pubmed_id
94 schema:value 26334510
95 rdf:type schema:PropertyValue
96 N5da891abd91045f2b13f667a258fe456 schema:name Department of Pathology, Hokkaido Chuo Hospital, 4 Joh Higashi 16, 068-0004, Iwamizawa, Hokkaido, Japan
97 rdf:type schema:Organization
98 N66c4502d8c784abcb38dc5652e5fe3d5 rdf:first sg:person.01161113103.38
99 rdf:rest rdf:nil
100 N76fbe3f15aae4cbc8c62db4425846399 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N8313867284a1497bbffc4231a9d88648 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Middle Aged
104 rdf:type schema:DefinedTerm
105 N8549fa09f4584793956a4f7a45287f2d schema:issueNumber 5
106 rdf:type schema:PublicationIssue
107 N93d48aeea01144eda53273359db2d580 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Male
109 rdf:type schema:DefinedTerm
110 Na244d6d729df4c00ad115a76fce34d5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Pulmonary Fibrosis
112 rdf:type schema:DefinedTerm
113 Na3dcdce3176c4aa490bf12a33fe74f38 rdf:first sg:person.01335774436.59
114 rdf:rest Nf44b6ebc44d54b539422409131d301fc
115 Nb83e55782f5b469995c397f5c2767ce6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Lung
117 rdf:type schema:DefinedTerm
118 Nbc998f48345546e68fc04b39e1e28d78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Asbestos
120 rdf:type schema:DefinedTerm
121 Nc040bc9735434b48bfe60a43c87d4cbb schema:volumeNumber 26
122 rdf:type schema:PublicationVolume
123 Ncd322f1b903c475db6685121ad656798 rdf:first sg:person.01143056727.25
124 rdf:rest N22aceb5750ef4a098c24661b9b82103e
125 Nd5755e2a3b4f46f1bc13a8a533fdc782 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Environmental Exposure
127 rdf:type schema:DefinedTerm
128 Nd5fc510f6f444e0c946cd651c6003044 rdf:first sg:person.01267555663.82
129 rdf:rest N66c4502d8c784abcb38dc5652e5fe3d5
130 Nd747b6192d36452882454e52072defff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Humans
132 rdf:type schema:DefinedTerm
133 Ne0a370543dee43d49b6e6ae24458daea schema:name doi
134 schema:value 10.1007/s00330-015-3973-z
135 rdf:type schema:PropertyValue
136 Ne39dab8f00694bc4ab77d14458ea6f6c schema:name nlm_unique_id
137 schema:value 9114774
138 rdf:type schema:PropertyValue
139 Nea1949ea31ed40babc7e8e7a377b754b schema:name dimensions_id
140 schema:value pub.1041277301
141 rdf:type schema:PropertyValue
142 Nf44b6ebc44d54b539422409131d301fc rdf:first sg:person.01255747037.37
143 rdf:rest N36b8bd8a087248eaa1ae87a8fc5fee25
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
148 schema:name Cardiorespiratory Medicine and Haematology
149 rdf:type schema:DefinedTerm
150 sg:journal.1289120 schema:issn 0938-7994
151 1432-1084
152 schema:name European Radiology
153 rdf:type schema:Periodical
154 sg:person.01100662313.31 schema:affiliation https://www.grid.ac/institutes/grid.416813.9
155 schema:familyName Kishimoto
156 schema:givenName Takumi
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100662313.31
158 rdf:type schema:Person
159 sg:person.01143056727.25 schema:affiliation https://www.grid.ac/institutes/grid.255137.7
160 schema:familyName Arakawa
161 schema:givenName Hiroaki
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143056727.25
163 rdf:type schema:Person
164 sg:person.01161113103.38 schema:affiliation https://www.grid.ac/institutes/grid.415611.6
165 schema:familyName Akira
166 schema:givenName Masanori
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161113103.38
168 rdf:type schema:Person
169 sg:person.01255614605.80 schema:affiliation https://www.grid.ac/institutes/grid.255137.7
170 schema:familyName Honma
171 schema:givenName Koichi
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255614605.80
173 rdf:type schema:Person
174 sg:person.01255747037.37 schema:affiliation N5da891abd91045f2b13f667a258fe456
175 schema:familyName Okamoto
176 schema:givenName Kenzo
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255747037.37
178 rdf:type schema:Person
179 sg:person.01267555663.82 schema:affiliation https://www.grid.ac/institutes/grid.415611.6
180 schema:familyName Hayashi
181 schema:givenName Seiji
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267555663.82
183 rdf:type schema:Person
184 sg:person.01335774436.59 schema:affiliation https://www.grid.ac/institutes/grid.415086.e
185 schema:familyName Kato
186 schema:givenName Katsuya
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335774436.59
188 rdf:type schema:Person
189 sg:person.0765555766.79 schema:affiliation https://www.grid.ac/institutes/grid.174567.6
190 schema:familyName Ashizawa
191 schema:givenName Kazuto
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765555766.79
193 rdf:type schema:Person
194 https://app.dimensions.ai/details/publication/pub.1083241966 schema:CreativeWork
195 https://doi.org/10.1016/s0140-6736(00)82017-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469648
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0140-6736(99)05417-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054617089
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1043/1543-2165-134.3.457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078055400
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1043/1543-2165-134.3.462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078055401
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/aje/152.4.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016395425
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1749-6632.1991.tb24442.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015570663
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1136/thx.46.6.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028780864
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1136/thx.47.8.645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011398167
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1148/radiol.2293020668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046042324
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1148/radiology.176.2.2367652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078730217
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1148/radiology.178.2.1987601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077978124
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1164/ajrccm.150.3.8087336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051779369
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2147/copd.s74643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012604109
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2214/ajr.181.1.1810163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069325541
222 rdf:type schema:CreativeWork
223 https://doi.org/10.3390/ijerph8030899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039755681
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.174567.6 schema:alternateName Nagasaki University
226 schema:name Department of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, 852-8501, Nagasaki, Japan
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.255137.7 schema:alternateName Dokkyo Medical University
229 schema:name Department of Pathology, Dokkyo Medical University, 880, Kita-Kobayashi, 321-0293, Mibu, Tochigi, Japan
230 Department of Radiology, Dokkyo Medical University, 880, Kita-Kobayashi, 321-0293, Mibu, Tochigi, Japan
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.415086.e schema:alternateName Kawasaki Medical School
233 schema:name Department of Diagnostic Radiology 2, Kawasaki Medical School, 2-1-80, Nakasange, Kita-ku, 701-0114, Okayama, Japan
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.415611.6 schema:alternateName National Kinki Chuo Hospital for Chest Disease
236 schema:name Department of Radiology, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
237 National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai-city, 591-8555, Osaka, Japan
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.416813.9 schema:alternateName Okayama Rosai Hospital
240 schema:name Asbestos Research Center, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi Ninamiku, 702-8055, Okayama, Japan
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...