Pancreatic neuroendocrine tumour (PNET): Staging accuracy of MDCT and its diagnostic performance for the differentiation of PNET with uncommon CT ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05

AUTHORS

Jung Hoon Kim, Hyo Won Eun, Young Jae Kim, Jeong Min Lee, Joon Koo Han, Byung-Ihn Choi

ABSTRACT

PURPOSE: To investigate staging accuracy of multidetector CT (MDCT) for pancreatic neuroendocrine tumour (PNET) and diagnostic performance for differentiation of PNET from pancreatic adenocarcinoma. MATERIAL AND METHODS: We included 109 patients with surgically proven PNET (NETG1 = 66, NETG2 = 31, NEC = 12) who underwent MDCT. Two reviewers assessed stage and presence of predefined CT findings. We analysed the relationship between CT findings and tumour grade. Using PNETs with uncommon findings, we also estimated the possibility of PNET or adenocarcinoma. RESULTS: Accuracy for T stage was 85-88% and N-metastasis was 83-89%. Common findings included well circumscribed, homogeneously enhanced, hypervascular mass, common in lower grade tumours (p < 0.05). Uncommon findings included ill-defined, heterogeneously enhanced, hypovascular mass and duct dilation, common in higher grade tumours (p < 0.05). Using 31 PNETs with uncommon findings, diagnostic performance for differentiation from adenocarcinoma was 0.760-0.806. Duct dilatation was an independent predictor for adenocarcinoma (Exp(B) = 4.569). PNETs with uncommon findings were associated with significantly worse survival versus PNET with common findings (62.7 vs. 95.7 months, p < 0.001). CONCLUSION: MDCT is useful for preoperative evaluation of PNET; it not only accurately depicts the tumour stage but also prediction of tumour grade, because uncommon findings were more common in higher grade tumours. KEY POINTS: • CT accurately depicts the T stage and node metastasis of PNET. • Uncommon findings were more common in higher grade tumours. • CT information may be beneficial for optimal therapeutic planning. More... »

PAGES

1338-1347

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-015-3941-7

DOI

http://dx.doi.org/10.1007/s00330-015-3941-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021218941

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26253257


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenocarcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multidetector Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuroectodermal Tumors, Primitive", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jung Hoon", 
        "id": "sg:person.014534173224.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014534173224.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yonsei University", 
          "id": "https://www.grid.ac/institutes/grid.15444.30", 
          "name": [
            "Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Shinchon-dong 134, 120-752, Seoul, Seodaemun-ku, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eun", 
        "givenName": "Hyo Won", 
        "id": "sg:person.01140634343.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140634343.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soonchunhyang University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412678.e", 
          "name": [
            "Department of Radiology, Soonchunhyang University Hospital, 657 Hannam-Dong, 140-743, Seoul, Youngsan-Ku, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young Jae", 
        "id": "sg:person.0776724525.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776724525.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jeong Min", 
        "id": "sg:person.01266602714.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Joon Koo", 
        "id": "sg:person.0647723014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea", 
            "Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Byung-Ihn", 
        "id": "sg:person.0716036214.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716036214.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-014-3532-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000685045", 
          "https://doi.org/10.1007/s00330-014-3532-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11605-010-1380-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002374750", 
          "https://doi.org/10.1007/s11605-010-1380-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2501080291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002751825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jso.21889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007273411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10091819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011564746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00428-006-0250-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017988295", 
          "https://doi.org/10.1007/s00428-006-0250-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003300000714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018534325", 
          "https://doi.org/10.1007/s003300000714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/theoncologist.2008-0259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020346669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10406-005-0169-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025418610", 
          "https://doi.org/10.1007/s10406-005-0169-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-012-9953-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027401652", 
          "https://doi.org/10.1007/s00261-012-9953-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200209000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031997054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004728-200209000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031997054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/hpb.12139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034928034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000090026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038545312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2007.02.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040123570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.6051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043221215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ctg.2013.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046657957", 
          "https://doi.org/10.1038/ctg.2013.15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-08-0734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046763474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-012-2305-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053354626", 
          "https://doi.org/10.1245/s10434-012-2305-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.74.886.740968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064567401"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "PURPOSE: To investigate staging accuracy of multidetector CT (MDCT) for pancreatic neuroendocrine tumour (PNET) and diagnostic performance for differentiation of PNET from pancreatic adenocarcinoma.\nMATERIAL AND METHODS: We included 109 patients with surgically proven PNET (NETG1\u2009=\u200966, NETG2\u2009=\u200931, NEC\u2009=\u200912) who underwent MDCT. Two reviewers assessed stage and presence of predefined CT findings. We analysed the relationship between CT findings and tumour grade. Using PNETs with uncommon findings, we also estimated the possibility of PNET or adenocarcinoma.\nRESULTS: Accuracy for T stage was 85-88% and N-metastasis was 83-89%. Common findings included well circumscribed, homogeneously enhanced, hypervascular mass, common in lower grade tumours (p\u2009<\u20090.05). Uncommon findings included ill-defined, heterogeneously enhanced, hypovascular mass and duct dilation, common in higher grade tumours (p\u2009<\u20090.05). Using 31 PNETs with uncommon findings, diagnostic performance for differentiation from adenocarcinoma was 0.760-0.806. Duct dilatation was an independent predictor for adenocarcinoma (Exp(B)\u2009=\u20094.569). PNETs with uncommon findings were associated with significantly worse survival versus PNET with common findings (62.7 vs. 95.7 months, p\u2009<\u20090.001).\nCONCLUSION: MDCT is useful for preoperative evaluation of PNET; it not only accurately depicts the tumour stage but also prediction of tumour grade, because uncommon findings were more common in higher grade tumours.\nKEY POINTS: \u2022 CT accurately depicts the T stage and node metastasis of PNET. \u2022 Uncommon findings were more common in higher grade tumours. \u2022 CT information may be beneficial for optimal therapeutic planning.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-015-3941-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Pancreatic neuroendocrine tumour (PNET): Staging accuracy of MDCT and its diagnostic performance for the differentiation of PNET with uncommon CT findings from pancreatic adenocarcinoma", 
    "pagination": "1338-1347", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65190f469b3b371fe9b60194d55909d0fddd449fd6c2e1703b775b6dc2c27d7a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26253257"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-015-3941-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021218941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-015-3941-7", 
      "https://app.dimensions.ai/details/publication/pub.1021218941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-015-3941-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3941-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3941-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3941-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3941-7'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      64 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-015-3941-7 schema:about N07018023f5ff4e259e4ce27aa822cd20
2 N1bb8e3f5934c45fd96204aa21c76b6fe
3 N2946917bc9c349c79c52d29d22d5eca3
4 N2b9df06133f048a895620f7c63a7abf9
5 N5c56e28d8ba2451aaaf2ce73e88f6254
6 N5eefb3b0bdad4d4abffb34e4e14034dd
7 N66989cee41604ff4a7ccc7604762a749
8 N72afa19bdfbf4b8985bce7cc37b130aa
9 N85e7b0f5c1234847923a4abf78bb131f
10 N8a1c039967f641ac9dc9b7aa326b5be8
11 Na06e9756bccb424bb9b233a27e682cff
12 Na5cdabf54817434097f49c55bcfbada0
13 Na73ea5106d7c423db293dc9f2be01b9e
14 Nb00b9b5103854856be4b9ab8ef2fc239
15 Ncb6c7cc178784be69b3b652c00250d28
16 Nd5b2188ad5b345cfb37a981ab924cc0a
17 anzsrc-for:11
18 anzsrc-for:1112
19 schema:author N9bc2141912f7470b847322c72233f134
20 schema:citation sg:pub.10.1007/s00261-012-9953-8
21 sg:pub.10.1007/s00330-014-3532-z
22 sg:pub.10.1007/s003300000714
23 sg:pub.10.1007/s00428-006-0250-1
24 sg:pub.10.1007/s10406-005-0169-7
25 sg:pub.10.1007/s11605-010-1380-y
26 sg:pub.10.1038/ctg.2013.15
27 sg:pub.10.1245/s10434-012-2305-7
28 https://doi.org/10.1002/bjs.6051
29 https://doi.org/10.1002/jso.21889
30 https://doi.org/10.1016/j.ejrad.2007.02.036
31 https://doi.org/10.1097/00004728-200209000-00011
32 https://doi.org/10.1111/hpb.12139
33 https://doi.org/10.1148/radiol.10091819
34 https://doi.org/10.1148/radiol.2501080291
35 https://doi.org/10.1158/1078-0432.ccr-08-0734
36 https://doi.org/10.1159/000090026
37 https://doi.org/10.1259/bjr.74.886.740968
38 https://doi.org/10.1634/theoncologist.2008-0259
39 schema:datePublished 2016-05
40 schema:datePublishedReg 2016-05-01
41 schema:description PURPOSE: To investigate staging accuracy of multidetector CT (MDCT) for pancreatic neuroendocrine tumour (PNET) and diagnostic performance for differentiation of PNET from pancreatic adenocarcinoma. MATERIAL AND METHODS: We included 109 patients with surgically proven PNET (NETG1 = 66, NETG2 = 31, NEC = 12) who underwent MDCT. Two reviewers assessed stage and presence of predefined CT findings. We analysed the relationship between CT findings and tumour grade. Using PNETs with uncommon findings, we also estimated the possibility of PNET or adenocarcinoma. RESULTS: Accuracy for T stage was 85-88% and N-metastasis was 83-89%. Common findings included well circumscribed, homogeneously enhanced, hypervascular mass, common in lower grade tumours (p < 0.05). Uncommon findings included ill-defined, heterogeneously enhanced, hypovascular mass and duct dilation, common in higher grade tumours (p < 0.05). Using 31 PNETs with uncommon findings, diagnostic performance for differentiation from adenocarcinoma was 0.760-0.806. Duct dilatation was an independent predictor for adenocarcinoma (Exp(B) = 4.569). PNETs with uncommon findings were associated with significantly worse survival versus PNET with common findings (62.7 vs. 95.7 months, p < 0.001). CONCLUSION: MDCT is useful for preoperative evaluation of PNET; it not only accurately depicts the tumour stage but also prediction of tumour grade, because uncommon findings were more common in higher grade tumours. KEY POINTS: • CT accurately depicts the T stage and node metastasis of PNET. • Uncommon findings were more common in higher grade tumours. • CT information may be beneficial for optimal therapeutic planning.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N17c7d0503b8647e591efab11008c0215
46 N7ff5fb4d244b45aaaa9a67574a257365
47 sg:journal.1289120
48 schema:name Pancreatic neuroendocrine tumour (PNET): Staging accuracy of MDCT and its diagnostic performance for the differentiation of PNET with uncommon CT findings from pancreatic adenocarcinoma
49 schema:pagination 1338-1347
50 schema:productId N14db41bc92574c2ead4714a58947e510
51 N29679016306d4534a4d07fe432670c67
52 N9f0c1e41a8f243bdbe12e8af4edc0bda
53 Nb62d593768d04c8490b1f1574481b1e2
54 Nfdd1326f30844d38ba82efc05ce4dac3
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021218941
56 https://doi.org/10.1007/s00330-015-3941-7
57 schema:sdDatePublished 2019-04-10T15:01
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Na80ccf1492c94680b1b8eaae4ebc4de1
60 schema:url http://link.springer.com/10.1007%2Fs00330-015-3941-7
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N07018023f5ff4e259e4ce27aa822cd20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Multidetector Computed Tomography
66 rdf:type schema:DefinedTerm
67 N14db41bc92574c2ead4714a58947e510 schema:name readcube_id
68 schema:value 65190f469b3b371fe9b60194d55909d0fddd449fd6c2e1703b775b6dc2c27d7a
69 rdf:type schema:PropertyValue
70 N17c7d0503b8647e591efab11008c0215 schema:volumeNumber 26
71 rdf:type schema:PublicationVolume
72 N1af21d103c334566ae0a5ee76cc32320 rdf:first sg:person.01140634343.12
73 rdf:rest N1fb14d758a3f45348e14a57a638bcbb3
74 N1bb8e3f5934c45fd96204aa21c76b6fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Reproducibility of Results
76 rdf:type schema:DefinedTerm
77 N1fb14d758a3f45348e14a57a638bcbb3 rdf:first sg:person.0776724525.53
78 rdf:rest Nc534e1d6da8b45e5bd4a354b40f4842a
79 N2946917bc9c349c79c52d29d22d5eca3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Middle Aged
81 rdf:type schema:DefinedTerm
82 N29679016306d4534a4d07fe432670c67 schema:name dimensions_id
83 schema:value pub.1021218941
84 rdf:type schema:PropertyValue
85 N2b9df06133f048a895620f7c63a7abf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Male
87 rdf:type schema:DefinedTerm
88 N5c56e28d8ba2451aaaf2ce73e88f6254 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Neoplasm Staging
90 rdf:type schema:DefinedTerm
91 N5eefb3b0bdad4d4abffb34e4e14034dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Pancreas
93 rdf:type schema:DefinedTerm
94 N66989cee41604ff4a7ccc7604762a749 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Diagnosis, Differential
96 rdf:type schema:DefinedTerm
97 N72afa19bdfbf4b8985bce7cc37b130aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Humans
99 rdf:type schema:DefinedTerm
100 N76fc5d28b2a648f795f80108a03649ff rdf:first sg:person.0716036214.08
101 rdf:rest rdf:nil
102 N7ff5fb4d244b45aaaa9a67574a257365 schema:issueNumber 5
103 rdf:type schema:PublicationIssue
104 N85e7b0f5c1234847923a4abf78bb131f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Aged
106 rdf:type schema:DefinedTerm
107 N8a1c039967f641ac9dc9b7aa326b5be8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Observer Variation
109 rdf:type schema:DefinedTerm
110 N9bc2141912f7470b847322c72233f134 rdf:first sg:person.014534173224.00
111 rdf:rest N1af21d103c334566ae0a5ee76cc32320
112 N9f0c1e41a8f243bdbe12e8af4edc0bda schema:name pubmed_id
113 schema:value 26253257
114 rdf:type schema:PropertyValue
115 Na06e9756bccb424bb9b233a27e682cff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Retrospective Studies
117 rdf:type schema:DefinedTerm
118 Na5cdabf54817434097f49c55bcfbada0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Neuroectodermal Tumors, Primitive
120 rdf:type schema:DefinedTerm
121 Na73ea5106d7c423db293dc9f2be01b9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Adenocarcinoma
123 rdf:type schema:DefinedTerm
124 Na80ccf1492c94680b1b8eaae4ebc4de1 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Nb00b9b5103854856be4b9ab8ef2fc239 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Female
128 rdf:type schema:DefinedTerm
129 Nb62d593768d04c8490b1f1574481b1e2 schema:name nlm_unique_id
130 schema:value 9114774
131 rdf:type schema:PropertyValue
132 Nc0c0217eb93d4417acef2f4e0bc81a37 rdf:first sg:person.0647723014.95
133 rdf:rest N76fc5d28b2a648f795f80108a03649ff
134 Nc534e1d6da8b45e5bd4a354b40f4842a rdf:first sg:person.01266602714.81
135 rdf:rest Nc0c0217eb93d4417acef2f4e0bc81a37
136 Ncb6c7cc178784be69b3b652c00250d28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Adult
138 rdf:type schema:DefinedTerm
139 Nd5b2188ad5b345cfb37a981ab924cc0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Pancreatic Neoplasms
141 rdf:type schema:DefinedTerm
142 Nfdd1326f30844d38ba82efc05ce4dac3 schema:name doi
143 schema:value 10.1007/s00330-015-3941-7
144 rdf:type schema:PropertyValue
145 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
146 schema:name Medical and Health Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
149 schema:name Oncology and Carcinogenesis
150 rdf:type schema:DefinedTerm
151 sg:journal.1289120 schema:issn 0938-7994
152 1432-1084
153 schema:name European Radiology
154 rdf:type schema:Periodical
155 sg:person.01140634343.12 schema:affiliation https://www.grid.ac/institutes/grid.15444.30
156 schema:familyName Eun
157 schema:givenName Hyo Won
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140634343.12
159 rdf:type schema:Person
160 sg:person.01266602714.81 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
161 schema:familyName Lee
162 schema:givenName Jeong Min
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266602714.81
164 rdf:type schema:Person
165 sg:person.014534173224.00 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
166 schema:familyName Kim
167 schema:givenName Jung Hoon
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014534173224.00
169 rdf:type schema:Person
170 sg:person.0647723014.95 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
171 schema:familyName Han
172 schema:givenName Joon Koo
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647723014.95
174 rdf:type schema:Person
175 sg:person.0716036214.08 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
176 schema:familyName Choi
177 schema:givenName Byung-Ihn
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716036214.08
179 rdf:type schema:Person
180 sg:person.0776724525.53 schema:affiliation https://www.grid.ac/institutes/grid.412678.e
181 schema:familyName Kim
182 schema:givenName Young Jae
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776724525.53
184 rdf:type schema:Person
185 sg:pub.10.1007/s00261-012-9953-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027401652
186 https://doi.org/10.1007/s00261-012-9953-8
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s00330-014-3532-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000685045
189 https://doi.org/10.1007/s00330-014-3532-z
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s003300000714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018534325
192 https://doi.org/10.1007/s003300000714
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s00428-006-0250-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017988295
195 https://doi.org/10.1007/s00428-006-0250-1
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s10406-005-0169-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025418610
198 https://doi.org/10.1007/s10406-005-0169-7
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s11605-010-1380-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1002374750
201 https://doi.org/10.1007/s11605-010-1380-y
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/ctg.2013.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046657957
204 https://doi.org/10.1038/ctg.2013.15
205 rdf:type schema:CreativeWork
206 sg:pub.10.1245/s10434-012-2305-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053354626
207 https://doi.org/10.1245/s10434-012-2305-7
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1002/bjs.6051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043221215
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1002/jso.21889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007273411
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.ejrad.2007.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040123570
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1097/00004728-200209000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031997054
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/hpb.12139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034928034
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1148/radiol.10091819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011564746
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1148/radiol.2501080291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002751825
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1158/1078-0432.ccr-08-0734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046763474
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1159/000090026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038545312
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1259/bjr.74.886.740968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064567401
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1634/theoncologist.2008-0259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020346669
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.15444.30 schema:alternateName Yonsei University
232 schema:name Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Shinchon-dong 134, 120-752, Seoul, Seodaemun-ku, Korea
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
235 schema:name Department of Radiology, Seoul National University Hospital, 101 Daehangno, 110-744, Seoul, Jongno-gu, Republic of Korea
236 Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.412678.e schema:alternateName Soonchunhyang University Hospital
239 schema:name Department of Radiology, Soonchunhyang University Hospital, 657 Hannam-Dong, 140-743, Seoul, Youngsan-Ku, Republic of Korea
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...