Assessment of the residual tumour of colorectal liver metastases after chemotherapy: diffusion-weighted MR magnetic resonance imaging in the peripheral and ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-01

AUTHORS

Mathilde Wagner, Maxime Ronot, Sabrina Doblas, Céline Giraudeau, Bernard Van Beers, Jacques Belghiti, Valérie Paradis, Valérie Vilgrain

ABSTRACT

OBJECTIVES: To evaluate the value of diffusion-weighted imaging (DWI) in detecting residual tumours (RTs) in colorectal liver metastases (CLMs) following chemotherapy, with a focus on tumour periphery. METHODS: From January 2009-January 2012, 57 patients who underwent liver resection for CLMs with preoperative MRI (<3 months) including DWI were retrospectively included. CLMs were classified into three response groups on pathology: (1) major histological (MHR, RTs ≤ 10 %), (2) partial histological (PHR, RT = 10-49 %), and (3) no histological (NHR, RT ≥ 50 %). On DWI, regions of interest (ROIs) were drawn around the entire tumour and tumour periphery. Apparent diffusion (ADC) and pure diffusion (D) coefficients were calculated using a monoexponential fit, and compared using Kruskal-Wallis test on a lesion-per-lesion analysis. RESULTS: 111 CLMs were included. Fourteen (12.5 %), 42 (38 %) and 55 (49.5 %) CLMs presented a MHR, PHR and NHR, respectively. ADC and D of the peripheral ROIs were significantly higher in the MHR group (P = 0.013/P = 0.013). ADC and D from the entire tumour were not significantly different among the groups (P = 0.220/P = 0.103). CONCLUSION: In CLM treated with chemotherapy, ADC and D values from the entire tumour are not related to the degree of RT, while peripheral zone diffusion parameters could help identify metastases with MHR. KEY POINTS: Peripheral ADC and D of CLMs were higher with major pathological responses. Global ADC and D of CLMs were not different according to residual tumour. Diffusion-weighted images of CLM periphery could be an interesting biomarker of MHR. Diffusion-weighted images could be used to help tailor treatment. More... »

PAGES

206-215

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-015-3800-6

DOI

http://dx.doi.org/10.1007/s00330-015-3800-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018950213

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25933743


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm, Residual", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "INSERM, UMR 1149, Paris Diderot University, 100, Bd du G\u00e9n\u00e9ral Leclerc, 92110, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Mathilde", 
        "id": "sg:person.01034526661.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034526661.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beaujon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411599.1", 
          "name": [
            "INSERM, UMR 1149, Paris Diderot University, 100, Bd du G\u00e9n\u00e9ral Leclerc, 92110, Clichy, France", 
            "Radiology Department, Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Assistance Publique-H\u00f4pitaux de Paris, APHP, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronot", 
        "givenName": "Maxime", 
        "id": "sg:person.01025534354.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025534354.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "INSERM, UMR 1149, Paris Diderot University, 100, Bd du G\u00e9n\u00e9ral Leclerc, 92110, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doblas", 
        "givenName": "Sabrina", 
        "id": "sg:person.01165437435.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165437435.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "INSERM, UMR 1149, Paris Diderot University, 100, Bd du G\u00e9n\u00e9ral Leclerc, 92110, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giraudeau", 
        "givenName": "C\u00e9line", 
        "id": "sg:person.01241647310.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241647310.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beaujon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411599.1", 
          "name": [
            "INSERM, UMR 1149, Paris Diderot University, 100, Bd du G\u00e9n\u00e9ral Leclerc, 92110, Clichy, France", 
            "Radiology Department, Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Assistance Publique-H\u00f4pitaux de Paris, APHP, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Beers", 
        "givenName": "Bernard", 
        "id": "sg:person.01040234232.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040234232.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beaujon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411599.1", 
          "name": [
            "Hepatobiliary Surgery Department, Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Assistance Publique-H\u00f4pitaux de Paris, APHP, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belghiti", 
        "givenName": "Jacques", 
        "id": "sg:person.01202560643.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202560643.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beaujon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411599.1", 
          "name": [
            "Pathology Department, Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Assistance Publique-H\u00f4pitaux de Paris, APHP, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paradis", 
        "givenName": "Val\u00e9rie", 
        "id": "sg:person.01165415672.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165415672.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beaujon Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411599.1", 
          "name": [
            "INSERM, UMR 1149, Paris Diderot University, 100, Bd du G\u00e9n\u00e9ral Leclerc, 92110, Clichy, France", 
            "Radiology Department, Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Assistance Publique-H\u00f4pitaux de Paris, APHP, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vilgrain", 
        "givenName": "Val\u00e9rie", 
        "id": "sg:person.0761705775.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1200/jco.2007.11.9610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003017123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.28097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003260031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1593/neo.81328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003791015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2010.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006052862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1051-0443(07)61299-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007067071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1593/neo.03343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007220686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008590000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000217629.94941.cf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008912065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000217629.94941.cf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008912065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2007.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009075473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2012.45.2854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012691899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.23184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014517880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2011.01.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014840084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(13)70447-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015072088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2012.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017000559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12111530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019625835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000145964.08365.01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022055193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.sla.0000145964.08365.01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022055193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2008.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026558254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027507881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027507881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1477-2574.2012.00557.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028414919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31816200b5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030099124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31816200b5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030099124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bjs.6436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031714309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2008.17.5299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033537766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdl386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036275458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jamcollsurg.2012.12.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038337444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(08)60455-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038419533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2483071407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040061556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2463070432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042428509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.suronc.2012.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046586053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pas.0b013e3181eb2f7b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051676605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pas.0b013e3181eb2f7b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051676605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/pas.0b013e3181eb2f7b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051676605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1245/s10434-012-2335-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052082386", 
          "https://doi.org/10.1245/s10434-012-2335-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2009.1755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052104800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2013.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052478355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.06.0601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.2467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069298692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.07.3279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069299059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076895666", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "OBJECTIVES: To evaluate the value of diffusion-weighted imaging (DWI) in detecting residual tumours (RTs) in colorectal liver metastases (CLMs) following chemotherapy, with a focus on tumour periphery.\nMETHODS: From January 2009-January 2012, 57 patients who underwent liver resection for CLMs with preoperative MRI (<3 months) including DWI were retrospectively included. CLMs were classified into three response groups on pathology: (1) major histological (MHR, RTs \u2264 10 %), (2) partial histological (PHR, RT = 10-49 %), and (3) no histological (NHR, RT \u2265 50 %). On DWI, regions of interest (ROIs) were drawn around the entire tumour and tumour periphery. Apparent diffusion (ADC) and pure diffusion (D) coefficients were calculated using a monoexponential fit, and compared using Kruskal-Wallis test on a lesion-per-lesion analysis.\nRESULTS: 111 CLMs were included. Fourteen (12.5 %), 42 (38 %) and 55 (49.5 %) CLMs presented a MHR, PHR and NHR, respectively. ADC and D of the peripheral ROIs were significantly higher in the MHR group (P = 0.013/P = 0.013). ADC and D from the entire tumour were not significantly different among the groups (P = 0.220/P = 0.103).\nCONCLUSION: In CLM treated with chemotherapy, ADC and D values from the entire tumour are not related to the degree of RT, while peripheral zone diffusion parameters could help identify metastases with MHR.\nKEY POINTS: Peripheral ADC and D of CLMs were higher with major pathological responses. Global ADC and D of CLMs were not different according to residual tumour. Diffusion-weighted images of CLM periphery could be an interesting biomarker of MHR. Diffusion-weighted images could be used to help tailor treatment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-015-3800-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Assessment of the residual tumour of colorectal liver metastases after chemotherapy: diffusion-weighted MR magnetic resonance imaging in the peripheral and entire tumour", 
    "pagination": "206-215", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5a4a85bf9785e6cc32e6c319983c81842cf3998b13f32f099481dc011b8d3658"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25933743"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-015-3800-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018950213"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-015-3800-6", 
      "https://app.dimensions.ai/details/publication/pub.1018950213"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-015-3800-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3800-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3800-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3800-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3800-6'


 

This table displays all metadata directly associated to this object as RDF triples.

284 TRIPLES      21 PREDICATES      78 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-015-3800-6 schema:about N069dff4e90614635832a48ae1a803f73
2 N0f29dce2684f4eb4aa4429f446dd88ff
3 N17836f19cb0743b5b9707a81c37c70c3
4 N21ade4043a674cfda4484e4907a7271a
5 N2771de11f7114e11baadcee6a4c3f7ae
6 N3ae62bfa765a4b26ab02efd90d8aed48
7 N5dfc825901cd4a4ca4ae284dc3574cde
8 N6876ff337487417fb3bc0508457be1c4
9 N6b7835de726b4030a4b0bfca8e19c592
10 N99d06c6e9eff4b6f87cf589bd9a2120a
11 Nbadc11a520b64946b4f2a3464c25e5f1
12 Nc69a26c5ad7f43c9b072ba99a66ebbfc
13 Ne5731a97f2184bb7befbd535b157eb6b
14 anzsrc-for:11
15 anzsrc-for:1112
16 schema:author N21734762eac54010a354103787551aa1
17 schema:citation sg:pub.10.1245/s10434-012-2335-1
18 https://app.dimensions.ai/details/publication/pub.1076895666
19 https://doi.org/10.1001/jama.2009.1755
20 https://doi.org/10.1002/bjs.6436
21 https://doi.org/10.1002/cncr.23184
22 https://doi.org/10.1002/cncr.28097
23 https://doi.org/10.1002/ijc.25114
24 https://doi.org/10.1002/jmri.24172
25 https://doi.org/10.1016/j.acra.2007.10.022
26 https://doi.org/10.1016/j.ejca.2008.10.026
27 https://doi.org/10.1016/j.ejca.2012.08.021
28 https://doi.org/10.1016/j.ejca.2013.03.027
29 https://doi.org/10.1016/j.ejrad.2010.06.027
30 https://doi.org/10.1016/j.ejrad.2011.01.072
31 https://doi.org/10.1016/j.jamcollsurg.2012.12.037
32 https://doi.org/10.1016/j.suronc.2012.07.003
33 https://doi.org/10.1016/s0140-6736(08)60455-9
34 https://doi.org/10.1016/s1051-0443(07)61299-8
35 https://doi.org/10.1016/s1470-2045(13)70447-9
36 https://doi.org/10.1093/annonc/mdl386
37 https://doi.org/10.1097/01.sla.0000145964.08365.01
38 https://doi.org/10.1097/01.sla.0000217629.94941.cf
39 https://doi.org/10.1097/pas.0b013e3181eb2f7b
40 https://doi.org/10.1097/rli.0b013e31816200b5
41 https://doi.org/10.1111/j.1477-2574.2012.00557.x
42 https://doi.org/10.1148/radiol.12111530
43 https://doi.org/10.1148/radiol.2463070432
44 https://doi.org/10.1148/radiol.2483071407
45 https://doi.org/10.1200/jco.2007.11.9610
46 https://doi.org/10.1200/jco.2008.17.5299
47 https://doi.org/10.1200/jco.2012.45.2854
48 https://doi.org/10.1593/neo.03343
49 https://doi.org/10.1593/neo.81328
50 https://doi.org/10.2214/ajr.06.0601
51 https://doi.org/10.2214/ajr.07.2467
52 https://doi.org/10.2214/ajr.07.3279
53 schema:datePublished 2016-01
54 schema:datePublishedReg 2016-01-01
55 schema:description OBJECTIVES: To evaluate the value of diffusion-weighted imaging (DWI) in detecting residual tumours (RTs) in colorectal liver metastases (CLMs) following chemotherapy, with a focus on tumour periphery. METHODS: From January 2009-January 2012, 57 patients who underwent liver resection for CLMs with preoperative MRI (<3 months) including DWI were retrospectively included. CLMs were classified into three response groups on pathology: (1) major histological (MHR, RTs ≤ 10 %), (2) partial histological (PHR, RT = 10-49 %), and (3) no histological (NHR, RT ≥ 50 %). On DWI, regions of interest (ROIs) were drawn around the entire tumour and tumour periphery. Apparent diffusion (ADC) and pure diffusion (D) coefficients were calculated using a monoexponential fit, and compared using Kruskal-Wallis test on a lesion-per-lesion analysis. RESULTS: 111 CLMs were included. Fourteen (12.5 %), 42 (38 %) and 55 (49.5 %) CLMs presented a MHR, PHR and NHR, respectively. ADC and D of the peripheral ROIs were significantly higher in the MHR group (P = 0.013/P = 0.013). ADC and D from the entire tumour were not significantly different among the groups (P = 0.220/P = 0.103). CONCLUSION: In CLM treated with chemotherapy, ADC and D values from the entire tumour are not related to the degree of RT, while peripheral zone diffusion parameters could help identify metastases with MHR. KEY POINTS: Peripheral ADC and D of CLMs were higher with major pathological responses. Global ADC and D of CLMs were not different according to residual tumour. Diffusion-weighted images of CLM periphery could be an interesting biomarker of MHR. Diffusion-weighted images could be used to help tailor treatment.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N7a6144935ef84cb0bd9db96221241d54
60 Nad11967510024bdfa988deabdffbc6c6
61 sg:journal.1289120
62 schema:name Assessment of the residual tumour of colorectal liver metastases after chemotherapy: diffusion-weighted MR magnetic resonance imaging in the peripheral and entire tumour
63 schema:pagination 206-215
64 schema:productId N538c599b6648496c87b68792aeca7330
65 Nd45c97ffc5ff4d9987df1518a3318933
66 Nd668081554704a8fa0b9b509e73638b9
67 Ndb095f3864c14b1c91a32fd27280e47b
68 Ne80ac0e84bfb4f79ad325fd2384ddc8a
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018950213
70 https://doi.org/10.1007/s00330-015-3800-6
71 schema:sdDatePublished 2019-04-11T01:07
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N032e31bc15cd4f19971d6a5d92cf8dcb
74 schema:url http://link.springer.com/10.1007%2Fs00330-015-3800-6
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N032e31bc15cd4f19971d6a5d92cf8dcb schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N03b16ce3c66d471684665d21c41b9a1e rdf:first sg:person.01165415672.72
81 rdf:rest Naae8bf2c0567484e9f4c07d15c0257f1
82 N069dff4e90614635832a48ae1a803f73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Diffusion Magnetic Resonance Imaging
84 rdf:type schema:DefinedTerm
85 N0f29dce2684f4eb4aa4429f446dd88ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Aged, 80 and over
87 rdf:type schema:DefinedTerm
88 N17836f19cb0743b5b9707a81c37c70c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Antineoplastic Agents
90 rdf:type schema:DefinedTerm
91 N1aa9d032249346639a51d62a2a10e3a9 rdf:first sg:person.01241647310.31
92 rdf:rest N2ceb770a2b404d59b8950f37706d06ae
93 N21734762eac54010a354103787551aa1 rdf:first sg:person.01034526661.15
94 rdf:rest Nc98fd0993797422d867695149865ef85
95 N21ade4043a674cfda4484e4907a7271a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Male
97 rdf:type schema:DefinedTerm
98 N2771de11f7114e11baadcee6a4c3f7ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Female
100 rdf:type schema:DefinedTerm
101 N2ceb770a2b404d59b8950f37706d06ae rdf:first sg:person.01040234232.35
102 rdf:rest N65ae36804c70488c978e7514b17738b4
103 N3ae62bfa765a4b26ab02efd90d8aed48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Adult
105 rdf:type schema:DefinedTerm
106 N538c599b6648496c87b68792aeca7330 schema:name dimensions_id
107 schema:value pub.1018950213
108 rdf:type schema:PropertyValue
109 N5dfc825901cd4a4ca4ae284dc3574cde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Liver Neoplasms
111 rdf:type schema:DefinedTerm
112 N65ae36804c70488c978e7514b17738b4 rdf:first sg:person.01202560643.34
113 rdf:rest N03b16ce3c66d471684665d21c41b9a1e
114 N6876ff337487417fb3bc0508457be1c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Neoplasm, Residual
116 rdf:type schema:DefinedTerm
117 N6b7835de726b4030a4b0bfca8e19c592 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Colorectal Neoplasms
119 rdf:type schema:DefinedTerm
120 N7a6144935ef84cb0bd9db96221241d54 schema:volumeNumber 26
121 rdf:type schema:PublicationVolume
122 N99d06c6e9eff4b6f87cf589bd9a2120a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Retrospective Studies
124 rdf:type schema:DefinedTerm
125 Naae8bf2c0567484e9f4c07d15c0257f1 rdf:first sg:person.0761705775.52
126 rdf:rest rdf:nil
127 Nad11967510024bdfa988deabdffbc6c6 schema:issueNumber 1
128 rdf:type schema:PublicationIssue
129 Nbadc11a520b64946b4f2a3464c25e5f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Aged
131 rdf:type schema:DefinedTerm
132 Nc69a26c5ad7f43c9b072ba99a66ebbfc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 Nc98fd0993797422d867695149865ef85 rdf:first sg:person.01025534354.12
136 rdf:rest Ndb6e58c3bc014c518862d04d455a6221
137 Nd45c97ffc5ff4d9987df1518a3318933 schema:name pubmed_id
138 schema:value 25933743
139 rdf:type schema:PropertyValue
140 Nd668081554704a8fa0b9b509e73638b9 schema:name nlm_unique_id
141 schema:value 9114774
142 rdf:type schema:PropertyValue
143 Ndb095f3864c14b1c91a32fd27280e47b schema:name readcube_id
144 schema:value 5a4a85bf9785e6cc32e6c319983c81842cf3998b13f32f099481dc011b8d3658
145 rdf:type schema:PropertyValue
146 Ndb6e58c3bc014c518862d04d455a6221 rdf:first sg:person.01165437435.53
147 rdf:rest N1aa9d032249346639a51d62a2a10e3a9
148 Ne5731a97f2184bb7befbd535b157eb6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Middle Aged
150 rdf:type schema:DefinedTerm
151 Ne80ac0e84bfb4f79ad325fd2384ddc8a schema:name doi
152 schema:value 10.1007/s00330-015-3800-6
153 rdf:type schema:PropertyValue
154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
155 schema:name Medical and Health Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
158 schema:name Oncology and Carcinogenesis
159 rdf:type schema:DefinedTerm
160 sg:journal.1289120 schema:issn 0938-7994
161 1432-1084
162 schema:name European Radiology
163 rdf:type schema:Periodical
164 sg:person.01025534354.12 schema:affiliation https://www.grid.ac/institutes/grid.411599.1
165 schema:familyName Ronot
166 schema:givenName Maxime
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025534354.12
168 rdf:type schema:Person
169 sg:person.01034526661.15 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
170 schema:familyName Wagner
171 schema:givenName Mathilde
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034526661.15
173 rdf:type schema:Person
174 sg:person.01040234232.35 schema:affiliation https://www.grid.ac/institutes/grid.411599.1
175 schema:familyName Van Beers
176 schema:givenName Bernard
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040234232.35
178 rdf:type schema:Person
179 sg:person.01165415672.72 schema:affiliation https://www.grid.ac/institutes/grid.411599.1
180 schema:familyName Paradis
181 schema:givenName Valérie
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165415672.72
183 rdf:type schema:Person
184 sg:person.01165437435.53 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
185 schema:familyName Doblas
186 schema:givenName Sabrina
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165437435.53
188 rdf:type schema:Person
189 sg:person.01202560643.34 schema:affiliation https://www.grid.ac/institutes/grid.411599.1
190 schema:familyName Belghiti
191 schema:givenName Jacques
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202560643.34
193 rdf:type schema:Person
194 sg:person.01241647310.31 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
195 schema:familyName Giraudeau
196 schema:givenName Céline
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241647310.31
198 rdf:type schema:Person
199 sg:person.0761705775.52 schema:affiliation https://www.grid.ac/institutes/grid.411599.1
200 schema:familyName Vilgrain
201 schema:givenName Valérie
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761705775.52
203 rdf:type schema:Person
204 sg:pub.10.1245/s10434-012-2335-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052082386
205 https://doi.org/10.1245/s10434-012-2335-1
206 rdf:type schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1076895666 schema:CreativeWork
208 https://doi.org/10.1001/jama.2009.1755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052104800
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1002/bjs.6436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031714309
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1002/cncr.23184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014517880
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1002/cncr.28097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003260031
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/ijc.25114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027507881
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/jmri.24172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008590000
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.acra.2007.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009075473
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.ejca.2008.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026558254
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.ejca.2012.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017000559
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.ejca.2013.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052478355
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.ejrad.2010.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006052862
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.ejrad.2011.01.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014840084
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.jamcollsurg.2012.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038337444
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.suronc.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046586053
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/s0140-6736(08)60455-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038419533
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/s1051-0443(07)61299-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007067071
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/s1470-2045(13)70447-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015072088
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/annonc/mdl386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036275458
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1097/01.sla.0000145964.08365.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022055193
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1097/01.sla.0000217629.94941.cf schema:sameAs https://app.dimensions.ai/details/publication/pub.1008912065
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1097/pas.0b013e3181eb2f7b schema:sameAs https://app.dimensions.ai/details/publication/pub.1051676605
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1097/rli.0b013e31816200b5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030099124
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1111/j.1477-2574.2012.00557.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028414919
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1148/radiol.12111530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019625835
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1148/radiol.2463070432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042428509
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1148/radiol.2483071407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040061556
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1200/jco.2007.11.9610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003017123
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1200/jco.2008.17.5299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033537766
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1200/jco.2012.45.2854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012691899
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1593/neo.03343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007220686
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1593/neo.81328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003791015
269 rdf:type schema:CreativeWork
270 https://doi.org/10.2214/ajr.06.0601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298133
271 rdf:type schema:CreativeWork
272 https://doi.org/10.2214/ajr.07.2467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069298692
273 rdf:type schema:CreativeWork
274 https://doi.org/10.2214/ajr.07.3279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069299059
275 rdf:type schema:CreativeWork
276 https://www.grid.ac/institutes/grid.411599.1 schema:alternateName Beaujon Hospital
277 schema:name Hepatobiliary Surgery Department, Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Assistance Publique-Hôpitaux de Paris, APHP, Clichy, France
278 INSERM, UMR 1149, Paris Diderot University, 100, Bd du Général Leclerc, 92110, Clichy, France
279 Pathology Department, Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Assistance Publique-Hôpitaux de Paris, APHP, Clichy, France
280 Radiology Department, Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Assistance Publique-Hôpitaux de Paris, APHP, Clichy, France
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
283 schema:name INSERM, UMR 1149, Paris Diderot University, 100, Bd du Général Leclerc, 92110, Clichy, France
284 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...