Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10

AUTHORS

Andreas Wibmer, Hedvig Hricak, Tatsuo Gondo, Kazuhiro Matsumoto, Harini Veeraraghavan, Duc Fehr, Junting Zheng, Debra Goldman, Chaya Moskowitz, Samson W. Fine, Victor E. Reuter, James Eastham, Evis Sala, Hebert Alberto Vargas

ABSTRACT

OBJECTIVES: To investigate Haralick texture analysis of prostate MRI for cancer detection and differentiating Gleason scores (GS). METHODS: One hundred and forty-seven patients underwent T2- weighted (T2WI) and diffusion-weighted prostate MRI. Cancers ≥0.5 ml and non-cancerous peripheral (PZ) and transition (TZ) zone tissue were identified on T2WI and apparent diffusion coefficient (ADC) maps, using whole-mount pathology as reference. Texture features (Energy, Entropy, Correlation, Homogeneity, Inertia) were extracted and analysed using generalized estimating equations. RESULTS: PZ cancers (n = 143) showed higher Entropy and Inertia and lower Energy, Correlation and Homogeneity compared to non-cancerous tissue on T2WI and ADC maps (p-values: <.0001-0.008). In TZ cancers (n = 43) we observed significant differences for all five texture features on the ADC map (all p-values: <.0001) and for Correlation (p = 0.041) and Inertia (p = 0.001) on T2WI. On ADC maps, GS was associated with higher Entropy (GS 6 vs. 7: p = 0.0225; 6 vs. >7: p = 0.0069) and lower Energy (GS 6 vs. 7: p = 0.0116, 6 vs. >7: p = 0.0039). ADC map Energy (p = 0.0102) and Entropy (p = 0.0019) were significantly different in GS ≤3 + 4 versus ≥4 + 3 cancers; ADC map Entropy remained significant after controlling for the median ADC (p = 0.0291). CONCLUSION: Several Haralick-based texture features appear useful for prostate cancer detection and GS assessment. KEY POINTS: • Several Haralick texture features may differentiate non-cancerous and cancerous prostate tissue. • Tumour Energy and Entropy on ADC maps correlate with Gleason score. • T2w-image-derived texture features are not associated with the Gleason score. More... »

PAGES

2840-2850

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-015-3701-8

DOI

http://dx.doi.org/10.1007/s00330-015-3701-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022449857

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25991476


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Grading", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wibmer", 
        "givenName": "Andreas", 
        "id": "sg:person.01274620217.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274620217.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hricak", 
        "givenName": "Hedvig", 
        "id": "sg:person.015142110417.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015142110417.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Urology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gondo", 
        "givenName": "Tatsuo", 
        "id": "sg:person.01046122403.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046122403.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Urology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsumoto", 
        "givenName": "Kazuhiro", 
        "id": "sg:person.0647271317.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647271317.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Veeraraghavan", 
        "givenName": "Harini", 
        "id": "sg:person.0742526216.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742526216.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fehr", 
        "givenName": "Duc", 
        "id": "sg:person.012355043220.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012355043220.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Junting", 
        "id": "sg:person.0607345515.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607345515.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldman", 
        "givenName": "Debra", 
        "id": "sg:person.01223067666.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223067666.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moskowitz", 
        "givenName": "Chaya", 
        "id": "sg:person.012032456077.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012032456077.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fine", 
        "givenName": "Samson W.", 
        "id": "sg:person.011710216242.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011710216242.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reuter", 
        "givenName": "Victor E.", 
        "id": "sg:person.014005711417.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005711417.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Urology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eastham", 
        "givenName": "James", 
        "id": "sg:person.0712305046.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712305046.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sala", 
        "givenName": "Evis", 
        "id": "sg:person.01020541303.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020541303.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vargas", 
        "givenName": "Hebert Alberto", 
        "id": "sg:person.01177421777.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177421777.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1200/jco.2009.24.2180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002695176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11091409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006363582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2462070368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006743244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13130973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008646232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.24694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008899921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3367-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012255359", 
          "https://doi.org/10.1007/s00330-014-3367-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13130029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017221178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018417145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-5629(94)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023648104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crad.2008.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024071413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2461070057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024126515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2012.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031388899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.canep.2013.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034167732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.28790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035472381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.110.082404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040174324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13121454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041193948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-011-2377-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041692485", 
          "https://doi.org/10.1007/s00330-011-2377-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2013.09.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045734133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-189x(84)90197-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045892264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11102066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049636952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/57/12/3833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059029248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1979.11328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061444219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076945049", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bibe.2008.4696830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095223029"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "OBJECTIVES: To investigate Haralick texture analysis of prostate MRI for cancer detection and differentiating Gleason scores (GS).\nMETHODS: One hundred and forty-seven patients underwent T2- weighted (T2WI) and diffusion-weighted prostate MRI. Cancers \u22650.5\u00a0ml and non-cancerous peripheral (PZ) and transition (TZ) zone tissue were identified on T2WI and apparent diffusion coefficient (ADC) maps, using whole-mount pathology as reference. Texture features (Energy, Entropy, Correlation, Homogeneity, Inertia) were extracted and analysed using generalized estimating equations.\nRESULTS: PZ cancers (n\u2009=\u2009143) showed higher Entropy and Inertia and lower Energy, Correlation and Homogeneity compared to non-cancerous tissue on T2WI and ADC maps (p-values: <.0001-0.008). In TZ cancers (n\u2009=\u200943) we observed significant differences for all five texture features on the ADC map (all p-values: <.0001) and for Correlation (p\u2009=\u20090.041) and Inertia (p\u2009=\u20090.001) on T2WI. On ADC maps, GS was associated with higher Entropy (GS 6 vs. 7: p\u2009=\u20090.0225; 6 vs. >7: p\u2009=\u20090.0069) and lower Energy (GS 6 vs. 7: p\u2009=\u20090.0116, 6 vs. >7: p\u2009=\u20090.0039). ADC map Energy (p\u2009=\u20090.0102) and Entropy (p\u2009=\u20090.0019) were significantly different in GS \u22643\u2009+\u20094 versus \u22654\u2009+\u20093 cancers; ADC map Entropy remained significant after controlling for the median ADC (p\u2009=\u20090.0291).\nCONCLUSION: Several Haralick-based texture features appear useful for prostate cancer detection and GS assessment.\nKEY POINTS: \u2022 Several Haralick texture features may differentiate non-cancerous and cancerous prostate tissue. \u2022 Tumour Energy and Entropy on ADC maps correlate with Gleason score. \u2022 T2w-image-derived texture features are not associated with the Gleason score.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-015-3701-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438793", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores", 
    "pagination": "2840-2850", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6af49459b4afc74eb41978c6072a4a12085acc155800c65fda85e94a5b5bc17d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25991476"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-015-3701-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022449857"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-015-3701-8", 
      "https://app.dimensions.ai/details/publication/pub.1022449857"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-015-3701-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3701-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3701-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3701-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-015-3701-8'


 

This table displays all metadata directly associated to this object as RDF triples.

294 TRIPLES      21 PREDICATES      67 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-015-3701-8 schema:about N1dcdbdeca2464c3b81f931c37d462ae9
2 N1f4dcfd77c9044349ca6c718269e0708
3 N2be4f2a8b9274bcf86da2d80c5ec1463
4 N4bca6905f9f846d29713cac9660123f2
5 N5cd1f31893bc46309a927ea077537338
6 N801bd4e9cd134240b19ab3a68a19222c
7 N864a3ff7450147ab9713c8b150da4306
8 Na02621e5f10a400bb8073637ade76cf0
9 Naa6a660b2b8b480e942930b1dc1c91f8
10 Nab6ba30fc23a4cc0a61ad01432584c23
11 Naea5b890a57341659fc5bee2ae921c3c
12 Nbd36d663b3d64abfb9a276581e7d61aa
13 Nd09ff48411f7446db7ef0fc076841e2f
14 anzsrc-for:11
15 anzsrc-for:1112
16 schema:author Nf329a50537f64d1c9264636f6a531b5e
17 schema:citation sg:pub.10.1007/s00330-011-2377-y
18 sg:pub.10.1007/s00330-014-3367-7
19 https://app.dimensions.ai/details/publication/pub.1076945049
20 https://doi.org/10.1002/cncr.28790
21 https://doi.org/10.1002/jmri.23618
22 https://doi.org/10.1002/jmri.24694
23 https://doi.org/10.1016/0301-5629(94)90011-6
24 https://doi.org/10.1016/0734-189x(84)90197-x
25 https://doi.org/10.1016/j.canep.2013.04.002
26 https://doi.org/10.1016/j.crad.2008.02.001
27 https://doi.org/10.1016/j.eururo.2013.09.046
28 https://doi.org/10.1016/j.ijrobp.2012.10.017
29 https://doi.org/10.1088/0031-9155/57/12/3833
30 https://doi.org/10.1109/bibe.2008.4696830
31 https://doi.org/10.1109/proc.1979.11328
32 https://doi.org/10.1109/tsmc.1973.4309314
33 https://doi.org/10.1148/radiol.11091409
34 https://doi.org/10.1148/radiol.11102066
35 https://doi.org/10.1148/radiol.13121454
36 https://doi.org/10.1148/radiol.13130029
37 https://doi.org/10.1148/radiol.13130973
38 https://doi.org/10.1148/radiol.2461070057
39 https://doi.org/10.1148/radiol.2462070368
40 https://doi.org/10.1200/jco.2009.24.2180
41 https://doi.org/10.2967/jnumed.110.082404
42 schema:datePublished 2015-10
43 schema:datePublishedReg 2015-10-01
44 schema:description OBJECTIVES: To investigate Haralick texture analysis of prostate MRI for cancer detection and differentiating Gleason scores (GS). METHODS: One hundred and forty-seven patients underwent T2- weighted (T2WI) and diffusion-weighted prostate MRI. Cancers ≥0.5 ml and non-cancerous peripheral (PZ) and transition (TZ) zone tissue were identified on T2WI and apparent diffusion coefficient (ADC) maps, using whole-mount pathology as reference. Texture features (Energy, Entropy, Correlation, Homogeneity, Inertia) were extracted and analysed using generalized estimating equations. RESULTS: PZ cancers (n = 143) showed higher Entropy and Inertia and lower Energy, Correlation and Homogeneity compared to non-cancerous tissue on T2WI and ADC maps (p-values: <.0001-0.008). In TZ cancers (n = 43) we observed significant differences for all five texture features on the ADC map (all p-values: <.0001) and for Correlation (p = 0.041) and Inertia (p = 0.001) on T2WI. On ADC maps, GS was associated with higher Entropy (GS 6 vs. 7: p = 0.0225; 6 vs. >7: p = 0.0069) and lower Energy (GS 6 vs. 7: p = 0.0116, 6 vs. >7: p = 0.0039). ADC map Energy (p = 0.0102) and Entropy (p = 0.0019) were significantly different in GS ≤3 + 4 versus ≥4 + 3 cancers; ADC map Entropy remained significant after controlling for the median ADC (p = 0.0291). CONCLUSION: Several Haralick-based texture features appear useful for prostate cancer detection and GS assessment. KEY POINTS: • Several Haralick texture features may differentiate non-cancerous and cancerous prostate tissue. • Tumour Energy and Entropy on ADC maps correlate with Gleason score. • T2w-image-derived texture features are not associated with the Gleason score.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N823ea278a84a4545ad1445f7a143aa3e
49 Ndb9ad74dede94b8face994156be39a0a
50 sg:journal.1289120
51 schema:name Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores
52 schema:pagination 2840-2850
53 schema:productId N0cc67e76a5a6498baa928c222a77501e
54 N1db63d82c1fb4228a65b38550a32a099
55 N24e9a955bc434330b11f29331f85df11
56 N8a42ae76b36a413e8f1fc34ca2083411
57 Ne15d32f826cc4e7f8d4362e70c60ba1e
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022449857
59 https://doi.org/10.1007/s00330-015-3701-8
60 schema:sdDatePublished 2019-04-10T18:20
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N25052a0363be4181855d63153dcc2ef0
63 schema:url http://link.springer.com/10.1007%2Fs00330-015-3701-8
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0c7eb9c6dac24d50aa4dde557d42aac6 rdf:first sg:person.01046122403.23
68 rdf:rest N7ed5c3f8733043ca93932d55a725978b
69 N0cc67e76a5a6498baa928c222a77501e schema:name nlm_unique_id
70 schema:value 9114774
71 rdf:type schema:PropertyValue
72 N13d9f3e16b1943f680c5241db02b0fed rdf:first sg:person.012032456077.74
73 rdf:rest N9ab18dc439fa4c87a203592b61eb9c0e
74 N1db63d82c1fb4228a65b38550a32a099 schema:name dimensions_id
75 schema:value pub.1022449857
76 rdf:type schema:PropertyValue
77 N1dcdbdeca2464c3b81f931c37d462ae9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Middle Aged
79 rdf:type schema:DefinedTerm
80 N1f4dcfd77c9044349ca6c718269e0708 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Diffusion Magnetic Resonance Imaging
82 rdf:type schema:DefinedTerm
83 N24e9a955bc434330b11f29331f85df11 schema:name pubmed_id
84 schema:value 25991476
85 rdf:type schema:PropertyValue
86 N25052a0363be4181855d63153dcc2ef0 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N2be4f2a8b9274bcf86da2d80c5ec1463 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Tumor Burden
90 rdf:type schema:DefinedTerm
91 N2cde02e07ddf4974a7a5a111c5ec38ee rdf:first sg:person.0742526216.25
92 rdf:rest N4db508365ca34127bf2bcacbec48e947
93 N3cb1ccc4865048fab337cde762476e8e rdf:first sg:person.01223067666.11
94 rdf:rest N13d9f3e16b1943f680c5241db02b0fed
95 N4bca6905f9f846d29713cac9660123f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Diagnosis, Differential
97 rdf:type schema:DefinedTerm
98 N4db508365ca34127bf2bcacbec48e947 rdf:first sg:person.012355043220.74
99 rdf:rest N4fc4ae5a982d42e295aaeb1a60df801d
100 N4fc4ae5a982d42e295aaeb1a60df801d rdf:first sg:person.0607345515.51
101 rdf:rest N3cb1ccc4865048fab337cde762476e8e
102 N55a41fb3278e44a496a5a78dc15f601b rdf:first sg:person.014005711417.01
103 rdf:rest N8456dda7848b4f29a6f2273fdcd2750d
104 N5cd1f31893bc46309a927ea077537338 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Prostatic Neoplasms
106 rdf:type schema:DefinedTerm
107 N7ed5c3f8733043ca93932d55a725978b rdf:first sg:person.0647271317.87
108 rdf:rest N2cde02e07ddf4974a7a5a111c5ec38ee
109 N801bd4e9cd134240b19ab3a68a19222c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Aged
111 rdf:type schema:DefinedTerm
112 N823ea278a84a4545ad1445f7a143aa3e schema:issueNumber 10
113 rdf:type schema:PublicationIssue
114 N8456dda7848b4f29a6f2273fdcd2750d rdf:first sg:person.0712305046.96
115 rdf:rest Nfdc9bde684554eb48d03b6e68246576a
116 N864a3ff7450147ab9713c8b150da4306 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Prostatectomy
118 rdf:type schema:DefinedTerm
119 N8a42ae76b36a413e8f1fc34ca2083411 schema:name doi
120 schema:value 10.1007/s00330-015-3701-8
121 rdf:type schema:PropertyValue
122 N9ab18dc439fa4c87a203592b61eb9c0e rdf:first sg:person.011710216242.24
123 rdf:rest N55a41fb3278e44a496a5a78dc15f601b
124 Na02621e5f10a400bb8073637ade76cf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Neoplasm Grading
126 rdf:type schema:DefinedTerm
127 Naa6a660b2b8b480e942930b1dc1c91f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Retrospective Studies
129 rdf:type schema:DefinedTerm
130 Nab6ba30fc23a4cc0a61ad01432584c23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Humans
132 rdf:type schema:DefinedTerm
133 Naea5b890a57341659fc5bee2ae921c3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Adult
135 rdf:type schema:DefinedTerm
136 Nbd36d663b3d64abfb9a276581e7d61aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Male
138 rdf:type schema:DefinedTerm
139 Ncabb90c55160410498d271f4dec3a543 rdf:first sg:person.01177421777.26
140 rdf:rest rdf:nil
141 Nd09ff48411f7446db7ef0fc076841e2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Image Processing, Computer-Assisted
143 rdf:type schema:DefinedTerm
144 Ndb9ad74dede94b8face994156be39a0a schema:volumeNumber 25
145 rdf:type schema:PublicationVolume
146 Ne15d32f826cc4e7f8d4362e70c60ba1e schema:name readcube_id
147 schema:value 6af49459b4afc74eb41978c6072a4a12085acc155800c65fda85e94a5b5bc17d
148 rdf:type schema:PropertyValue
149 Nefc629fe56144d79b567b2495a15b675 rdf:first sg:person.015142110417.35
150 rdf:rest N0c7eb9c6dac24d50aa4dde557d42aac6
151 Nf329a50537f64d1c9264636f6a531b5e rdf:first sg:person.01274620217.54
152 rdf:rest Nefc629fe56144d79b567b2495a15b675
153 Nfdc9bde684554eb48d03b6e68246576a rdf:first sg:person.01020541303.04
154 rdf:rest Ncabb90c55160410498d271f4dec3a543
155 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
156 schema:name Medical and Health Sciences
157 rdf:type schema:DefinedTerm
158 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
159 schema:name Oncology and Carcinogenesis
160 rdf:type schema:DefinedTerm
161 sg:grant.2438793 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-015-3701-8
162 rdf:type schema:MonetaryGrant
163 sg:journal.1289120 schema:issn 0938-7994
164 1432-1084
165 schema:name European Radiology
166 rdf:type schema:Periodical
167 sg:person.01020541303.04 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
168 schema:familyName Sala
169 schema:givenName Evis
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020541303.04
171 rdf:type schema:Person
172 sg:person.01046122403.23 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
173 schema:familyName Gondo
174 schema:givenName Tatsuo
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046122403.23
176 rdf:type schema:Person
177 sg:person.011710216242.24 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
178 schema:familyName Fine
179 schema:givenName Samson W.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011710216242.24
181 rdf:type schema:Person
182 sg:person.01177421777.26 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
183 schema:familyName Vargas
184 schema:givenName Hebert Alberto
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177421777.26
186 rdf:type schema:Person
187 sg:person.012032456077.74 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
188 schema:familyName Moskowitz
189 schema:givenName Chaya
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012032456077.74
191 rdf:type schema:Person
192 sg:person.01223067666.11 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
193 schema:familyName Goldman
194 schema:givenName Debra
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223067666.11
196 rdf:type schema:Person
197 sg:person.012355043220.74 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
198 schema:familyName Fehr
199 schema:givenName Duc
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012355043220.74
201 rdf:type schema:Person
202 sg:person.01274620217.54 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
203 schema:familyName Wibmer
204 schema:givenName Andreas
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274620217.54
206 rdf:type schema:Person
207 sg:person.014005711417.01 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
208 schema:familyName Reuter
209 schema:givenName Victor E.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005711417.01
211 rdf:type schema:Person
212 sg:person.015142110417.35 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
213 schema:familyName Hricak
214 schema:givenName Hedvig
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015142110417.35
216 rdf:type schema:Person
217 sg:person.0607345515.51 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
218 schema:familyName Zheng
219 schema:givenName Junting
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607345515.51
221 rdf:type schema:Person
222 sg:person.0647271317.87 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
223 schema:familyName Matsumoto
224 schema:givenName Kazuhiro
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647271317.87
226 rdf:type schema:Person
227 sg:person.0712305046.96 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
228 schema:familyName Eastham
229 schema:givenName James
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712305046.96
231 rdf:type schema:Person
232 sg:person.0742526216.25 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
233 schema:familyName Veeraraghavan
234 schema:givenName Harini
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742526216.25
236 rdf:type schema:Person
237 sg:pub.10.1007/s00330-011-2377-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041692485
238 https://doi.org/10.1007/s00330-011-2377-y
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/s00330-014-3367-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012255359
241 https://doi.org/10.1007/s00330-014-3367-7
242 rdf:type schema:CreativeWork
243 https://app.dimensions.ai/details/publication/pub.1076945049 schema:CreativeWork
244 https://doi.org/10.1002/cncr.28790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035472381
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1002/jmri.23618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018417145
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1002/jmri.24694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008899921
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/0301-5629(94)90011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023648104
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/0734-189x(84)90197-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045892264
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.canep.2013.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034167732
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.crad.2008.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024071413
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.eururo.2013.09.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045734133
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.ijrobp.2012.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031388899
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1088/0031-9155/57/12/3833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029248
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1109/bibe.2008.4696830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095223029
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1109/proc.1979.11328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061444219
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1148/radiol.11091409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006363582
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1148/radiol.11102066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049636952
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1148/radiol.13121454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041193948
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1148/radiol.13130029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017221178
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1148/radiol.13130973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008646232
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1148/radiol.2461070057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024126515
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1148/radiol.2462070368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006743244
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1200/jco.2009.24.2180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002695176
285 rdf:type schema:CreativeWork
286 https://doi.org/10.2967/jnumed.110.082404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040174324
287 rdf:type schema:CreativeWork
288 https://www.grid.ac/institutes/grid.51462.34 schema:alternateName Memorial Sloan Kettering Cancer Center
289 schema:name Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA
290 Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA
291 Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA
292 Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA
293 Department of Urology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York City, NY, USA
294 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...