Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12-14

AUTHORS

B. Henninger, H. Zoller, S. Rauch, M. Schocke, S. Kannengiesser, X. Zhong, G. Reiter, W. Jaschke, C. Kremser

ABSTRACT

ObjectivesTo evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference.MethodsOne hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (“screening” sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland–Altman plots were generated and correlation coefficients were calculated to compare the sequences.ResultsThe screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland–Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement.ConclusionsThe screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods.Key points• MRI plays a major role in the clarification of diffuse liver disease.• The screening sequence was introduced for the assessment of diffuse liver disease.• It is a fast and automated algorithm for the evaluation of hepatic iron and fat.• It is capable of estimating the amount of hepatic fat and iron. More... »

PAGES

1356-1365

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-014-3528-8

DOI

http://dx.doi.org/10.1007/s00330-014-3528-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013222107

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25501270


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Siderosis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5361.1", 
          "name": [
            "Department of Radiology, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henninger", 
        "givenName": "B.", 
        "id": "sg:person.0755772617.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755772617.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5361.1", 
          "name": [
            "Department of Internal Medicine, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zoller", 
        "givenName": "H.", 
        "id": "sg:person.01074611154.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074611154.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5361.1", 
          "name": [
            "Department of Radiology, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rauch", 
        "givenName": "S.", 
        "id": "sg:person.01276766444.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276766444.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5361.1", 
          "name": [
            "Department of Radiology, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schocke", 
        "givenName": "M.", 
        "id": "sg:person.01176364136.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176364136.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR Applications Development, Siemens AG, Healthcare Sector, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "MR Applications Development, Siemens AG, Healthcare Sector, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kannengiesser", 
        "givenName": "S.", 
        "id": "sg:person.01355215330.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355215330.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "X.", 
        "id": "sg:person.01164762625.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164762625.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MR R&D Collaborations, Siemens AG, Healthcare Sector, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.426094.d", 
          "name": [
            "MR R&D Collaborations, Siemens AG, Healthcare Sector, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reiter", 
        "givenName": "G.", 
        "id": "sg:person.01024403610.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024403610.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5361.1", 
          "name": [
            "Department of Radiology, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaschke", 
        "givenName": "W.", 
        "id": "sg:person.0720776275.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720776275.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5361.1", 
          "name": [
            "Department of Radiology, Medical University of Innsbruck, Anichstra\u00dfe 35, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kremser", 
        "givenName": "C.", 
        "id": "sg:person.0660266326.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660266326.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1012295615144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050871662", 
          "https://doi.org/10.1023/a:1012295615144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-013-2829-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031063398", 
          "https://doi.org/10.1007/s00330-013-2829-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2506-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020522015", 
          "https://doi.org/10.1007/s00330-012-2506-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-010-1596-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015255205", 
          "https://doi.org/10.1007/s00247-010-1596-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2745-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035001840", 
          "https://doi.org/10.1007/s00330-012-2745-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014582441", 
          "https://doi.org/10.1186/1471-2105-12-77"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12-14", 
    "datePublishedReg": "2014-12-14", 
    "description": "ObjectivesTo evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference.MethodsOne hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (\u201cscreening\u201d sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland\u2013Altman plots were generated and correlation coefficients were calculated to compare the sequences.ResultsThe screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r\u2009=\u20090.988). A slightly lower correlation (r\u2009=\u20090.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland\u2013Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement.ConclusionsThe screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods.Key points\u2022 MRI plays a major role in the clarification of diffuse liver disease.\u2022 The screening sequence was introduced for the assessment of diffuse liver disease.\u2022 It is a fast and automated algorithm for the evaluation of hepatic iron and fat.\u2022 It is capable of estimating the amount of hepatic fat and iron.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-014-3528-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "diffuse liver disease", 
      "liver disease", 
      "hepatic fat", 
      "hepatic iron", 
      "predominant liver disease", 
      "Bland-Altman plots", 
      "prospective study", 
      "hepatic steatosis", 
      "MethodsOne hundred", 
      "screening sequence", 
      "phase gradient echo", 
      "MRI protocol", 
      "fat fraction values", 
      "disease", 
      "Bland-Altman", 
      "patients", 
      "fat fraction", 
      "fat", 
      "fast diagnosis", 
      "two-point Dixon", 
      "standard sequence", 
      "echo sequence", 
      "gradient echo", 
      "siderosis", 
      "steatosis", 
      "major role", 
      "ObjectivesTo", 
      "diagnosis", 
      "MRI", 
      "correlation coefficient", 
      "evaluation", 
      "standard methods", 
      "low correlation", 
      "correlation", 
      "fraction values", 
      "assessment", 
      "high variability", 
      "study", 
      "protocol", 
      "role", 
      "relaxometry", 
      "Dixon", 
      "two-point Dixon reconstruction", 
      "values", 
      "iron", 
      "reconstruction", 
      "combination", 
      "echoes", 
      "promising method", 
      "amount", 
      "detection", 
      "clarification", 
      "quantification", 
      "fraction", 
      "Dixon reconstruction", 
      "method", 
      "comparison", 
      "variability", 
      "sequence", 
      "flashes", 
      "low R2", 
      "discrimination algorithm", 
      "R2", 
      "reference", 
      "phase", 
      "hundreds", 
      "agreement", 
      "coefficient", 
      "plots", 
      "algorithm"
    ], 
    "name": "Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences", 
    "pagination": "1356-1365", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013222107"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-014-3528-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25501270"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-014-3528-8", 
      "https://app.dimensions.ai/details/publication/pub.1013222107"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_641.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-014-3528-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3528-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3528-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3528-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3528-8'


 

This table displays all metadata directly associated to this object as RDF triples.

278 TRIPLES      21 PREDICATES      115 URIs      101 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-014-3528-8 schema:about N029b486918604e2b95735ae512a4814d
2 N37c3f1c139bf4c27b957d44b59af344d
3 N444b89309f2e4b58a597eaeba6c18418
4 N573856c04976443da44a8bfe00ba033e
5 N590a8c7d74644e7da5830c38ca408cbb
6 N6caf57b57eb94cbd9447212375927e00
7 N969f24ca20454bea8d06e9e37e5d4e68
8 Ncc20f70bcec14e95a224bdd324874d59
9 Nd119f72229a147b5ade19d90bbb55739
10 Ndf0b997114a0490994415cac9d87e747
11 Nf3ed6cb45d754c3c897fd927763cc3e4
12 Nf77e1b7bd2334b5c88d9ed441d0e6839
13 Nf99c9e828f9b4b16ad378a992bd5b3d2
14 Nfc1a654c6dfb447cad3641db3027ce1b
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author N8bef64c010e14b439bd8357845190878
18 schema:citation sg:pub.10.1007/s00247-010-1596-8
19 sg:pub.10.1007/s00330-012-2506-2
20 sg:pub.10.1007/s00330-012-2745-2
21 sg:pub.10.1007/s00330-013-2829-7
22 sg:pub.10.1023/a:1012295615144
23 sg:pub.10.1186/1471-2105-12-77
24 schema:datePublished 2014-12-14
25 schema:datePublishedReg 2014-12-14
26 schema:description ObjectivesTo evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference.MethodsOne hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (“screening” sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland–Altman plots were generated and correlation coefficients were calculated to compare the sequences.ResultsThe screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland–Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement.ConclusionsThe screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods.Key points• MRI plays a major role in the clarification of diffuse liver disease.• The screening sequence was introduced for the assessment of diffuse liver disease.• It is a fast and automated algorithm for the evaluation of hepatic iron and fat.• It is capable of estimating the amount of hepatic fat and iron.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf N416cb5d514f14394a71fe60c0aa721f4
30 N791e726ec3ec4a76b66ef27fd961d798
31 sg:journal.1289120
32 schema:keywords Bland-Altman
33 Bland-Altman plots
34 Dixon
35 Dixon reconstruction
36 MRI
37 MRI protocol
38 MethodsOne hundred
39 ObjectivesTo
40 R2
41 agreement
42 algorithm
43 amount
44 assessment
45 clarification
46 coefficient
47 combination
48 comparison
49 correlation
50 correlation coefficient
51 detection
52 diagnosis
53 diffuse liver disease
54 discrimination algorithm
55 disease
56 echo sequence
57 echoes
58 evaluation
59 fast diagnosis
60 fat
61 fat fraction
62 fat fraction values
63 flashes
64 fraction
65 fraction values
66 gradient echo
67 hepatic fat
68 hepatic iron
69 hepatic steatosis
70 high variability
71 hundreds
72 iron
73 liver disease
74 low R2
75 low correlation
76 major role
77 method
78 patients
79 phase
80 phase gradient echo
81 plots
82 predominant liver disease
83 promising method
84 prospective study
85 protocol
86 quantification
87 reconstruction
88 reference
89 relaxometry
90 role
91 screening sequence
92 sequence
93 siderosis
94 standard methods
95 standard sequence
96 steatosis
97 study
98 two-point Dixon
99 two-point Dixon reconstruction
100 values
101 variability
102 schema:name Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences
103 schema:pagination 1356-1365
104 schema:productId N2a6db94d9b2447ea9a652401145d90d7
105 N2f1b06390a014807891471d7af72094b
106 N5ee1371b0b48451faaae0379b6f8c4a5
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013222107
108 https://doi.org/10.1007/s00330-014-3528-8
109 schema:sdDatePublished 2022-08-04T17:03
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N57be40700c2a4f52abc3d5f4e78c9625
112 schema:url https://doi.org/10.1007/s00330-014-3528-8
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N029b486918604e2b95735ae512a4814d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Humans
118 rdf:type schema:DefinedTerm
119 N067b5e5b06dd418ab25952e427f1d2d9 rdf:first sg:person.01276766444.74
120 rdf:rest N55a6ec07c90a47a0a3aaf6877c0768ea
121 N184226a730174173bf543bcd7ee0b371 rdf:first sg:person.0720776275.29
122 rdf:rest N54f7ee074cec4524b5e8895be6aa8602
123 N2a6db94d9b2447ea9a652401145d90d7 schema:name doi
124 schema:value 10.1007/s00330-014-3528-8
125 rdf:type schema:PropertyValue
126 N2f1b06390a014807891471d7af72094b schema:name dimensions_id
127 schema:value pub.1013222107
128 rdf:type schema:PropertyValue
129 N37c3f1c139bf4c27b957d44b59af344d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Siderosis
131 rdf:type schema:DefinedTerm
132 N416cb5d514f14394a71fe60c0aa721f4 schema:volumeNumber 25
133 rdf:type schema:PublicationVolume
134 N444b89309f2e4b58a597eaeba6c18418 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Imaging, Three-Dimensional
136 rdf:type schema:DefinedTerm
137 N54f7ee074cec4524b5e8895be6aa8602 rdf:first sg:person.0660266326.16
138 rdf:rest rdf:nil
139 N55a6ec07c90a47a0a3aaf6877c0768ea rdf:first sg:person.01176364136.40
140 rdf:rest Nc400588374904da996043c4c0994e4f9
141 N573856c04976443da44a8bfe00ba033e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Liver
143 rdf:type schema:DefinedTerm
144 N57be40700c2a4f52abc3d5f4e78c9625 schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 N590a8c7d74644e7da5830c38ca408cbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Aged
148 rdf:type schema:DefinedTerm
149 N5ee1371b0b48451faaae0379b6f8c4a5 schema:name pubmed_id
150 schema:value 25501270
151 rdf:type schema:PropertyValue
152 N6caf57b57eb94cbd9447212375927e00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Magnetic Resonance Imaging
154 rdf:type schema:DefinedTerm
155 N791e726ec3ec4a76b66ef27fd961d798 schema:issueNumber 5
156 rdf:type schema:PublicationIssue
157 N8bef64c010e14b439bd8357845190878 rdf:first sg:person.0755772617.78
158 rdf:rest Ne681bdc063b14426891b2ed2f221bd20
159 N969f24ca20454bea8d06e9e37e5d4e68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Algorithms
161 rdf:type schema:DefinedTerm
162 Nb9c7267ff9104be0841c633252d07fee rdf:first sg:person.01164762625.79
163 rdf:rest Nf0a7cb1faa3b4dc0985f8bcdefc08b0e
164 Nc400588374904da996043c4c0994e4f9 rdf:first sg:person.01355215330.15
165 rdf:rest Nb9c7267ff9104be0841c633252d07fee
166 Ncc20f70bcec14e95a224bdd324874d59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Fatty Liver
168 rdf:type schema:DefinedTerm
169 Nd119f72229a147b5ade19d90bbb55739 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Male
171 rdf:type schema:DefinedTerm
172 Ndf0b997114a0490994415cac9d87e747 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Image Processing, Computer-Assisted
174 rdf:type schema:DefinedTerm
175 Ne681bdc063b14426891b2ed2f221bd20 rdf:first sg:person.01074611154.49
176 rdf:rest N067b5e5b06dd418ab25952e427f1d2d9
177 Nf0a7cb1faa3b4dc0985f8bcdefc08b0e rdf:first sg:person.01024403610.32
178 rdf:rest N184226a730174173bf543bcd7ee0b371
179 Nf3ed6cb45d754c3c897fd927763cc3e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Adult
181 rdf:type schema:DefinedTerm
182 Nf77e1b7bd2334b5c88d9ed441d0e6839 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Middle Aged
184 rdf:type schema:DefinedTerm
185 Nf99c9e828f9b4b16ad378a992bd5b3d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Prospective Studies
187 rdf:type schema:DefinedTerm
188 Nfc1a654c6dfb447cad3641db3027ce1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Female
190 rdf:type schema:DefinedTerm
191 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
192 schema:name Medical and Health Sciences
193 rdf:type schema:DefinedTerm
194 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
195 schema:name Clinical Sciences
196 rdf:type schema:DefinedTerm
197 sg:journal.1289120 schema:issn 0938-7994
198 1432-1084
199 schema:name European Radiology
200 schema:publisher Springer Nature
201 rdf:type schema:Periodical
202 sg:person.01024403610.32 schema:affiliation grid-institutes:grid.426094.d
203 schema:familyName Reiter
204 schema:givenName G.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024403610.32
206 rdf:type schema:Person
207 sg:person.01074611154.49 schema:affiliation grid-institutes:grid.5361.1
208 schema:familyName Zoller
209 schema:givenName H.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074611154.49
211 rdf:type schema:Person
212 sg:person.01164762625.79 schema:affiliation grid-institutes:None
213 schema:familyName Zhong
214 schema:givenName X.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164762625.79
216 rdf:type schema:Person
217 sg:person.01176364136.40 schema:affiliation grid-institutes:grid.5361.1
218 schema:familyName Schocke
219 schema:givenName M.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176364136.40
221 rdf:type schema:Person
222 sg:person.01276766444.74 schema:affiliation grid-institutes:grid.5361.1
223 schema:familyName Rauch
224 schema:givenName S.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276766444.74
226 rdf:type schema:Person
227 sg:person.01355215330.15 schema:affiliation grid-institutes:grid.5406.7
228 schema:familyName Kannengiesser
229 schema:givenName S.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355215330.15
231 rdf:type schema:Person
232 sg:person.0660266326.16 schema:affiliation grid-institutes:grid.5361.1
233 schema:familyName Kremser
234 schema:givenName C.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660266326.16
236 rdf:type schema:Person
237 sg:person.0720776275.29 schema:affiliation grid-institutes:grid.5361.1
238 schema:familyName Jaschke
239 schema:givenName W.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720776275.29
241 rdf:type schema:Person
242 sg:person.0755772617.78 schema:affiliation grid-institutes:grid.5361.1
243 schema:familyName Henninger
244 schema:givenName B.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755772617.78
246 rdf:type schema:Person
247 sg:pub.10.1007/s00247-010-1596-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015255205
248 https://doi.org/10.1007/s00247-010-1596-8
249 rdf:type schema:CreativeWork
250 sg:pub.10.1007/s00330-012-2506-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020522015
251 https://doi.org/10.1007/s00330-012-2506-2
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s00330-012-2745-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035001840
254 https://doi.org/10.1007/s00330-012-2745-2
255 rdf:type schema:CreativeWork
256 sg:pub.10.1007/s00330-013-2829-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031063398
257 https://doi.org/10.1007/s00330-013-2829-7
258 rdf:type schema:CreativeWork
259 sg:pub.10.1023/a:1012295615144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050871662
260 https://doi.org/10.1023/a:1012295615144
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/1471-2105-12-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014582441
263 https://doi.org/10.1186/1471-2105-12-77
264 rdf:type schema:CreativeWork
265 grid-institutes:None schema:alternateName MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, USA
266 schema:name MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, USA
267 rdf:type schema:Organization
268 grid-institutes:grid.426094.d schema:alternateName MR R&D Collaborations, Siemens AG, Healthcare Sector, Graz, Austria
269 schema:name MR R&D Collaborations, Siemens AG, Healthcare Sector, Graz, Austria
270 rdf:type schema:Organization
271 grid-institutes:grid.5361.1 schema:alternateName Department of Internal Medicine, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
272 Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
273 schema:name Department of Internal Medicine, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
274 Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
275 rdf:type schema:Organization
276 grid-institutes:grid.5406.7 schema:alternateName MR Applications Development, Siemens AG, Healthcare Sector, Erlangen, Germany
277 schema:name MR Applications Development, Siemens AG, Healthcare Sector, Erlangen, Germany
278 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...