Persistent pulmonary subsolid nodules: model-based iterative reconstruction for nodule classification and measurement variability on low-dose CT View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-11

AUTHORS

Hyungjin Kim, Chang Min Park, Seong Ho Kim, Sang Min Lee, Sang Joon Park, Kyung Hee Lee, Jin Mo Goo

ABSTRACT

OBJECTIVES: To compare the pulmonary subsolid nodule (SSN) classification agreement and measurement variability between filtered back projection (FBP) and model-based iterative reconstruction (MBIR). METHODS: Low-dose CTs were reconstructed using FBP and MBIR for 47 patients with 47 SSNs. Two readers independently classified SSNs into pure or part-solid ground-glass nodules, and measured the size of the whole nodule and solid portion twice on both reconstruction algorithms. Nodule classification agreement was analyzed using Cohen's kappa and compared between reconstruction algorithms using McNemar's test. Measurement variability was investigated using Bland-Altman analysis and compared with the paired t-test. RESULTS: Cohen's kappa for inter-reader SSN classification agreement was 0.541-0.662 on FBP and 0.778-0.866 on MBIR. Between the two readers, nodule classification was consistent in 79.8 % (75/94) with FBP and 91.5 % (86/94) with MBIR (p = 0.027). Inter-reader measurement variability range was -5.0-2.1 mm on FBP and -3.3-1.8 mm on MBIR for whole nodule size, and was -6.5-0.9 mm on FBP and -5.5-1.5 mm on MBIR for solid portion size. Inter-reader measurement differences were significantly smaller on MBIR (p = 0.027, whole nodule; p = 0.011, solid portion). CONCLUSIONS: MBIR significantly improved SSN classification agreement and reduced measurement variability of both whole nodules and solid portions between readers. KEY POINTS: • Low-dose CT using MBIR algorithm improves reproducibility in the classification of SSNs. • MBIR would enable more confident clinical planning according to the SSN type. • Reduced measurement variability on MBIR allows earlier detection of potentially malignant nodules. More... »

PAGES

2700-2708

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-014-3306-7

DOI

http://dx.doi.org/10.1007/s00330-014-3306-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009320913

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25038857


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dose-Response Relationship, Radiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multiple Pulmonary Nodules", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation Dosage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyungjin", 
        "id": "sg:person.0663773004.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663773004.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea", 
            "Cancer Research Institute, Seoul National University, 101, Daehangno, Jongno-gu, 110-744, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Chang Min", 
        "id": "sg:person.01111565227.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111565227.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seong Ho", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang Min", 
        "id": "sg:person.01315300754.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea", 
            "Cancer Research Institute, Seoul National University, 101, Daehangno, Jongno-gu, 110-744, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sang Joon", 
        "id": "sg:person.0646222154.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kyung Hee", 
        "id": "sg:person.01036517050.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036517050.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea", 
            "Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea", 
            "Cancer Research Institute, Seoul National University, 101, Daehangno, Jongno-gu, 110-744, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goo", 
        "givenName": "Jin Mo", 
        "id": "sg:person.01351124710.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351124710.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/rti.0b013e3182688d62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002827972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e3182688d62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002827972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0b013e3182688d62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002827972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-1801-2-209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009859963", 
          "https://doi.org/10.1186/2193-1801-2-209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10100047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010014409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.11-2501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010539028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2011.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012322862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13120949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012912111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1102873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020569420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1378/chest.12-2987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021264531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2765-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022014391", 
          "https://doi.org/10.1007/s00330-012-2765-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023643363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31827efc3a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025755388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31827efc3a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025755388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/rg.272065061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026829792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032444645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2452-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032452194", 
          "https://doi.org/10.1007/s00330-012-2452-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13130209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039363491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040631948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041317307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182899104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045321990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182899104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045321990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1699-0463.1989.tb00464.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047556192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1699-0463.1989.tb00464.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047556192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.13130002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053494421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182562a89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060344152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182562a89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060344152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e3182562a89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060344152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/096228099673819272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.12.9424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.178.5.1781053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069324682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5152/dir.2013.13223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072632785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5152/dir.2014.13401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072632826"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11", 
    "datePublishedReg": "2014-11-01", 
    "description": "OBJECTIVES: To compare the pulmonary subsolid nodule (SSN) classification agreement and measurement variability between filtered back projection (FBP) and model-based iterative reconstruction (MBIR).\nMETHODS: Low-dose CTs were reconstructed using FBP and MBIR for 47 patients with 47 SSNs. Two readers independently classified SSNs into pure or part-solid ground-glass nodules, and measured the size of the whole nodule and solid portion twice on both reconstruction algorithms. Nodule classification agreement was analyzed using Cohen's kappa and compared between reconstruction algorithms using McNemar's test. Measurement variability was investigated using Bland-Altman analysis and compared with the paired t-test.\nRESULTS: Cohen's kappa for inter-reader SSN classification agreement was 0.541-0.662 on FBP and 0.778-0.866 on MBIR. Between the two readers, nodule classification was consistent in 79.8 % (75/94) with FBP and 91.5 % (86/94) with MBIR (p\u2009=\u20090.027). Inter-reader measurement variability range was -5.0-2.1 mm on FBP and -3.3-1.8 mm on MBIR for whole nodule size, and was -6.5-0.9 mm on FBP and -5.5-1.5 mm on MBIR for solid portion size. Inter-reader measurement differences were significantly smaller on MBIR (p\u2009=\u20090.027, whole nodule; p\u2009=\u20090.011, solid portion).\nCONCLUSIONS: MBIR significantly improved SSN classification agreement and reduced measurement variability of both whole nodules and solid portions between readers.\nKEY POINTS: \u2022 Low-dose CT using MBIR algorithm improves reproducibility in the classification of SSNs. \u2022 MBIR would enable more confident clinical planning according to the SSN type. \u2022 Reduced measurement variability on MBIR allows earlier detection of potentially malignant nodules.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-014-3306-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Persistent pulmonary subsolid nodules: model-based iterative reconstruction for nodule classification and measurement variability on low-dose CT", 
    "pagination": "2700-2708", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c66e4d6b1f14330b28a4579c06a1c0e49d608d11e5acf30bbb0d287d42ac39a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25038857"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-014-3306-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009320913"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-014-3306-7", 
      "https://app.dimensions.ai/details/publication/pub.1009320913"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00330-014-3306-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3306-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3306-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3306-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3306-7'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      70 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-014-3306-7 schema:about N0789e3d87e5b4ffb9283ab6fccefe791
2 N23b1225ff9804ef99b7ed5c5ac2ef5f9
3 N276dc4b311654a3cb3436cd49cffbe03
4 N6f91df66c5c440378f7aa0b82dfb602a
5 N729e8ee5997e4deb90019334a129d624
6 N74f189c18ba645f1967590da9dfafc8a
7 N788536ef96234f9bbde7b52664309492
8 N7a3c4454a552453e8cc67b6375c83a6c
9 N7bd880f3261b448bb8ae3486c30604e6
10 N7de552f0d42d40119740642bb4ba1964
11 N81961a819d454d019fd3b087983846c0
12 N9b1c629c38164a2f8c282f72329d9b96
13 Nae68cb8eba1d4c44abcbc3aa662003fa
14 Nba6f7ec26f91473b9c9d52e1a1ddd1a7
15 anzsrc-for:11
16 anzsrc-for:1102
17 schema:author N6a3bac2c92af471d973205b544762028
18 schema:citation sg:pub.10.1007/s00330-012-2452-z
19 sg:pub.10.1007/s00330-012-2765-y
20 sg:pub.10.1186/2193-1801-2-209
21 https://doi.org/10.1016/j.acra.2011.12.002
22 https://doi.org/10.1016/j.ejrad.2012.11.004
23 https://doi.org/10.1056/nejmoa1102873
24 https://doi.org/10.1097/rli.0b013e3182562a89
25 https://doi.org/10.1097/rli.0b013e31827efc3a
26 https://doi.org/10.1097/rli.0b013e3182899104
27 https://doi.org/10.1097/rti.0b013e3182688d62
28 https://doi.org/10.1111/j.1699-0463.1989.tb00464.x
29 https://doi.org/10.1148/radiol.09090571
30 https://doi.org/10.1148/radiol.10100047
31 https://doi.org/10.1148/radiol.12120240
32 https://doi.org/10.1148/radiol.12120628
33 https://doi.org/10.1148/radiol.13120949
34 https://doi.org/10.1148/radiol.13130002
35 https://doi.org/10.1148/radiol.13130209
36 https://doi.org/10.1148/rg.272065061
37 https://doi.org/10.1191/096228099673819272
38 https://doi.org/10.1378/chest.11-2501
39 https://doi.org/10.1378/chest.12-2987
40 https://doi.org/10.2214/ajr.12.9382
41 https://doi.org/10.2214/ajr.12.9424
42 https://doi.org/10.2214/ajr.178.5.1781053
43 https://doi.org/10.5152/dir.2013.13223
44 https://doi.org/10.5152/dir.2014.13401
45 schema:datePublished 2014-11
46 schema:datePublishedReg 2014-11-01
47 schema:description OBJECTIVES: To compare the pulmonary subsolid nodule (SSN) classification agreement and measurement variability between filtered back projection (FBP) and model-based iterative reconstruction (MBIR). METHODS: Low-dose CTs were reconstructed using FBP and MBIR for 47 patients with 47 SSNs. Two readers independently classified SSNs into pure or part-solid ground-glass nodules, and measured the size of the whole nodule and solid portion twice on both reconstruction algorithms. Nodule classification agreement was analyzed using Cohen's kappa and compared between reconstruction algorithms using McNemar's test. Measurement variability was investigated using Bland-Altman analysis and compared with the paired t-test. RESULTS: Cohen's kappa for inter-reader SSN classification agreement was 0.541-0.662 on FBP and 0.778-0.866 on MBIR. Between the two readers, nodule classification was consistent in 79.8 % (75/94) with FBP and 91.5 % (86/94) with MBIR (p = 0.027). Inter-reader measurement variability range was -5.0-2.1 mm on FBP and -3.3-1.8 mm on MBIR for whole nodule size, and was -6.5-0.9 mm on FBP and -5.5-1.5 mm on MBIR for solid portion size. Inter-reader measurement differences were significantly smaller on MBIR (p = 0.027, whole nodule; p = 0.011, solid portion). CONCLUSIONS: MBIR significantly improved SSN classification agreement and reduced measurement variability of both whole nodules and solid portions between readers. KEY POINTS: • Low-dose CT using MBIR algorithm improves reproducibility in the classification of SSNs. • MBIR would enable more confident clinical planning according to the SSN type. • Reduced measurement variability on MBIR allows earlier detection of potentially malignant nodules.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf Nbd1452a2a81c40bf87412c1b6c6695d0
52 Ndc177ea70a894271ae69c9ee5d5a8aed
53 sg:journal.1289120
54 schema:name Persistent pulmonary subsolid nodules: model-based iterative reconstruction for nodule classification and measurement variability on low-dose CT
55 schema:pagination 2700-2708
56 schema:productId N28ced0afb5164c7480b326d0da064a27
57 N5b612618f3034625892c1161bfc771f4
58 N77db41d3aeae41a5b24ea6c00319e6e3
59 N97704c3d5fdf463e9de369c9f63017b6
60 Nf11aec1725634a138f53ca37193de5a9
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009320913
62 https://doi.org/10.1007/s00330-014-3306-7
63 schema:sdDatePublished 2019-04-10T17:25
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nf55ee980e7894ae28c0903ef3a7caf67
66 schema:url http://link.springer.com/10.1007/s00330-014-3306-7
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0789e3d87e5b4ffb9283ab6fccefe791 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Radiation Dosage
72 rdf:type schema:DefinedTerm
73 N228a54d783db441bb5133290a43f5759 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
74 schema:familyName Kim
75 schema:givenName Seong Ho
76 rdf:type schema:Person
77 N23b1225ff9804ef99b7ed5c5ac2ef5f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name ROC Curve
79 rdf:type schema:DefinedTerm
80 N276dc4b311654a3cb3436cd49cffbe03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Female
82 rdf:type schema:DefinedTerm
83 N28ced0afb5164c7480b326d0da064a27 schema:name readcube_id
84 schema:value 2c66e4d6b1f14330b28a4579c06a1c0e49d608d11e5acf30bbb0d287d42ac39a
85 rdf:type schema:PropertyValue
86 N4251717d93f04097a048f4a807e0f3f8 rdf:first sg:person.01111565227.56
87 rdf:rest Nfa5bfcfa732f416ba0d92478a3267549
88 N5b612618f3034625892c1161bfc771f4 schema:name doi
89 schema:value 10.1007/s00330-014-3306-7
90 rdf:type schema:PropertyValue
91 N6a3bac2c92af471d973205b544762028 rdf:first sg:person.0663773004.19
92 rdf:rest N4251717d93f04097a048f4a807e0f3f8
93 N6f91df66c5c440378f7aa0b82dfb602a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Retrospective Studies
95 rdf:type schema:DefinedTerm
96 N729e8ee5997e4deb90019334a129d624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Male
98 rdf:type schema:DefinedTerm
99 N74f189c18ba645f1967590da9dfafc8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Radiographic Image Enhancement
101 rdf:type schema:DefinedTerm
102 N77db41d3aeae41a5b24ea6c00319e6e3 schema:name pubmed_id
103 schema:value 25038857
104 rdf:type schema:PropertyValue
105 N788536ef96234f9bbde7b52664309492 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Humans
107 rdf:type schema:DefinedTerm
108 N7a3c4454a552453e8cc67b6375c83a6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Reproducibility of Results
110 rdf:type schema:DefinedTerm
111 N7bd880f3261b448bb8ae3486c30604e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Tomography, X-Ray Computed
113 rdf:type schema:DefinedTerm
114 N7de552f0d42d40119740642bb4ba1964 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Follow-Up Studies
116 rdf:type schema:DefinedTerm
117 N81961a819d454d019fd3b087983846c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Multiple Pulmonary Nodules
119 rdf:type schema:DefinedTerm
120 N97704c3d5fdf463e9de369c9f63017b6 schema:name dimensions_id
121 schema:value pub.1009320913
122 rdf:type schema:PropertyValue
123 N98d5ccb873df443ea212d23125e58ac3 rdf:first sg:person.0646222154.82
124 rdf:rest Nb186b48aa3ab4a8aaee4d975e2a7bbf7
125 N999717cadc4d4429b531e19cc5cfc512 rdf:first sg:person.01315300754.59
126 rdf:rest N98d5ccb873df443ea212d23125e58ac3
127 N9b10a6b159ac487ea762e5d5d4820ce5 rdf:first sg:person.01351124710.13
128 rdf:rest rdf:nil
129 N9b1c629c38164a2f8c282f72329d9b96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Algorithms
131 rdf:type schema:DefinedTerm
132 Nae68cb8eba1d4c44abcbc3aa662003fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Dose-Response Relationship, Radiation
134 rdf:type schema:DefinedTerm
135 Nb186b48aa3ab4a8aaee4d975e2a7bbf7 rdf:first sg:person.01036517050.42
136 rdf:rest N9b10a6b159ac487ea762e5d5d4820ce5
137 Nba6f7ec26f91473b9c9d52e1a1ddd1a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Middle Aged
139 rdf:type schema:DefinedTerm
140 Nbd1452a2a81c40bf87412c1b6c6695d0 schema:issueNumber 11
141 rdf:type schema:PublicationIssue
142 Ndc177ea70a894271ae69c9ee5d5a8aed schema:volumeNumber 24
143 rdf:type schema:PublicationVolume
144 Nf11aec1725634a138f53ca37193de5a9 schema:name nlm_unique_id
145 schema:value 9114774
146 rdf:type schema:PropertyValue
147 Nf55ee980e7894ae28c0903ef3a7caf67 schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Nfa5bfcfa732f416ba0d92478a3267549 rdf:first N228a54d783db441bb5133290a43f5759
150 rdf:rest N999717cadc4d4429b531e19cc5cfc512
151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
152 schema:name Medical and Health Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
155 schema:name Cardiorespiratory Medicine and Haematology
156 rdf:type schema:DefinedTerm
157 sg:journal.1289120 schema:issn 0938-7994
158 1432-1084
159 schema:name European Radiology
160 rdf:type schema:Periodical
161 sg:person.01036517050.42 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
162 schema:familyName Lee
163 schema:givenName Kyung Hee
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036517050.42
165 rdf:type schema:Person
166 sg:person.01111565227.56 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
167 schema:familyName Park
168 schema:givenName Chang Min
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111565227.56
170 rdf:type schema:Person
171 sg:person.01315300754.59 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
172 schema:familyName Lee
173 schema:givenName Sang Min
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315300754.59
175 rdf:type schema:Person
176 sg:person.01351124710.13 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
177 schema:familyName Goo
178 schema:givenName Jin Mo
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351124710.13
180 rdf:type schema:Person
181 sg:person.0646222154.82 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
182 schema:familyName Park
183 schema:givenName Sang Joon
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646222154.82
185 rdf:type schema:Person
186 sg:person.0663773004.19 schema:affiliation https://www.grid.ac/institutes/grid.412484.f
187 schema:familyName Kim
188 schema:givenName Hyungjin
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663773004.19
190 rdf:type schema:Person
191 sg:pub.10.1007/s00330-012-2452-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032452194
192 https://doi.org/10.1007/s00330-012-2452-z
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s00330-012-2765-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022014391
195 https://doi.org/10.1007/s00330-012-2765-y
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/2193-1801-2-209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009859963
198 https://doi.org/10.1186/2193-1801-2-209
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.acra.2011.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012322862
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.ejrad.2012.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032444645
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1056/nejmoa1102873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020569420
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1097/rli.0b013e3182562a89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060344152
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1097/rli.0b013e31827efc3a schema:sameAs https://app.dimensions.ai/details/publication/pub.1025755388
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1097/rli.0b013e3182899104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045321990
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1097/rti.0b013e3182688d62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002827972
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1111/j.1699-0463.1989.tb00464.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047556192
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1148/radiol.09090571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023643363
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1148/radiol.10100047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010014409
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1148/radiol.12120240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040631948
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1148/radiol.12120628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041317307
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1148/radiol.13120949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012912111
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1148/radiol.13130002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053494421
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1148/radiol.13130209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039363491
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1148/rg.272065061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026829792
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1191/096228099673819272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064155357
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1378/chest.11-2501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010539028
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1378/chest.12-2987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021264531
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2214/ajr.12.9382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302837
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2214/ajr.12.9424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302847
241 rdf:type schema:CreativeWork
242 https://doi.org/10.2214/ajr.178.5.1781053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069324682
243 rdf:type schema:CreativeWork
244 https://doi.org/10.5152/dir.2013.13223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072632785
245 rdf:type schema:CreativeWork
246 https://doi.org/10.5152/dir.2014.13401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072632826
247 rdf:type schema:CreativeWork
248 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
249 schema:name Cancer Research Institute, Seoul National University, 101, Daehangno, Jongno-gu, 110-744, Seoul, South Korea
250 Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea
251 Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.412484.f schema:alternateName Seoul National University Hospital
254 schema:name Department of Radiology, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea
255 Institute of Radiation Medicine, Seoul National University Medical Research Center, 101 Daehangno, Jongno-gu, 110-744, Seoul, South Korea
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...