Cortical Thinning Correlates with Cognitive Change in Multiple Sclerosis but not in Neuromyelitis Optica View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06-07

AUTHORS

Yaou Liu, Teng Xie, Yong He, Yunyun Duan, Jing Huang, Zhuoqiong Ren, Gaolang Gong, Jun Wang, Jing Ye, Huiqing Dong, Helmut Butzkueven, Fu-Dong Shi, Ni Shu, Kuncheng Li

ABSTRACT

ObjectivesTo compare spatial patterns of cortical thickness alterations in neuromyelitis optica (NMO) and multiple sclerosis (MS); and to investigate the correlations between cortical thinning and clinical variables in NMO and MS.MethodsWe studied 23 patients with NMO, 27 patients with MS and 26 healthy controls (HCs). The global, brain region and vertex-based cortical thickness (CTh) were analysed and compared among the three groups. A general linear model was used to investigate the correlations between cortical thinning and clinical measures.ResultsA limited number of cortical regions in visual cortex were found to be significantly thinner in NMO patients than in HCs. The MS patients exhibited more widespread cortical thinning compared with HCs, and significantly greater cortical thinning in the insula and the parahippocampus compared with NMO. The extent of cortical thinning in several brain regions correlated with cognitive measures in MS, but not in NMO.ConclusionsNeocortical thinning in NMO mainly affects visual cortex, while MS patients show much more extensive cortical thinning. Cognitive changes are correlated with cortical atrophy in MS not in NMO. The substrates of cognitive changes in MS and NMO could therefore be different.Key Points• MS patients show much more extensive cortical thinning than NMO.• Cortical thinning of insula and parahippocampus particularly distinguishes MS from NMO.• Cognitive changes are correlated with cortical atrophy in MS but not in NMO. More... »

PAGES

2334-2343

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-014-3239-1

DOI

http://dx.doi.org/10.1007/s00330-014-3239-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045323999

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24906701


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atrophy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Cortex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multiple Sclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuromyelitis Optica", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.412645.0", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
            "Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yaou", 
        "id": "sg:person.011415272704.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415272704.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Teng", 
        "id": "sg:person.0745726666.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745726666.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Yong", 
        "id": "sg:person.013260143277.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260143277.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duan", 
        "givenName": "Yunyun", 
        "id": "sg:person.01245052727.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245052727.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Jing", 
        "id": "sg:person.0704010427.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704010427.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Zhuoqiong", 
        "id": "sg:person.01372677626.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372677626.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gong", 
        "givenName": "Gaolang", 
        "id": "sg:person.01157613063.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157613063.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jun", 
        "id": "sg:person.01063724550.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063724550.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Jing", 
        "id": "sg:person.0752123627.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752123627.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Huiqing", 
        "id": "sg:person.01163570326.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163570326.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Melbourne, 3010, Parkville, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Department of Medicine, University of Melbourne, 3010, Parkville, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butzkueven", 
        "givenName": "Helmut", 
        "id": "sg:person.01110735270.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110735270.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.412645.0", 
          "name": [
            "Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Fu-Dong", 
        "id": "sg:person.01224007415.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224007415.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shu", 
        "givenName": "Ni", 
        "id": "sg:person.01324433744.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324433744.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-06-07", 
    "datePublishedReg": "2014-06-07", 
    "description": "ObjectivesTo compare spatial patterns of cortical thickness alterations in neuromyelitis optica (NMO) and multiple sclerosis (MS); and to investigate the correlations between cortical thinning and clinical variables in NMO and MS.MethodsWe studied 23 patients with NMO, 27 patients with MS and 26 healthy controls (HCs). The global, brain region and vertex-based cortical thickness (CTh) were analysed and compared among the three groups. A general linear model was used to investigate the correlations between cortical thinning and clinical measures.ResultsA limited number of cortical regions in visual cortex were found to be significantly thinner in NMO patients than in HCs. The MS patients exhibited more widespread cortical thinning compared with HCs, and significantly greater cortical thinning in the insula and the parahippocampus compared with NMO. The extent of cortical thinning in several brain regions correlated with cognitive measures in MS, but not in NMO.ConclusionsNeocortical thinning in NMO mainly affects visual cortex, while MS patients show much more extensive cortical thinning. Cognitive changes are correlated with cortical atrophy in MS not in NMO. The substrates of cognitive changes in MS and NMO could therefore be different.Key Points\u2022 MS patients show much more extensive cortical thinning than NMO.\u2022 Cortical thinning of insula and parahippocampus particularly distinguishes MS from NMO.\u2022 Cognitive changes are correlated with cortical atrophy in MS but not in NMO.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-014-3239-1", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4947249", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6980318", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5011295", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4998317", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7207560", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7001705", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "extensive cortical thinning", 
      "neuromyelitis optica", 
      "multiple sclerosis", 
      "cortical thinning", 
      "healthy controls", 
      "MS patients", 
      "cortical atrophy", 
      "cortical thickness", 
      "visual cortex", 
      "cognitive changes", 
      "brain regions", 
      "greater cortical thinning", 
      "cortical thickness alterations", 
      "widespread cortical thinning", 
      "NMO patients", 
      "clinical variables", 
      "clinical measures", 
      "patients", 
      "thickness alterations", 
      "cortical regions", 
      "general linear model", 
      "optica", 
      "sclerosis", 
      "atrophy", 
      "parahippocampus", 
      "cortex", 
      "insula", 
      "cognitive measures", 
      "MethodsWe", 
      "ObjectivesTo", 
      "changes", 
      "alterations", 
      "limited number", 
      "measures", 
      "correlates", 
      "correlation", 
      "thinning", 
      "group", 
      "control", 
      "linear model", 
      "region", 
      "patterns", 
      "extent", 
      "variables", 
      "number", 
      "model", 
      "thickness", 
      "spatial patterns", 
      "substrate"
    ], 
    "name": "Cortical Thinning Correlates with Cognitive Change in Multiple Sclerosis but not in Neuromyelitis Optica", 
    "pagination": "2334-2343", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045323999"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-014-3239-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24906701"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-014-3239-1", 
      "https://app.dimensions.ai/details/publication/pub.1045323999"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_625.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-014-3239-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3239-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3239-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3239-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3239-1'


 

This table displays all metadata directly associated to this object as RDF triples.

289 TRIPLES      20 PREDICATES      90 URIs      82 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-014-3239-1 schema:about N0ab44a5c48764cfcb0cbe41c3c2fe428
2 N14fe0846c0fe49fd9d67e4076c7edbc8
3 N15d0072958ee4580a7524dfa0297cfad
4 N37ebdb8c26b54903bf2518b62114c587
5 N460fd76dad3449afbe882bf0859c9881
6 N5bdb587a3fc94aa1aa4e482bc4caabeb
7 N60eb224832384910adf18b07423db683
8 N99305e7ec1df4ffa99ee589c1e74cb85
9 N9fd9adf7aa8e4517b867a8eb7f4586b0
10 Na800072ca2834be1b24f808dfd3144a3
11 Naa243da9ec6445ab88229b6ab8061421
12 Nc8db01caea1e461c94cab5bf3e2b70f1
13 Nc8f98399a411449b9f4b131c45149049
14 Nd860da97a4af463cae7ade28c7f14d07
15 Ne2ea2eb63b0e43ad89f794cf9c6b2bf6
16 Ne67002dac2934f0ea9e248b5124e3315
17 anzsrc-for:11
18 anzsrc-for:1109
19 schema:author Nf8707c48a5e1459bab827e815b9e3a59
20 schema:datePublished 2014-06-07
21 schema:datePublishedReg 2014-06-07
22 schema:description ObjectivesTo compare spatial patterns of cortical thickness alterations in neuromyelitis optica (NMO) and multiple sclerosis (MS); and to investigate the correlations between cortical thinning and clinical variables in NMO and MS.MethodsWe studied 23 patients with NMO, 27 patients with MS and 26 healthy controls (HCs). The global, brain region and vertex-based cortical thickness (CTh) were analysed and compared among the three groups. A general linear model was used to investigate the correlations between cortical thinning and clinical measures.ResultsA limited number of cortical regions in visual cortex were found to be significantly thinner in NMO patients than in HCs. The MS patients exhibited more widespread cortical thinning compared with HCs, and significantly greater cortical thinning in the insula and the parahippocampus compared with NMO. The extent of cortical thinning in several brain regions correlated with cognitive measures in MS, but not in NMO.ConclusionsNeocortical thinning in NMO mainly affects visual cortex, while MS patients show much more extensive cortical thinning. Cognitive changes are correlated with cortical atrophy in MS not in NMO. The substrates of cognitive changes in MS and NMO could therefore be different.Key Points• MS patients show much more extensive cortical thinning than NMO.• Cortical thinning of insula and parahippocampus particularly distinguishes MS from NMO.• Cognitive changes are correlated with cortical atrophy in MS but not in NMO.
23 schema:genre article
24 schema:isAccessibleForFree true
25 schema:isPartOf N14307bf04bc141eeb7bcb45094514949
26 Nf0d81e48daea40daaf10ff055f61ef2a
27 sg:journal.1289120
28 schema:keywords MS patients
29 MethodsWe
30 NMO patients
31 ObjectivesTo
32 alterations
33 atrophy
34 brain regions
35 changes
36 clinical measures
37 clinical variables
38 cognitive changes
39 cognitive measures
40 control
41 correlates
42 correlation
43 cortex
44 cortical atrophy
45 cortical regions
46 cortical thickness
47 cortical thickness alterations
48 cortical thinning
49 extensive cortical thinning
50 extent
51 general linear model
52 greater cortical thinning
53 group
54 healthy controls
55 insula
56 limited number
57 linear model
58 measures
59 model
60 multiple sclerosis
61 neuromyelitis optica
62 number
63 optica
64 parahippocampus
65 patients
66 patterns
67 region
68 sclerosis
69 spatial patterns
70 substrate
71 thickness
72 thickness alterations
73 thinning
74 variables
75 visual cortex
76 widespread cortical thinning
77 schema:name Cortical Thinning Correlates with Cognitive Change in Multiple Sclerosis but not in Neuromyelitis Optica
78 schema:pagination 2334-2343
79 schema:productId N350deb64d21547c8bc9e327bfccf7d24
80 N399fb3aa7abd46d99d11412126de0bda
81 N49bea3240779445c864e49e378359709
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045323999
83 https://doi.org/10.1007/s00330-014-3239-1
84 schema:sdDatePublished 2022-12-01T06:32
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N926305e45a7a45d4a5e36838c5ec851c
87 schema:url https://doi.org/10.1007/s00330-014-3239-1
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0ab44a5c48764cfcb0cbe41c3c2fe428 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Child
93 rdf:type schema:DefinedTerm
94 N11da999ffc734294937473dba180310e rdf:first sg:person.01372677626.32
95 rdf:rest N9ba380acc58c4136bd094a6aeedfe03c
96 N14307bf04bc141eeb7bcb45094514949 schema:issueNumber 9
97 rdf:type schema:PublicationIssue
98 N148ac009bd0e41da96203d659edbb79f rdf:first sg:person.01224007415.63
99 rdf:rest Ned30d84bd7094d5db4281be3eae415b9
100 N14fe0846c0fe49fd9d67e4076c7edbc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Atrophy
102 rdf:type schema:DefinedTerm
103 N15d0072958ee4580a7524dfa0297cfad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Cerebral Cortex
105 rdf:type schema:DefinedTerm
106 N257e1c472c5246e0a55ae1cf27a657b0 rdf:first sg:person.01326527402.59
107 rdf:rest rdf:nil
108 N2821c004eb9f44158ff72d6ac531503e rdf:first sg:person.01245052727.42
109 rdf:rest N485c282f38b54f90b8db303789e8f31b
110 N350deb64d21547c8bc9e327bfccf7d24 schema:name pubmed_id
111 schema:value 24906701
112 rdf:type schema:PropertyValue
113 N37ebdb8c26b54903bf2518b62114c587 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Humans
115 rdf:type schema:DefinedTerm
116 N399fb3aa7abd46d99d11412126de0bda schema:name dimensions_id
117 schema:value pub.1045323999
118 rdf:type schema:PropertyValue
119 N460fd76dad3449afbe882bf0859c9881 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Cognition
121 rdf:type schema:DefinedTerm
122 N485c282f38b54f90b8db303789e8f31b rdf:first sg:person.0704010427.58
123 rdf:rest N11da999ffc734294937473dba180310e
124 N49bea3240779445c864e49e378359709 schema:name doi
125 schema:value 10.1007/s00330-014-3239-1
126 rdf:type schema:PropertyValue
127 N5bdb587a3fc94aa1aa4e482bc4caabeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Male
129 rdf:type schema:DefinedTerm
130 N60eb224832384910adf18b07423db683 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Young Adult
132 rdf:type schema:DefinedTerm
133 N7149e270c85248ef904ca3138461eacc rdf:first sg:person.01110735270.02
134 rdf:rest N148ac009bd0e41da96203d659edbb79f
135 N7f5f998d8c4a4504bb28b843255d7e1f rdf:first sg:person.01163570326.85
136 rdf:rest N7149e270c85248ef904ca3138461eacc
137 N899d6ae1da034140941450b3dea43c7e rdf:first sg:person.01063724550.69
138 rdf:rest Ndad833b30ce542eca15a7318fee172f5
139 N926305e45a7a45d4a5e36838c5ec851c schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 N99305e7ec1df4ffa99ee589c1e74cb85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Disease Progression
143 rdf:type schema:DefinedTerm
144 N9ba380acc58c4136bd094a6aeedfe03c rdf:first sg:person.01157613063.17
145 rdf:rest N899d6ae1da034140941450b3dea43c7e
146 N9fd9adf7aa8e4517b867a8eb7f4586b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Neuromyelitis Optica
148 rdf:type schema:DefinedTerm
149 Na800072ca2834be1b24f808dfd3144a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Female
151 rdf:type schema:DefinedTerm
152 Naa243da9ec6445ab88229b6ab8061421 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Multiple Sclerosis
154 rdf:type schema:DefinedTerm
155 Nab591d5554fa4f5f88294c68f1a2d50d rdf:first sg:person.0745726666.24
156 rdf:rest Nab9a297bd374496b83bed4d0620c6300
157 Nab9a297bd374496b83bed4d0620c6300 rdf:first sg:person.013260143277.53
158 rdf:rest N2821c004eb9f44158ff72d6ac531503e
159 Nc8db01caea1e461c94cab5bf3e2b70f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Adult
161 rdf:type schema:DefinedTerm
162 Nc8f98399a411449b9f4b131c45149049 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Retrospective Studies
164 rdf:type schema:DefinedTerm
165 Nd860da97a4af463cae7ade28c7f14d07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Middle Aged
167 rdf:type schema:DefinedTerm
168 Ndad833b30ce542eca15a7318fee172f5 rdf:first sg:person.0752123627.89
169 rdf:rest N7f5f998d8c4a4504bb28b843255d7e1f
170 Ne2ea2eb63b0e43ad89f794cf9c6b2bf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Adolescent
172 rdf:type schema:DefinedTerm
173 Ne67002dac2934f0ea9e248b5124e3315 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Follow-Up Studies
175 rdf:type schema:DefinedTerm
176 Ned30d84bd7094d5db4281be3eae415b9 rdf:first sg:person.01324433744.06
177 rdf:rest N257e1c472c5246e0a55ae1cf27a657b0
178 Nf0d81e48daea40daaf10ff055f61ef2a schema:volumeNumber 24
179 rdf:type schema:PublicationVolume
180 Nf8707c48a5e1459bab827e815b9e3a59 rdf:first sg:person.011415272704.77
181 rdf:rest Nab591d5554fa4f5f88294c68f1a2d50d
182 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
183 schema:name Medical and Health Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
186 schema:name Neurosciences
187 rdf:type schema:DefinedTerm
188 sg:grant.4947249 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
189 rdf:type schema:MonetaryGrant
190 sg:grant.4998317 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
191 rdf:type schema:MonetaryGrant
192 sg:grant.5011295 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
193 rdf:type schema:MonetaryGrant
194 sg:grant.6980318 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
195 rdf:type schema:MonetaryGrant
196 sg:grant.7001705 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
197 rdf:type schema:MonetaryGrant
198 sg:grant.7207560 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
199 rdf:type schema:MonetaryGrant
200 sg:journal.1289120 schema:issn 0938-7994
201 1432-1084
202 schema:name European Radiology
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01063724550.69 schema:affiliation grid-institutes:grid.20513.35
206 schema:familyName Wang
207 schema:givenName Jun
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063724550.69
209 rdf:type schema:Person
210 sg:person.01110735270.02 schema:affiliation grid-institutes:grid.1008.9
211 schema:familyName Butzkueven
212 schema:givenName Helmut
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110735270.02
214 rdf:type schema:Person
215 sg:person.011415272704.77 schema:affiliation grid-institutes:grid.412645.0
216 schema:familyName Liu
217 schema:givenName Yaou
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415272704.77
219 rdf:type schema:Person
220 sg:person.01157613063.17 schema:affiliation grid-institutes:grid.20513.35
221 schema:familyName Gong
222 schema:givenName Gaolang
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157613063.17
224 rdf:type schema:Person
225 sg:person.01163570326.85 schema:affiliation grid-institutes:grid.413259.8
226 schema:familyName Dong
227 schema:givenName Huiqing
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163570326.85
229 rdf:type schema:Person
230 sg:person.01224007415.63 schema:affiliation grid-institutes:grid.412645.0
231 schema:familyName Shi
232 schema:givenName Fu-Dong
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224007415.63
234 rdf:type schema:Person
235 sg:person.01245052727.42 schema:affiliation grid-institutes:grid.413259.8
236 schema:familyName Duan
237 schema:givenName Yunyun
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245052727.42
239 rdf:type schema:Person
240 sg:person.01324433744.06 schema:affiliation grid-institutes:grid.20513.35
241 schema:familyName Shu
242 schema:givenName Ni
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324433744.06
244 rdf:type schema:Person
245 sg:person.013260143277.53 schema:affiliation grid-institutes:grid.20513.35
246 schema:familyName He
247 schema:givenName Yong
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260143277.53
249 rdf:type schema:Person
250 sg:person.01326527402.59 schema:affiliation grid-institutes:grid.413259.8
251 schema:familyName Li
252 schema:givenName Kuncheng
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
254 rdf:type schema:Person
255 sg:person.01372677626.32 schema:affiliation grid-institutes:grid.413259.8
256 schema:familyName Ren
257 schema:givenName Zhuoqiong
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372677626.32
259 rdf:type schema:Person
260 sg:person.0704010427.58 schema:affiliation grid-institutes:grid.413259.8
261 schema:familyName Huang
262 schema:givenName Jing
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704010427.58
264 rdf:type schema:Person
265 sg:person.0745726666.24 schema:affiliation grid-institutes:grid.20513.35
266 schema:familyName Xie
267 schema:givenName Teng
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745726666.24
269 rdf:type schema:Person
270 sg:person.0752123627.89 schema:affiliation grid-institutes:grid.413259.8
271 schema:familyName Ye
272 schema:givenName Jing
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752123627.89
274 rdf:type schema:Person
275 grid-institutes:grid.1008.9 schema:alternateName Department of Medicine, University of Melbourne, 3010, Parkville, Australia
276 schema:name Department of Medicine, University of Melbourne, 3010, Parkville, Australia
277 rdf:type schema:Organization
278 grid-institutes:grid.20513.35 schema:alternateName State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
279 schema:name State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
280 rdf:type schema:Organization
281 grid-institutes:grid.412645.0 schema:alternateName Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People’s Republic of China
282 schema:name Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People’s Republic of China
283 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
284 rdf:type schema:Organization
285 grid-institutes:grid.413259.8 schema:alternateName Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
286 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
287 schema:name Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
288 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
289 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...