Cortical Thinning Correlates with Cognitive Change in Multiple Sclerosis but not in Neuromyelitis Optica View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06-07

AUTHORS

Yaou Liu, Teng Xie, Yong He, Yunyun Duan, Jing Huang, Zhuoqiong Ren, Gaolang Gong, Jun Wang, Jing Ye, Huiqing Dong, Helmut Butzkueven, Fu-Dong Shi, Ni Shu, Kuncheng Li

ABSTRACT

ObjectivesTo compare spatial patterns of cortical thickness alterations in neuromyelitis optica (NMO) and multiple sclerosis (MS); and to investigate the correlations between cortical thinning and clinical variables in NMO and MS.MethodsWe studied 23 patients with NMO, 27 patients with MS and 26 healthy controls (HCs). The global, brain region and vertex-based cortical thickness (CTh) were analysed and compared among the three groups. A general linear model was used to investigate the correlations between cortical thinning and clinical measures.ResultsA limited number of cortical regions in visual cortex were found to be significantly thinner in NMO patients than in HCs. The MS patients exhibited more widespread cortical thinning compared with HCs, and significantly greater cortical thinning in the insula and the parahippocampus compared with NMO. The extent of cortical thinning in several brain regions correlated with cognitive measures in MS, but not in NMO.ConclusionsNeocortical thinning in NMO mainly affects visual cortex, while MS patients show much more extensive cortical thinning. Cognitive changes are correlated with cortical atrophy in MS not in NMO. The substrates of cognitive changes in MS and NMO could therefore be different.Key Points• MS patients show much more extensive cortical thinning than NMO.• Cortical thinning of insula and parahippocampus particularly distinguishes MS from NMO.• Cognitive changes are correlated with cortical atrophy in MS but not in NMO. More... »

PAGES

2334-2343

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-014-3239-1

DOI

http://dx.doi.org/10.1007/s00330-014-3239-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045323999

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24906701


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atrophy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebral Cortex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multiple Sclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuromyelitis Optica", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.412645.0", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
            "Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yaou", 
        "id": "sg:person.011415272704.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415272704.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Teng", 
        "id": "sg:person.0745726666.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745726666.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Yong", 
        "id": "sg:person.013260143277.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260143277.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duan", 
        "givenName": "Yunyun", 
        "id": "sg:person.01245052727.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245052727.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Jing", 
        "id": "sg:person.0704010427.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704010427.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Zhuoqiong", 
        "id": "sg:person.01372677626.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372677626.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gong", 
        "givenName": "Gaolang", 
        "id": "sg:person.01157613063.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157613063.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jun", 
        "id": "sg:person.01063724550.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063724550.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Jing", 
        "id": "sg:person.0752123627.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752123627.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Huiqing", 
        "id": "sg:person.01163570326.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163570326.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Melbourne, 3010, Parkville, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "Department of Medicine, University of Melbourne, 3010, Parkville, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butzkueven", 
        "givenName": "Helmut", 
        "id": "sg:person.01110735270.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110735270.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.412645.0", 
          "name": [
            "Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Fu-Dong", 
        "id": "sg:person.01224007415.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224007415.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.20513.35", 
          "name": [
            "State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shu", 
        "givenName": "Ni", 
        "id": "sg:person.01324433744.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324433744.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.413259.8", 
          "name": [
            "Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kuncheng", 
        "id": "sg:person.01326527402.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014-06-07", 
    "datePublishedReg": "2014-06-07", 
    "description": "ObjectivesTo compare spatial patterns of cortical thickness alterations in neuromyelitis optica (NMO) and multiple sclerosis (MS); and to investigate the correlations between cortical thinning and clinical variables in NMO and MS.MethodsWe studied 23 patients with NMO, 27 patients with MS and 26 healthy controls (HCs). The global, brain region and vertex-based cortical thickness (CTh) were analysed and compared among the three groups. A general linear model was used to investigate the correlations between cortical thinning and clinical measures.ResultsA limited number of cortical regions in visual cortex were found to be significantly thinner in NMO patients than in HCs. The MS patients exhibited more widespread cortical thinning compared with HCs, and significantly greater cortical thinning in the insula and the parahippocampus compared with NMO. The extent of cortical thinning in several brain regions correlated with cognitive measures in MS, but not in NMO.ConclusionsNeocortical thinning in NMO mainly affects visual cortex, while MS patients show much more extensive cortical thinning. Cognitive changes are correlated with cortical atrophy in MS not in NMO. The substrates of cognitive changes in MS and NMO could therefore be different.Key Points\u2022 MS patients show much more extensive cortical thinning than NMO.\u2022 Cortical thinning of insula and parahippocampus particularly distinguishes MS from NMO.\u2022 Cognitive changes are correlated with cortical atrophy in MS but not in NMO.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-014-3239-1", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4947249", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6980318", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5011295", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4998317", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7207560", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7001705", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "extensive cortical thinning", 
      "neuromyelitis optica", 
      "multiple sclerosis", 
      "cortical thinning", 
      "healthy controls", 
      "MS patients", 
      "cortical atrophy", 
      "cortical thickness", 
      "visual cortex", 
      "cognitive changes", 
      "brain regions", 
      "greater cortical thinning", 
      "cortical thickness alterations", 
      "widespread cortical thinning", 
      "NMO patients", 
      "clinical variables", 
      "clinical measures", 
      "patients", 
      "thickness alterations", 
      "cortical regions", 
      "general linear model", 
      "optica", 
      "sclerosis", 
      "atrophy", 
      "parahippocampus", 
      "cortex", 
      "insula", 
      "cognitive measures", 
      "MethodsWe", 
      "ObjectivesTo", 
      "changes", 
      "alterations", 
      "limited number", 
      "measures", 
      "correlates", 
      "correlation", 
      "thinning", 
      "group", 
      "control", 
      "linear model", 
      "region", 
      "patterns", 
      "extent", 
      "variables", 
      "number", 
      "model", 
      "thickness", 
      "spatial patterns", 
      "substrate"
    ], 
    "name": "Cortical Thinning Correlates with Cognitive Change in Multiple Sclerosis but not in Neuromyelitis Optica", 
    "pagination": "2334-2343", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045323999"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-014-3239-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24906701"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-014-3239-1", 
      "https://app.dimensions.ai/details/publication/pub.1045323999"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_630.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-014-3239-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3239-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3239-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3239-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-014-3239-1'


 

This table displays all metadata directly associated to this object as RDF triples.

289 TRIPLES      20 PREDICATES      90 URIs      82 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-014-3239-1 schema:about N01285c40b5c34a44bfa1a0c4ed8cd098
2 N05d364efabd24caaaeea8d69dd9b0218
3 N1b9002382d7a49589382c2c166f16967
4 N214e0164aa654d89a798fa4621dba85f
5 N4030c1fbb285453fa2ec2e4b5c556457
6 N4a4d27c941c74620956f78cf1e60634c
7 N5097be2d57da4587a90b7dd6e85b297e
8 N519e6fbc4efb40e6a4ee4229f63c1852
9 N59051d6452b146aea6ef76741a075157
10 N755266d2efe544de8b2f47b93d7df67c
11 N782c3e68adcd4a01a3a3fa8dfc2c8498
12 N9bcc0ceb545349b2982406daafa56ab2
13 N9d892bef82684196a1e8a51b5a85bde3
14 Ne476bdfd8c224840858c585958d0f499
15 Nebd9b0bdcc4a49cd982e15846231ec45
16 Nf62d9ebbc05f4f5eb1530b2c7a7a5a27
17 anzsrc-for:11
18 anzsrc-for:1109
19 schema:author Nfe2e82ac8b9b41b889d040fcccb5d2d0
20 schema:datePublished 2014-06-07
21 schema:datePublishedReg 2014-06-07
22 schema:description ObjectivesTo compare spatial patterns of cortical thickness alterations in neuromyelitis optica (NMO) and multiple sclerosis (MS); and to investigate the correlations between cortical thinning and clinical variables in NMO and MS.MethodsWe studied 23 patients with NMO, 27 patients with MS and 26 healthy controls (HCs). The global, brain region and vertex-based cortical thickness (CTh) were analysed and compared among the three groups. A general linear model was used to investigate the correlations between cortical thinning and clinical measures.ResultsA limited number of cortical regions in visual cortex were found to be significantly thinner in NMO patients than in HCs. The MS patients exhibited more widespread cortical thinning compared with HCs, and significantly greater cortical thinning in the insula and the parahippocampus compared with NMO. The extent of cortical thinning in several brain regions correlated with cognitive measures in MS, but not in NMO.ConclusionsNeocortical thinning in NMO mainly affects visual cortex, while MS patients show much more extensive cortical thinning. Cognitive changes are correlated with cortical atrophy in MS not in NMO. The substrates of cognitive changes in MS and NMO could therefore be different.Key Points• MS patients show much more extensive cortical thinning than NMO.• Cortical thinning of insula and parahippocampus particularly distinguishes MS from NMO.• Cognitive changes are correlated with cortical atrophy in MS but not in NMO.
23 schema:genre article
24 schema:isAccessibleForFree true
25 schema:isPartOf N746bf3e400784175a429038c5da8d843
26 N7b2ae82b9b1c4478b238f2fae2d6d131
27 sg:journal.1289120
28 schema:keywords MS patients
29 MethodsWe
30 NMO patients
31 ObjectivesTo
32 alterations
33 atrophy
34 brain regions
35 changes
36 clinical measures
37 clinical variables
38 cognitive changes
39 cognitive measures
40 control
41 correlates
42 correlation
43 cortex
44 cortical atrophy
45 cortical regions
46 cortical thickness
47 cortical thickness alterations
48 cortical thinning
49 extensive cortical thinning
50 extent
51 general linear model
52 greater cortical thinning
53 group
54 healthy controls
55 insula
56 limited number
57 linear model
58 measures
59 model
60 multiple sclerosis
61 neuromyelitis optica
62 number
63 optica
64 parahippocampus
65 patients
66 patterns
67 region
68 sclerosis
69 spatial patterns
70 substrate
71 thickness
72 thickness alterations
73 thinning
74 variables
75 visual cortex
76 widespread cortical thinning
77 schema:name Cortical Thinning Correlates with Cognitive Change in Multiple Sclerosis but not in Neuromyelitis Optica
78 schema:pagination 2334-2343
79 schema:productId N3e0771cdd452481f9e400fb0e91c3f91
80 Na974ec5165ae4e75af1b04246f35b071
81 Nabb774d397b04716ac8a5e47310a1145
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045323999
83 https://doi.org/10.1007/s00330-014-3239-1
84 schema:sdDatePublished 2022-10-01T06:39
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N4708fbac5dea428b9e4c2d9bcc682bdc
87 schema:url https://doi.org/10.1007/s00330-014-3239-1
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N01285c40b5c34a44bfa1a0c4ed8cd098 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Child
93 rdf:type schema:DefinedTerm
94 N05d364efabd24caaaeea8d69dd9b0218 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Cerebral Cortex
96 rdf:type schema:DefinedTerm
97 N1523e55ddeec4a87a1e81b205105cf02 rdf:first sg:person.0745726666.24
98 rdf:rest N2d5300cb62a54bbfbbf9ab62382cc969
99 N1b9002382d7a49589382c2c166f16967 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Male
101 rdf:type schema:DefinedTerm
102 N214e0164aa654d89a798fa4621dba85f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Atrophy
104 rdf:type schema:DefinedTerm
105 N2d5300cb62a54bbfbbf9ab62382cc969 rdf:first sg:person.013260143277.53
106 rdf:rest Nb67b1fdf999847aeb8b440fe9670e1f8
107 N3e0771cdd452481f9e400fb0e91c3f91 schema:name dimensions_id
108 schema:value pub.1045323999
109 rdf:type schema:PropertyValue
110 N4030c1fbb285453fa2ec2e4b5c556457 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Follow-Up Studies
112 rdf:type schema:DefinedTerm
113 N4708fbac5dea428b9e4c2d9bcc682bdc schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N495e2a894866498ab9c7bd8d05daa6f7 rdf:first sg:person.01163570326.85
116 rdf:rest Nd3a19b9c42f44ca9a64334fefae13b8d
117 N4a4d27c941c74620956f78cf1e60634c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Adult
119 rdf:type schema:DefinedTerm
120 N5097be2d57da4587a90b7dd6e85b297e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Multiple Sclerosis
122 rdf:type schema:DefinedTerm
123 N519e6fbc4efb40e6a4ee4229f63c1852 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Disease Progression
125 rdf:type schema:DefinedTerm
126 N54a983db19fa4c7d903fe425fe0c08dd rdf:first sg:person.01224007415.63
127 rdf:rest Nb7c125b8c41d4e8d9f354d7156d64c15
128 N59051d6452b146aea6ef76741a075157 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Adolescent
130 rdf:type schema:DefinedTerm
131 N5d1a4fb712ff4fb1bbbefde0b740a8f5 rdf:first sg:person.01326527402.59
132 rdf:rest rdf:nil
133 N746bf3e400784175a429038c5da8d843 schema:issueNumber 9
134 rdf:type schema:PublicationIssue
135 N755266d2efe544de8b2f47b93d7df67c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Female
137 rdf:type schema:DefinedTerm
138 N782c3e68adcd4a01a3a3fa8dfc2c8498 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Middle Aged
140 rdf:type schema:DefinedTerm
141 N7b2ae82b9b1c4478b238f2fae2d6d131 schema:volumeNumber 24
142 rdf:type schema:PublicationVolume
143 N7c075b20f48d4014ad0ee2067f85d208 rdf:first sg:person.0752123627.89
144 rdf:rest N495e2a894866498ab9c7bd8d05daa6f7
145 N88f650dbb9344ed4948b2f64b6861efc rdf:first sg:person.01372677626.32
146 rdf:rest Nb5b8ba4b6ed34d75a3d54c390fb608d3
147 N9bcc0ceb545349b2982406daafa56ab2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Cognition
149 rdf:type schema:DefinedTerm
150 N9d892bef82684196a1e8a51b5a85bde3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Young Adult
152 rdf:type schema:DefinedTerm
153 Na220c82235394b3d9b20017afa5cba68 rdf:first sg:person.01063724550.69
154 rdf:rest N7c075b20f48d4014ad0ee2067f85d208
155 Na974ec5165ae4e75af1b04246f35b071 schema:name doi
156 schema:value 10.1007/s00330-014-3239-1
157 rdf:type schema:PropertyValue
158 Nabb774d397b04716ac8a5e47310a1145 schema:name pubmed_id
159 schema:value 24906701
160 rdf:type schema:PropertyValue
161 Nb5b8ba4b6ed34d75a3d54c390fb608d3 rdf:first sg:person.01157613063.17
162 rdf:rest Na220c82235394b3d9b20017afa5cba68
163 Nb67b1fdf999847aeb8b440fe9670e1f8 rdf:first sg:person.01245052727.42
164 rdf:rest Nfe6bb69f22d3485c906956420bdccff5
165 Nb7c125b8c41d4e8d9f354d7156d64c15 rdf:first sg:person.01324433744.06
166 rdf:rest N5d1a4fb712ff4fb1bbbefde0b740a8f5
167 Nd3a19b9c42f44ca9a64334fefae13b8d rdf:first sg:person.01110735270.02
168 rdf:rest N54a983db19fa4c7d903fe425fe0c08dd
169 Ne476bdfd8c224840858c585958d0f499 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Retrospective Studies
171 rdf:type schema:DefinedTerm
172 Nebd9b0bdcc4a49cd982e15846231ec45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Humans
174 rdf:type schema:DefinedTerm
175 Nf62d9ebbc05f4f5eb1530b2c7a7a5a27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Neuromyelitis Optica
177 rdf:type schema:DefinedTerm
178 Nfe2e82ac8b9b41b889d040fcccb5d2d0 rdf:first sg:person.011415272704.77
179 rdf:rest N1523e55ddeec4a87a1e81b205105cf02
180 Nfe6bb69f22d3485c906956420bdccff5 rdf:first sg:person.0704010427.58
181 rdf:rest N88f650dbb9344ed4948b2f64b6861efc
182 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
183 schema:name Medical and Health Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
186 schema:name Neurosciences
187 rdf:type schema:DefinedTerm
188 sg:grant.4947249 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
189 rdf:type schema:MonetaryGrant
190 sg:grant.4998317 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
191 rdf:type schema:MonetaryGrant
192 sg:grant.5011295 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
193 rdf:type schema:MonetaryGrant
194 sg:grant.6980318 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
195 rdf:type schema:MonetaryGrant
196 sg:grant.7001705 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
197 rdf:type schema:MonetaryGrant
198 sg:grant.7207560 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-014-3239-1
199 rdf:type schema:MonetaryGrant
200 sg:journal.1289120 schema:issn 0938-7994
201 1432-1084
202 schema:name European Radiology
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01063724550.69 schema:affiliation grid-institutes:grid.20513.35
206 schema:familyName Wang
207 schema:givenName Jun
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063724550.69
209 rdf:type schema:Person
210 sg:person.01110735270.02 schema:affiliation grid-institutes:grid.1008.9
211 schema:familyName Butzkueven
212 schema:givenName Helmut
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110735270.02
214 rdf:type schema:Person
215 sg:person.011415272704.77 schema:affiliation grid-institutes:grid.412645.0
216 schema:familyName Liu
217 schema:givenName Yaou
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415272704.77
219 rdf:type schema:Person
220 sg:person.01157613063.17 schema:affiliation grid-institutes:grid.20513.35
221 schema:familyName Gong
222 schema:givenName Gaolang
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157613063.17
224 rdf:type schema:Person
225 sg:person.01163570326.85 schema:affiliation grid-institutes:grid.413259.8
226 schema:familyName Dong
227 schema:givenName Huiqing
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163570326.85
229 rdf:type schema:Person
230 sg:person.01224007415.63 schema:affiliation grid-institutes:grid.412645.0
231 schema:familyName Shi
232 schema:givenName Fu-Dong
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224007415.63
234 rdf:type schema:Person
235 sg:person.01245052727.42 schema:affiliation grid-institutes:grid.413259.8
236 schema:familyName Duan
237 schema:givenName Yunyun
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245052727.42
239 rdf:type schema:Person
240 sg:person.01324433744.06 schema:affiliation grid-institutes:grid.20513.35
241 schema:familyName Shu
242 schema:givenName Ni
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324433744.06
244 rdf:type schema:Person
245 sg:person.013260143277.53 schema:affiliation grid-institutes:grid.20513.35
246 schema:familyName He
247 schema:givenName Yong
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260143277.53
249 rdf:type schema:Person
250 sg:person.01326527402.59 schema:affiliation grid-institutes:grid.413259.8
251 schema:familyName Li
252 schema:givenName Kuncheng
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
254 rdf:type schema:Person
255 sg:person.01372677626.32 schema:affiliation grid-institutes:grid.413259.8
256 schema:familyName Ren
257 schema:givenName Zhuoqiong
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372677626.32
259 rdf:type schema:Person
260 sg:person.0704010427.58 schema:affiliation grid-institutes:grid.413259.8
261 schema:familyName Huang
262 schema:givenName Jing
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704010427.58
264 rdf:type schema:Person
265 sg:person.0745726666.24 schema:affiliation grid-institutes:grid.20513.35
266 schema:familyName Xie
267 schema:givenName Teng
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745726666.24
269 rdf:type schema:Person
270 sg:person.0752123627.89 schema:affiliation grid-institutes:grid.413259.8
271 schema:familyName Ye
272 schema:givenName Jing
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752123627.89
274 rdf:type schema:Person
275 grid-institutes:grid.1008.9 schema:alternateName Department of Medicine, University of Melbourne, 3010, Parkville, Australia
276 schema:name Department of Medicine, University of Melbourne, 3010, Parkville, Australia
277 rdf:type schema:Organization
278 grid-institutes:grid.20513.35 schema:alternateName State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
279 schema:name State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
280 rdf:type schema:Organization
281 grid-institutes:grid.412645.0 schema:alternateName Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People’s Republic of China
282 schema:name Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, People’s Republic of China
283 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
284 rdf:type schema:Organization
285 grid-institutes:grid.413259.8 schema:alternateName Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
286 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
287 schema:name Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
288 Department of Radiology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, People’s Republic of China
289 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...