Comparison of 3D multi-echo gradient-echo and 2D T2* MR sequences for the detection of arterial thrombus in patients with acute ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-03

AUTHORS

Jérôme Hodel, Xavier Leclerc, Wassef Khaled, Ruben Tamazyan, Mathieu Rodallec, Sophie Gerber, Raphael Blanc, Mohamed Benadjaoud, Oriane Lambert, Cécile Rabrait, Mathieu Zuber, Alain Rahmouni, Marc Zins

ABSTRACT

OBJECTIVES: We compared a multi-echo gradient-echo magnetic resonance sequence (susceptibility-weighted angiography [SWAN]) with the T2* sequence for the detection of an arterial thrombus in acute ischaemic stroke. METHODS: Seventy-four consecutive patients with acute ischaemic stroke were included. Proximal arterial occlusions were diagnosed using time-of-flight (TOF) magnetic resonance angiography (MRA). Two-dimensional (2D) axial reformats from 3D SWAN were generated to match with 2D T2* images. For arterial thrombus detection, each set of MR images (T2*, 2D SWAN reformats and 3D multiplanar SWAN images) was examined independently and separately by three observers who assigned the images to one of three categories: (0) absence of thrombus, (1) uncertain thrombus, (2) certain thrombus. Agreement and diagnostic accuracy were calculated. RESULTS: Twenty-four proximal arterial occlusions involving the anterior (n = 20) or posterior (n = 4) circulation were found. Inter-observer agreement was moderate using T2* images (κ = 0.58), good using 2D SWAN reformats (κ = 0.83) and excellent using multiplanar SWAN images (κ = 0.90). For the diagnosis of thrombus, T2* images were 54% sensitive and 86% specific, 2D SWAN reformats were 83% sensitive and 94% specific and SWAN multiplanar analysis was 96% sensitive and 100% specific. CONCLUSIONS: Three-dimensional SWAN sequence improves the detection of arterial thrombus in patients with acute ischaemic stroke in comparison with the 2D T2* sequence. KEY POINTS: • Multi-echo gradient-echo MR (e.g. susceptibility-weighted angiograph, [SWAN]) is increasingly used in neuroradiology. • Compared with conventional T2* sequences, SWAN improves detection of arterial thrombus. • Multiplanar SWAN analysis had the best diagnostic performance for arterial thrombus detection. • Sensitivity was 96% and specificity 100%. • Findings support combination of time-of-flight and susceptibility effects in suspected acute stroke. More... »

PAGES

762-769

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-013-3061-1

DOI

http://dx.doi.org/10.1007/s00330-013-3061-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018020112

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24254132


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anterior Cerebral Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Ischemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Cerebral Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Posterior Cerebral Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thrombosis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Radiology, H\u00f4pital Saint Joseph, 186, rue Raymond Losserand, Paris, France", 
            "Department of Neuroradiology, CHRU Roger Salengro, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodel", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.01354370734.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354370734.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Neuroradiology, CHRU Roger Salengro, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leclerc", 
        "givenName": "Xavier", 
        "id": "sg:person.01152164361.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152164361.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Radiology, H\u00f4pital Saint Joseph, 186, rue Raymond Losserand, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khaled", 
        "givenName": "Wassef", 
        "id": "sg:person.01070253550.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070253550.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Neurology, H\u00f4pital Saint Joseph, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamazyan", 
        "givenName": "Ruben", 
        "id": "sg:person.0637465702.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637465702.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Radiology, H\u00f4pital Saint Joseph, 186, rue Raymond Losserand, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodallec", 
        "givenName": "Mathieu", 
        "id": "sg:person.0677100034.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677100034.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Radiology, H\u00f4pital Saint Joseph, 186, rue Raymond Losserand, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerber", 
        "givenName": "Sophie", 
        "id": "sg:person.01013326434.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013326434.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fondation Ophtalmologique Adolphe de Rothschild", 
          "id": "https://www.grid.ac/institutes/grid.417888.a", 
          "name": [
            "Department of Neuroradiology, Fondation Ophtalmologique Rothschild, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanc", 
        "givenName": "Raphael", 
        "id": "sg:person.01336067165.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336067165.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9l\u00e9gation Paris 11", 
          "id": "https://www.grid.ac/institutes/grid.457369.a", 
          "name": [
            "Inserm, CESP Centre for Research in Epidemiology and Population Health, U1018, Radiation Epidemiology Team, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benadjaoud", 
        "givenName": "Mohamed", 
        "id": "sg:person.01251677272.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251677272.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fondation Ophtalmologique Adolphe de Rothschild", 
          "id": "https://www.grid.ac/institutes/grid.417888.a", 
          "name": [
            "Department of Neuroradiology, Fondation Ophtalmologique Rothschild, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lambert", 
        "givenName": "Oriane", 
        "id": "sg:person.01136256102.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136256102.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "GE Healthcare, Clinical Science Development Group, Buc, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rabrait", 
        "givenName": "C\u00e9cile", 
        "id": "sg:person.01273065501.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273065501.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Neurology, H\u00f4pital Saint Joseph, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuber", 
        "givenName": "Mathieu", 
        "id": "sg:person.01330501000.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330501000.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pitaux Universitaires Henri Mondor", 
          "id": "https://www.grid.ac/institutes/grid.412116.1", 
          "name": [
            "Department of Radiology, H\u00f4pital Henri Mondor, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahmouni", 
        "givenName": "Alain", 
        "id": "sg:person.01117353467.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117353467.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Saint-Joseph", 
          "id": "https://www.grid.ac/institutes/grid.414363.7", 
          "name": [
            "Department of Radiology, H\u00f4pital Saint Joseph, 186, rue Raymond Losserand, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zins", 
        "givenName": "Marc", 
        "id": "sg:person.01360232034.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360232034.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.str.30.4.765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000544452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2690-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000842630", 
          "https://doi.org/10.1007/s00330-012-2690-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001830764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001830764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880060607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003342788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a0748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015354023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000133341.74387.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015395710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000133341.74387.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015395710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.215.2.r00ma09476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016251370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000086120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018675760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000086120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018675760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.110.605576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020473873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.110.605576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020473873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.110.605576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020473873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000057847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020761374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.110.584862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027806450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.110.584862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027806450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027912509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000185932.73486.7a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030138463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000185932.73486.7a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030138463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2011.02.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031728080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-011-0895-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037834517", 
          "https://doi.org/10.1007/s00234-011-0895-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.30.11.2263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039267624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2322030273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040518474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.58.10.1470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048091536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.58.10.1470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048091536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.58.10.1470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048091536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000257304.21967.ba", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048446732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000257304.21967.ba", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048446732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31817fb432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050225203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31817fb432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050225203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000051504.10095.9c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052826901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000051504.10095.9c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052826901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a1400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053742048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.27.12.2321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063341864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.175.1.2315481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078647496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185113495836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078768578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185113495836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078768578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.168.3.3406410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079727796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.204.1.9205259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083110229"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03", 
    "datePublishedReg": "2014-03-01", 
    "description": "OBJECTIVES: We compared a multi-echo gradient-echo magnetic resonance sequence (susceptibility-weighted angiography [SWAN]) with the T2* sequence for the detection of an arterial thrombus in acute ischaemic stroke.\nMETHODS: Seventy-four consecutive patients with acute ischaemic stroke were included. Proximal arterial occlusions were diagnosed using time-of-flight (TOF) magnetic resonance angiography (MRA). Two-dimensional (2D) axial reformats from 3D SWAN were generated to match with 2D T2* images. For arterial thrombus detection, each set of MR images (T2*, 2D SWAN reformats and 3D multiplanar SWAN images) was examined independently and separately by three observers who assigned the images to one of three categories: (0) absence of thrombus, (1) uncertain thrombus, (2) certain thrombus. Agreement and diagnostic accuracy were calculated.\nRESULTS: Twenty-four proximal arterial occlusions involving the anterior (n\u2009=\u200920) or posterior (n\u2009=\u20094) circulation were found. Inter-observer agreement was moderate using T2* images (\u03ba\u2009=\u20090.58), good using 2D SWAN reformats (\u03ba\u2009=\u20090.83) and excellent using multiplanar SWAN images (\u03ba\u2009=\u20090.90). For the diagnosis of thrombus, T2* images were 54% sensitive and 86% specific, 2D SWAN reformats were 83% sensitive and 94% specific and SWAN multiplanar analysis was 96% sensitive and 100% specific.\nCONCLUSIONS: Three-dimensional SWAN sequence improves the detection of arterial thrombus in patients with acute ischaemic stroke in comparison with the 2D T2* sequence.\nKEY POINTS: \u2022 Multi-echo gradient-echo MR (e.g. susceptibility-weighted angiograph, [SWAN]) is increasingly used in neuroradiology. \u2022 Compared with conventional T2* sequences, SWAN improves detection of arterial thrombus. \u2022 Multiplanar SWAN analysis had the best diagnostic performance for arterial thrombus detection. \u2022 Sensitivity was 96% and specificity 100%. \u2022 Findings support combination of time-of-flight and susceptibility effects in suspected acute stroke.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-013-3061-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Comparison of 3D multi-echo gradient-echo and 2D T2* MR sequences for the detection of arterial thrombus in patients with acute stroke", 
    "pagination": "762-769", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55dc540428ddd82e9a2b8b43146ee4f216ccf8e315e048aeeb3ea43d4e3ac3a3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24254132"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-013-3061-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018020112"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-013-3061-1", 
      "https://app.dimensions.ai/details/publication/pub.1018020112"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00330-013-3061-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-3061-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-3061-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-3061-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-013-3061-1'


 

This table displays all metadata directly associated to this object as RDF triples.

331 TRIPLES      21 PREDICATES      76 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-013-3061-1 schema:about N06611184979c42318bcbe60f34e70d4a
2 N1bb70aac19c740289e67efe030dcb388
3 N1e2f08d8a87d4884b665d64a2005c726
4 N3048d012000445a2ac822dd28bf1073d
5 N4c18b6e8ef154f0c843b91013983006f
6 N6174f41f900c4bf1a29b52b329410fc9
7 N61dc4780884b421588edfed37fcc252a
8 N69cb57381e8b45df824d14a81cd7da83
9 N706aa70db1ad41d488c3866157cbc5df
10 N7144de93a03e47b0ae47004924daaed6
11 Na22ec38a771e4dfd8d09e14257a0a8e1
12 Na3fafcef647641ad886df04858148e90
13 Nbcb74788d1c34da7bab940676427891b
14 Nc06cb41f7cca4a59a331ff2dbaa804b6
15 Nccda3d598f3b445d9012b532e8345157
16 Ncd150960e81a43dca57e8e60a0267277
17 Nd8866c22eee741dfa7f68ddae2878e11
18 Nddc0365ef1b146a096fdc6ff3246c28a
19 Nedf418fa552641e1b9b153bd4d20b093
20 Nf71325ba1c674488ab203d91702a0945
21 anzsrc-for:08
22 anzsrc-for:0801
23 schema:author N9fcdd48b0f6e4d4faaa695906772f5dc
24 schema:citation sg:pub.10.1007/s00234-011-0895-6
25 sg:pub.10.1007/s00330-012-2690-0
26 https://doi.org/10.1002/jmri.1880060607
27 https://doi.org/10.1002/jmri.21833
28 https://doi.org/10.1002/mrm.20198
29 https://doi.org/10.1016/j.ejrad.2011.02.057
30 https://doi.org/10.1097/rli.0b013e31817fb432
31 https://doi.org/10.1148/radiol.2322030273
32 https://doi.org/10.1148/radiology.168.3.3406410
33 https://doi.org/10.1148/radiology.175.1.2315481
34 https://doi.org/10.1148/radiology.204.1.9205259
35 https://doi.org/10.1148/radiology.215.2.r00ma09476
36 https://doi.org/10.1159/000057847
37 https://doi.org/10.1159/000086120
38 https://doi.org/10.1161/01.str.0000051504.10095.9c
39 https://doi.org/10.1161/01.str.0000133341.74387.96
40 https://doi.org/10.1161/01.str.0000185932.73486.7a
41 https://doi.org/10.1161/01.str.0000257304.21967.ba
42 https://doi.org/10.1161/01.str.27.12.2321
43 https://doi.org/10.1161/01.str.30.11.2263
44 https://doi.org/10.1161/01.str.30.4.765
45 https://doi.org/10.1161/strokeaha.110.584862
46 https://doi.org/10.1161/strokeaha.110.605576
47 https://doi.org/10.1177/0284185113495836
48 https://doi.org/10.1212/wnl.58.10.1470
49 https://doi.org/10.3174/ajnr.a0748
50 https://doi.org/10.3174/ajnr.a1400
51 schema:datePublished 2014-03
52 schema:datePublishedReg 2014-03-01
53 schema:description OBJECTIVES: We compared a multi-echo gradient-echo magnetic resonance sequence (susceptibility-weighted angiography [SWAN]) with the T2* sequence for the detection of an arterial thrombus in acute ischaemic stroke. METHODS: Seventy-four consecutive patients with acute ischaemic stroke were included. Proximal arterial occlusions were diagnosed using time-of-flight (TOF) magnetic resonance angiography (MRA). Two-dimensional (2D) axial reformats from 3D SWAN were generated to match with 2D T2* images. For arterial thrombus detection, each set of MR images (T2*, 2D SWAN reformats and 3D multiplanar SWAN images) was examined independently and separately by three observers who assigned the images to one of three categories: (0) absence of thrombus, (1) uncertain thrombus, (2) certain thrombus. Agreement and diagnostic accuracy were calculated. RESULTS: Twenty-four proximal arterial occlusions involving the anterior (n = 20) or posterior (n = 4) circulation were found. Inter-observer agreement was moderate using T2* images (κ = 0.58), good using 2D SWAN reformats (κ = 0.83) and excellent using multiplanar SWAN images (κ = 0.90). For the diagnosis of thrombus, T2* images were 54% sensitive and 86% specific, 2D SWAN reformats were 83% sensitive and 94% specific and SWAN multiplanar analysis was 96% sensitive and 100% specific. CONCLUSIONS: Three-dimensional SWAN sequence improves the detection of arterial thrombus in patients with acute ischaemic stroke in comparison with the 2D T2* sequence. KEY POINTS: • Multi-echo gradient-echo MR (e.g. susceptibility-weighted angiograph, [SWAN]) is increasingly used in neuroradiology. • Compared with conventional T2* sequences, SWAN improves detection of arterial thrombus. • Multiplanar SWAN analysis had the best diagnostic performance for arterial thrombus detection. • Sensitivity was 96% and specificity 100%. • Findings support combination of time-of-flight and susceptibility effects in suspected acute stroke.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N4f7e0f14c62f4acbb861a01276c41697
58 N6b01ece3a8394a5fbf079514bbf30324
59 sg:journal.1289120
60 schema:name Comparison of 3D multi-echo gradient-echo and 2D T2* MR sequences for the detection of arterial thrombus in patients with acute stroke
61 schema:pagination 762-769
62 schema:productId N2bdc2bfe6f3242779f630c7896d87af3
63 N4e14c243cd23445b8ef739880abad899
64 N5ec9d1ac485a4058a0d6d81edd2f628e
65 N6c3222251f56477881da220d0c41c158
66 N6c60e83177874442aca2a205225ea6bc
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018020112
68 https://doi.org/10.1007/s00330-013-3061-1
69 schema:sdDatePublished 2019-04-10T16:42
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nbff346629dfa4605869025fe61d7eacc
72 schema:url http://link.springer.com/10.1007%2Fs00330-013-3061-1
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N053a7f67066d472496f0e5c5682ae22a schema:name GE Healthcare, Clinical Science Development Group, Buc, France
77 rdf:type schema:Organization
78 N06611184979c42318bcbe60f34e70d4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Adult
80 rdf:type schema:DefinedTerm
81 N10c993fddeeb4a509d04eefd41049b19 rdf:first sg:person.01360232034.15
82 rdf:rest rdf:nil
83 N19381e7e94804edf909ef0dad03bd476 rdf:first sg:person.0677100034.84
84 rdf:rest Nefb3f14f549d4593a1abaee77c46b0bf
85 N1bb70aac19c740289e67efe030dcb388 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Posterior Cerebral Artery
87 rdf:type schema:DefinedTerm
88 N1e2f08d8a87d4884b665d64a2005c726 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Humans
90 rdf:type schema:DefinedTerm
91 N2750c10e8e39462aaa1694de748bd71f rdf:first sg:person.0637465702.27
92 rdf:rest N19381e7e94804edf909ef0dad03bd476
93 N2bdc2bfe6f3242779f630c7896d87af3 schema:name doi
94 schema:value 10.1007/s00330-013-3061-1
95 rdf:type schema:PropertyValue
96 N3048d012000445a2ac822dd28bf1073d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Anterior Cerebral Artery
98 rdf:type schema:DefinedTerm
99 N38482645598b40b793cd7efd51500b8b rdf:first sg:person.01273065501.40
100 rdf:rest Nf896b275b0fc4ab0ac8843217010e25b
101 N4c18b6e8ef154f0c843b91013983006f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Magnetic Resonance Imaging
103 rdf:type schema:DefinedTerm
104 N4e14c243cd23445b8ef739880abad899 schema:name pubmed_id
105 schema:value 24254132
106 rdf:type schema:PropertyValue
107 N4f7e0f14c62f4acbb861a01276c41697 schema:issueNumber 3
108 rdf:type schema:PublicationIssue
109 N54be2adc6bf54594885d5e472b72b6ab rdf:first sg:person.01136256102.20
110 rdf:rest N38482645598b40b793cd7efd51500b8b
111 N566f720c065548f0aaddf3b31ab00d97 schema:name Department of Neuroradiology, CHRU Roger Salengro, Lille, France
112 rdf:type schema:Organization
113 N5ec9d1ac485a4058a0d6d81edd2f628e schema:name nlm_unique_id
114 schema:value 9114774
115 rdf:type schema:PropertyValue
116 N6174f41f900c4bf1a29b52b329410fc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Stroke
118 rdf:type schema:DefinedTerm
119 N61dc4780884b421588edfed37fcc252a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Magnetic Resonance Angiography
121 rdf:type schema:DefinedTerm
122 N69cb57381e8b45df824d14a81cd7da83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Aged, 80 and over
124 rdf:type schema:DefinedTerm
125 N6b01ece3a8394a5fbf079514bbf30324 schema:volumeNumber 24
126 rdf:type schema:PublicationVolume
127 N6c3222251f56477881da220d0c41c158 schema:name dimensions_id
128 schema:value pub.1018020112
129 rdf:type schema:PropertyValue
130 N6c60e83177874442aca2a205225ea6bc schema:name readcube_id
131 schema:value 55dc540428ddd82e9a2b8b43146ee4f216ccf8e315e048aeeb3ea43d4e3ac3a3
132 rdf:type schema:PropertyValue
133 N706aa70db1ad41d488c3866157cbc5df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Brain Ischemia
135 rdf:type schema:DefinedTerm
136 N7144de93a03e47b0ae47004924daaed6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Observer Variation
138 rdf:type schema:DefinedTerm
139 N9f7a2152659b49e9acb981a120514e98 rdf:first sg:person.01336067165.48
140 rdf:rest Nf2a9c4c7b2ed4d4dbe02999151e8480b
141 N9fcdd48b0f6e4d4faaa695906772f5dc rdf:first sg:person.01354370734.16
142 rdf:rest Nd2d81dd3f2014809b6fb057235745ebb
143 Na22ec38a771e4dfd8d09e14257a0a8e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Prospective Studies
145 rdf:type schema:DefinedTerm
146 Na3fafcef647641ad886df04858148e90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Male
148 rdf:type schema:DefinedTerm
149 Na5dcc62dd3c440f99bcac873045c85d9 rdf:first sg:person.01070253550.79
150 rdf:rest N2750c10e8e39462aaa1694de748bd71f
151 Nadaca54ecf1c415baf924eba366c46a6 rdf:first sg:person.01117353467.02
152 rdf:rest N10c993fddeeb4a509d04eefd41049b19
153 Nbcb74788d1c34da7bab940676427891b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Middle Aged
155 rdf:type schema:DefinedTerm
156 Nbff346629dfa4605869025fe61d7eacc schema:name Springer Nature - SN SciGraph project
157 rdf:type schema:Organization
158 Nc06cb41f7cca4a59a331ff2dbaa804b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Middle Cerebral Artery
160 rdf:type schema:DefinedTerm
161 Nccda3d598f3b445d9012b532e8345157 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Aged
163 rdf:type schema:DefinedTerm
164 Ncd150960e81a43dca57e8e60a0267277 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Reproducibility of Results
166 rdf:type schema:DefinedTerm
167 Nd2d81dd3f2014809b6fb057235745ebb rdf:first sg:person.01152164361.47
168 rdf:rest Na5dcc62dd3c440f99bcac873045c85d9
169 Nd8866c22eee741dfa7f68ddae2878e11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Imaging, Three-Dimensional
171 rdf:type schema:DefinedTerm
172 Nddc0365ef1b146a096fdc6ff3246c28a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Female
174 rdf:type schema:DefinedTerm
175 Nedf418fa552641e1b9b153bd4d20b093 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Thrombosis
177 rdf:type schema:DefinedTerm
178 Nefb3f14f549d4593a1abaee77c46b0bf rdf:first sg:person.01013326434.19
179 rdf:rest N9f7a2152659b49e9acb981a120514e98
180 Nf2a9c4c7b2ed4d4dbe02999151e8480b rdf:first sg:person.01251677272.78
181 rdf:rest N54be2adc6bf54594885d5e472b72b6ab
182 Nf71325ba1c674488ab203d91702a0945 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Sensitivity and Specificity
184 rdf:type schema:DefinedTerm
185 Nf896b275b0fc4ab0ac8843217010e25b rdf:first sg:person.01330501000.98
186 rdf:rest Nadaca54ecf1c415baf924eba366c46a6
187 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
188 schema:name Information and Computing Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
191 schema:name Artificial Intelligence and Image Processing
192 rdf:type schema:DefinedTerm
193 sg:journal.1289120 schema:issn 0938-7994
194 1432-1084
195 schema:name European Radiology
196 rdf:type schema:Periodical
197 sg:person.01013326434.19 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
198 schema:familyName Gerber
199 schema:givenName Sophie
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013326434.19
201 rdf:type schema:Person
202 sg:person.01070253550.79 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
203 schema:familyName Khaled
204 schema:givenName Wassef
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070253550.79
206 rdf:type schema:Person
207 sg:person.01117353467.02 schema:affiliation https://www.grid.ac/institutes/grid.412116.1
208 schema:familyName Rahmouni
209 schema:givenName Alain
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117353467.02
211 rdf:type schema:Person
212 sg:person.01136256102.20 schema:affiliation https://www.grid.ac/institutes/grid.417888.a
213 schema:familyName Lambert
214 schema:givenName Oriane
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136256102.20
216 rdf:type schema:Person
217 sg:person.01152164361.47 schema:affiliation N566f720c065548f0aaddf3b31ab00d97
218 schema:familyName Leclerc
219 schema:givenName Xavier
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152164361.47
221 rdf:type schema:Person
222 sg:person.01251677272.78 schema:affiliation https://www.grid.ac/institutes/grid.457369.a
223 schema:familyName Benadjaoud
224 schema:givenName Mohamed
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251677272.78
226 rdf:type schema:Person
227 sg:person.01273065501.40 schema:affiliation N053a7f67066d472496f0e5c5682ae22a
228 schema:familyName Rabrait
229 schema:givenName Cécile
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273065501.40
231 rdf:type schema:Person
232 sg:person.01330501000.98 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
233 schema:familyName Zuber
234 schema:givenName Mathieu
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330501000.98
236 rdf:type schema:Person
237 sg:person.01336067165.48 schema:affiliation https://www.grid.ac/institutes/grid.417888.a
238 schema:familyName Blanc
239 schema:givenName Raphael
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336067165.48
241 rdf:type schema:Person
242 sg:person.01354370734.16 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
243 schema:familyName Hodel
244 schema:givenName Jérôme
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354370734.16
246 rdf:type schema:Person
247 sg:person.01360232034.15 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
248 schema:familyName Zins
249 schema:givenName Marc
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360232034.15
251 rdf:type schema:Person
252 sg:person.0637465702.27 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
253 schema:familyName Tamazyan
254 schema:givenName Ruben
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637465702.27
256 rdf:type schema:Person
257 sg:person.0677100034.84 schema:affiliation https://www.grid.ac/institutes/grid.414363.7
258 schema:familyName Rodallec
259 schema:givenName Mathieu
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677100034.84
261 rdf:type schema:Person
262 sg:pub.10.1007/s00234-011-0895-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037834517
263 https://doi.org/10.1007/s00234-011-0895-6
264 rdf:type schema:CreativeWork
265 sg:pub.10.1007/s00330-012-2690-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000842630
266 https://doi.org/10.1007/s00330-012-2690-0
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1002/jmri.1880060607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003342788
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1002/jmri.21833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001830764
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1002/mrm.20198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027912509
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.ejrad.2011.02.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031728080
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1097/rli.0b013e31817fb432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050225203
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1148/radiol.2322030273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040518474
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1148/radiology.168.3.3406410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079727796
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1148/radiology.175.1.2315481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078647496
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1148/radiology.204.1.9205259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083110229
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1148/radiology.215.2.r00ma09476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016251370
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1159/000057847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020761374
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1159/000086120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018675760
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1161/01.str.0000051504.10095.9c schema:sameAs https://app.dimensions.ai/details/publication/pub.1052826901
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1161/01.str.0000133341.74387.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015395710
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1161/01.str.0000185932.73486.7a schema:sameAs https://app.dimensions.ai/details/publication/pub.1030138463
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1161/01.str.0000257304.21967.ba schema:sameAs https://app.dimensions.ai/details/publication/pub.1048446732
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1161/01.str.27.12.2321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063341864
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1161/01.str.30.11.2263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039267624
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1161/01.str.30.4.765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000544452
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1161/strokeaha.110.584862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027806450
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1161/strokeaha.110.605576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020473873
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1177/0284185113495836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078768578
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1212/wnl.58.10.1470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048091536
313 rdf:type schema:CreativeWork
314 https://doi.org/10.3174/ajnr.a0748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015354023
315 rdf:type schema:CreativeWork
316 https://doi.org/10.3174/ajnr.a1400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053742048
317 rdf:type schema:CreativeWork
318 https://www.grid.ac/institutes/grid.412116.1 schema:alternateName Hôpitaux Universitaires Henri Mondor
319 schema:name Department of Radiology, Hôpital Henri Mondor, Créteil, France
320 rdf:type schema:Organization
321 https://www.grid.ac/institutes/grid.414363.7 schema:alternateName Hôpital Saint-Joseph
322 schema:name Department of Neurology, Hôpital Saint Joseph, Paris, France
323 Department of Neuroradiology, CHRU Roger Salengro, Lille, France
324 Department of Radiology, Hôpital Saint Joseph, 186, rue Raymond Losserand, Paris, France
325 rdf:type schema:Organization
326 https://www.grid.ac/institutes/grid.417888.a schema:alternateName Fondation Ophtalmologique Adolphe de Rothschild
327 schema:name Department of Neuroradiology, Fondation Ophtalmologique Rothschild, Paris, France
328 rdf:type schema:Organization
329 https://www.grid.ac/institutes/grid.457369.a schema:alternateName Délégation Paris 11
330 schema:name Inserm, CESP Centre for Research in Epidemiology and Population Health, U1018, Radiation Epidemiology Team, Villejuif, France
331 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...